COMPLEX NUMBER

1. DEFINITION

A number of the form a + ib, where $a, b \in R$ and $i = \sqrt{-1}$, is called a complex number and is denoted by 'Z'.

$$\boxed{z = \boxed{a} + i\boxed{b}}$$

$$\downarrow \qquad \downarrow$$

$$Re(z) \quad Im(z)$$

1.1 Conjugate of a Complex Number

For a given complex number z = a + ib, its conjugate ' \overline{z} ' is defined as $\overline{z} = a - ib$

2. ALGEBRA OF COMPLEX NUMBERS

Let $z_1 = a + ib$ and $z_2 = c + id$ be two complex numbers where a, b, c, d \in R and $i = \sqrt{-1}$.

1. Addition :

= (a + bi) + (c + di) $z_1 + z_2$ = (a + c) + (b + d) i

2. Subtraction :

= (a + bi) - (c + di) $z_{1}^{} - z_{2}^{}$ = (a - c) + (b - d)i

Multiplication : 3.

$$z_1 \cdot z_2 = (a + bi) (c + di)$$

= a (c + di) + bi (c + di)
= ac + adi + bci + bdi²
= ac - bd + (ad + bc) i
($\because i^2 = -1$)

2

$$\frac{z_1}{z_2} = \frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di}$$
$$= \left(\frac{ac+bd}{c^2+d^2}\right) + \left(\frac{bc-ad}{c^2+d^2}\right)i$$

1.
$$a + ib = c + id$$

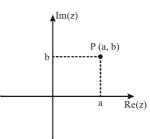
 $\Leftrightarrow a = c \& b = d$

2.
$$i^{4k+r} = \begin{cases} 1; r=0\\ i; r=1\\ -1; r=2\\ -i; r=3 \end{cases}$$

3. $\sqrt[n]{\sqrt{a}} = \sqrt[n]{a}$ only if at least one of either a or b is non-negative.

3. ARGAND PLANE

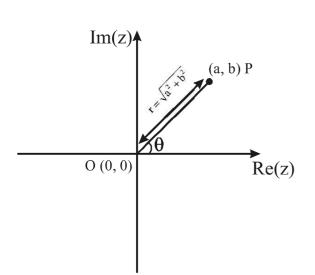
A complex number z = a + ib can be represented by a unique point P (a, b) in the argand plane.



Z = a + ib is represented by a point P (a, b)

3.1 Modulus and Argument of Complex Number

If z = a + ib is a complex number



 Distance of Z from origin is called as modulus of complex number Z.

It is denoted by $r = |z| = \sqrt{a^2 + b^2}$

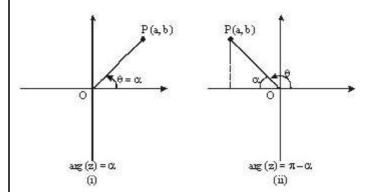
(ii) Here, θ i.e. angle made by OP with positive direction of real axis is called **argument of z**.

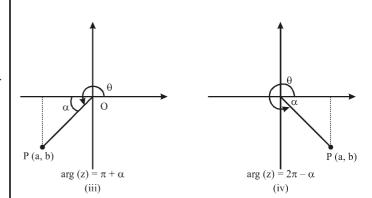
 $z_1 > z_2 \text{ or } z_1 < z_2 \text{ has no meaning but } |z_1| > |z_2| \text{ or } |z_1| < |z_2|$ holds meaning.

3.2 Principal Argument

The argument ' θ ' of complex number z = a + ib is called principal argument of z if $-\pi < \theta \le \pi$.

Let
$$\tan \alpha = \left| \frac{\mathbf{b}}{\mathbf{a}} \right|$$
, and θ be the arg (z).





In (iii) and (iv) principal argument is given by $-\pi + \alpha$ and $-\alpha$ respectively.

4. POLAR FORM $\begin{array}{c} & & \\$

where r = |z| and $\theta = \arg(z)$ $\therefore z = a + ib$ $= r (\cos \theta + i\sin \theta)$

Note...

 $Z = re^{i\theta}$ is known as Euler's form; where r =|Z| & $\theta = arg(Z)$

5. SOME IMPORTANT PROPERTIES

1. $\overline{(\overline{z})} = z$

- **2.** $z + \overline{z} = 2 \operatorname{Re}(z)$
- **3.** $z \overline{z} = 2i \operatorname{Im}(z)$
- **4.** $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- **5.** $\overline{z_1 z_2} = \overline{z_1} \ \overline{z_2}$
- $\mathbf{6.} \mid z \mid = 0 \Longrightarrow z = 0$
- **7.** $z\overline{z} = |z|^2$

8. $|z_1 z_2| = |z_1| |z_2|; \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$ **9.** $|\overline{z}| = |z| = |-z|$

- **10.** $|z_1 \pm z_2|^2 = |z_1|^2 + |z_2|^2 \pm 2 \operatorname{Re}(z_1 \overline{z}_2)$
- **11.** $|z_1 + z_2| \le |z_1| + |z_2|$ (Triangle Inequality) **12.** $|z_1 - z_2| \ge ||z_1| - ||z_2||$ **13.** $|az_1 - bz_2|^2 + ||bz_1 + az_2|^2 = (a^2 + b^2) (||z_1|^2 + ||z_2|^2)$

14. amp
$$(z_1 \cdot z_2) = amp \ z_1 + amp \ z_2 + 2 \ k\pi \ ; \ k \in I$$

15. amp $\left(\frac{y_0}{y_1}\right) = amp \ z_1 - amp \ z_2 + 2 \ k\pi \ ; \ k \in I$
16. amp $(z^n) = n \ amp(z) + 2k\pi \ ; \ k \in I$

6. DE-MOIVRE'S THEOREM

Statement : $\cos n\theta + i \sin n\theta$ is the value or one of the values of $(\cos \theta + i \sin \theta)^n$ according as if 'n' is integer or a rational number. The theorem is very useful in determining the roots of any complex quantity

7. CUBE ROOT OF UNITY

Roots of the equation $x^3 = 1$ are called cube roots of unity.

$$x^{3} - 1 = 0$$

(x - 1) (x² + x + 1) = 0
x = 1 or x² + x + 1 = 0
i.e x = $\underbrace{\frac{-1 + \sqrt{3}i}{2}}_{w}$ or x = $\underbrace{\frac{-1 - \sqrt{3}i}{2}}_{w^{2}}$

(i) The cube roots of unity are 1,
$$\frac{-1+i\sqrt{3}}{2}$$
, $\frac{-1-i\sqrt{3}}{2}$

(ii) $W^3 = 1$

- (iii) If w is one of the imaginary cube roots of unity then $1 + w + w^2 = 0$.
- (iv) In general $1 + w^r + w^{2r} = 0$; where $r \in I$ but is not the multiple of 3.
- (v) In polar form the cube roots of unity are :

$$\cos 0 + i \sin 0$$
; $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$, $\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$

- (vi) The three cube roots of unity when plotted on the argand plane constitute the verties of an equilateral triangle.
- (vii) The following factorisation should be remembered :

$$a^{3} - b^{3} = (a - b) (a - \omega b) (a - \omega^{2}b);$$

$$x^{2} + x + 1 = (x - \omega) (x - \omega^{2});$$

$$a^{3} + b^{3} = (a + b) (a + \omega b) (a + \omega^{2}b);$$

$$a^{3} + b^{3} + c^{3} - 3abc = (a + b + c) (a + \omega b + \omega^{2}c) (a + \omega^{2}b + \omega c)$$

8. 'n' nth ROOTS OF UNITY

Solution of equation $x^n = 1$ is given by

$$x = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} ; k = 0, 1, 2, ..., n - 1$$
$$= e^{i \left(\frac{2k\pi}{n}\right)} ; k = 0, 1, ..., n - 1$$

Note ...

- We may take any n consecutive integral values of k to get 'n' nth roots of unity.
- 2. Sum of 'n' nth roots of unity is zero, $n \in N$
- The points represented by 'n' nth roots of unity are located at the vertices of regular polygon of n sides inscribed in a unit circle, centred at origin & one vertex being one +ve real axis.

Properties :

If 1, $\alpha_1, \ \alpha_2, \ \alpha_3, ..., \ \alpha_{n-1}$ are the n, n^{th} root of unity then :

(i) They are in G.P. with common ratio $e^{i(2\pi/n)}$

(ii)
$$1^{p} + \alpha_{0}^{o} + \alpha_{1}^{o} + \dots + \alpha_{m-0}^{o} = \begin{bmatrix} 0, & \text{if } p \neq k n \\ n, & \text{if } p = k n \end{bmatrix}$$
 where $k \in \mathbb{Z}$

(iii)
$$(1 - \alpha_1) (1 - \alpha_2) \dots (1 - \alpha_{n-1}) = n$$

(iv) $(1 + \alpha_1) (1 + \alpha_2) \dots (1 + \alpha_{n-1}) = \begin{bmatrix} 0, & \text{if n is even} \\ 1, & \text{if n is odd} \end{bmatrix}$

(v) 1. α_1 . α_2 . α_3 $\alpha_{n-1} = \begin{bmatrix} -1, & \text{if n is even} \\ 1, & \text{if n is odd} \end{bmatrix}$

(i)
$$\cos \theta + \cos 2\theta + \cos 3\theta + \dots + \cos n\theta = \frac{\sin (n\theta/2)}{\sin (\theta/2)} \cos \left(\frac{n+1}{2}\right) \theta.$$

(ii) $\sin \theta + \sin 2\theta + \sin 3\theta + \dots + \sin n\theta = \frac{\sin (n\theta/2)}{\sin (\theta/2)} \sin \left(\frac{n+1}{2}\right) \theta.$

9. SQUARE ROOT OF COMPLEX NUMBER

Let $x + iy = \sqrt{a + ib}$, Squaring both sides, we get $(x + iy)^2 = a + ib$ i.e. $x^2 - y^2 = a$, 2xy = bSolving these equations, we get square roots of z.

10. LOCI IN COMPLEX PLANE

- (i) $|z z_0| = a$ represents circumference of circle, centred at z_0 , radius a.
- (ii) $|z z_0| < a$ represents interior of circle
- (iii) $|z z_0| > a$ represents exterior of this circle.
- (iv) $|z z_1| = |z z_2|$ represents \perp bisector of segment with end points $z_1 \& z_2$.

(v)
$$\left| \frac{-1}{-2} \right| = k \text{ represents} : \begin{cases} \text{circle, } k \neq 1 \\ \perp \text{ bisector, } k = 1 \end{cases}$$

- (vi) arg (z) = θ is a ray starting from origin (excluded) inclined at an $\angle \theta$ with real axis.
- (vii) Circle described on line segment joining $z_1 \& z_2$ as diameter is :

$$(-_{1})(-_{2})+(-_{2})(-_{1})=0.$$

(viii)Four pts. z_1 , z_2 , z_3 , z_4 in anticlockwise order will be concyclic, if & only if

$$\theta = \arg\left(\frac{Z_2 - A}{1 - A}\right) = \arg\left(\frac{Z_2 - A}{1 - A}\right)$$

$$\Rightarrow \arg\left(\frac{2}{1}-\frac{2}{4}\right) - \arg\left(\frac{2}{1}-\frac{2}{3}\right) = 2n\pi ; (n \in I)$$

$$\Rightarrow \arg\left[\left(\frac{2}{1-4}\right)\left(\frac{1-3}{2-3}\right)\right] = 2n\pi$$

$$\Rightarrow \left(\frac{z_2 - 4}{z_1 - 4}\right) \times \left(\frac{1 - 3}{2 - z_3}\right) \text{ is real \& positive.}$$

11. VECTORIAL REPRESENTATION OF A COMPLEX

Every complex number can be considered as if it is the position vector of that point. If the point P represents the complex number z then,

$$\overrightarrow{OP} = z \& |\overrightarrow{OP}| = |z|.$$



- (i) If $\overrightarrow{OP} = z = r e^{i\theta}$ then $\overrightarrow{OQ} = z_1 = r e^{i(\theta + \phi)} = z \cdot e^{i\phi}$. If \overrightarrow{OP} and \overrightarrow{OQ} are of unequal magnitude then $\overrightarrow{OQ} = \overrightarrow{OP} e^{i\phi}$
- (ii) If z₁, z₂, z₃, are three vertices of a triangle ABC described in the counter-clock wise sense, then

$$\frac{z_3-z}{z_2-z} = \frac{AC}{AB} (\cos \alpha + i \sin \alpha) = \frac{AC}{AB} \cdot e^{i\alpha} = \frac{|z_3-z_1|}{|z_2-z_1|} \cdot e^{i\alpha}$$

12. SOME IMPORTANT RESULTS

- (i) If z_1 and z_2 are two complex numbers, then the distance between z_1 and z_2 is $|z_2 - z_1|$.
- (ii) Segment Joining points A (z_1) and B (z_2) is divided by point P (z) in the ratio $m_1 : m_2$

then
$$z = \frac{m_1 z_2 + m_2 z}{m_1 + m_2}$$
, m_1 and m_2 are real.

(iii) The equation of the line joining z_1 and z_2 is given by

$$\begin{vmatrix} z & \overline{z} \\ z & \overline{z} \\ z_2 & \overline{z}_2 \end{vmatrix} = 0$$
 (non parametric form)

Or

$$\frac{z-z}{\overline{z}-\overline{z}} = \frac{z-z_2}{\overline{z}-\overline{z}_2}$$

- (iv) $\overline{a}z + a\overline{z} + b = 0$ represents general form of line.
- (v) The general eqn. of circle is :

 $z\overline{z} + a\overline{z} + \overline{a}z + b = 0$ (where b is real no.).

Centre : (-a) & radius $\sqrt{|a|^2 - b} = \sqrt{a\overline{a} - b}$.

(vi) Circle described on line segment joining $z_1 \& z_2$ as diameter is :

$$(z-z)(\overline{z}-\overline{z}_2)+(z-z_2)(\overline{z}-\overline{z})=0.$$

(vii) Four pts. z₁, z₂, z₃, z₄ in anticlockwise order will be **Important Identities** concylic, if & only if

$$\theta = \arg\left(\frac{z_2 - z_4}{z_1 - z_4}\right) = \arg\left(\frac{z_2 - z_3}{z_1 - z_3}\right)$$

$$\Rightarrow \quad \arg\left(\frac{z_2 - z_4}{z_1 - z_4}\right) - \arg\left(\frac{z_2 - z_3}{z_1 - z_3}\right) = 2n\pi \ ; \ (n \in I)$$

$$\Rightarrow \arg\left[\left(\frac{z_2-z_4}{z_1-z_4}\right)\left(\frac{z_1-z_3}{z_2-z_3}\right)\right] = 2n\pi$$

$$\Rightarrow \quad \left(\frac{z_2 - z_4}{z_1 - z_4}\right) \times \left(\frac{z_1 - z_3}{z_2 - z_3}\right) \text{ is real \& positive}$$

(viii) If z_1 , z_2 , z_3 are the vertices of an equilateral triangle where z_0 is its circumcentre then

(a)
$$\frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} + \frac{1}{z_1 - z_2} = 0$$

(b) $z_0^1 + z_1^1 + z_2^1 - z_1 z_2 - z_2 z_3 - z_3 z_1 = 0$
(c) $z_0^1 + z_1^1 + z_2^1 = 3 z_1^1$

(ix) If A, B, C & D are four points representing the complex numbers z_1 , z_2 , z_3 & z_4 then

AB
$$| CD$$
 if $\frac{z_4 - z_3}{z_2 - z_1}$ is purely real;

AB
$$\perp$$
 CD if $\frac{z_4 - z_3}{z_2 - z_1}$ is purely imaginary]

(x) Two points P (z_1) and Q(z_2) lie on the same side or opposite side of the line $\overline{a}z + a\overline{z} + b$ accordingly as $\overline{a}z_1 + a\overline{z}_1 + b$ and $\overline{a}z_2 + a\overline{z}_2 + b$ have same sign or opposite sign.

(i)
$$x^{2} + x + 1 = (x - \omega) (x - \omega^{2})$$

(ii) $x^{2} - x + 1 = (x + \omega) (x + \omega^{2})$
(iii) $x^{2} - xy + y^{2} = (x - y\omega) (x - y\omega^{2})$
(iv) $x^{2} - xy + y^{2} = (x + \omega y) (x + y\omega^{2})$
(v) $x^{2} + y^{2} = (x + iy) (x - iy)$
(vi) $x^{3} + y^{3} = (x + y) (x + y\omega) (x + y\omega^{2})$
(vii) $x^{3} - y^{3} = (x - y) (x - y\omega) (x - y\omega^{2})$
(viii) $x^{2} + y^{2} + z^{2} - xy - yz - zx = (x + y\omega + z\omega^{2}) (x + y\omega^{2} + z\omega)$
or $(x\omega + y\omega^{2} + z) (x\omega^{2} + y\omega + z)$
or $(x\omega + y + z\omega^{2}) (x\omega^{2} + y + z\omega)$.
(ix) $x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z) (x + \omega y + \omega^{2}z) (x + \omega^{2}y + \omega z)$

QUADRATIC EQUATION

QUADRATIC EQUATION

1. QUADRATIC EXPRESSION

The general form of a quadratic expression in x is,

 $f(\mathbf{x}) = \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}$, where $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{R}$ & $\mathbf{a} \neq 0$.

and general form of a quadratic equation in x is,

 $ax^2 + bx + c = 0$, where $a, b, c \in R \& a \neq 0$.

2. ROOTS OF QUADRATIC EQUATION

(a) The solution of the quadratic equation,

$$ax^2 + bx + c = 0$$
 is given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The expression $D = b^2 - 4ac$ is called the discriminant of the quadratic equation.

(b) If $\alpha \& \beta$ are the roots of the quadratic equation

 $ax^{2} + bx + c = 0$, then ;

(i)
$$\alpha + \beta = -b/a$$
 (ii) $\alpha \beta = c/a$

- (iii) $|\alpha \beta| = \frac{\sqrt{D}}{|a|}$.
- (c) A quadratic equation whose roots are $\alpha \& \beta$ is $(x \alpha) (x \beta) = 0$ i.e.
 - $x^2 (\alpha + \beta) x + \alpha \beta = 0$ i.e.
 - x^2 (sum of roots) x + product of roots = 0.

Note...

$$y = (ax^{2} + bx + c) \equiv a(x - \alpha) (x - \beta)$$

$$=a\left(x+\frac{b}{2a}\right)^2-\frac{D}{4a}$$

3. NATURE OF ROOTS

- (a) Consider the quadratic equation $ax^2 + bx + c = 0$ where a, b, c $\in \mathbb{R}$ & $a \neq 0$ then;
 - (i) $D > 0 \iff$ roots are real & distinct (unequal).
 - (ii) $D = 0 \iff$ roots are real & coincident (equal).
 - (iii) $D < 0 \iff$ roots are imaginary.
 - (iv) If p + i q is one root of a quadratic equation, then the other must be the conjugate p - i q &

vice versa. $(p, q \in R \& i = \sqrt{-1})$.

- (b) Consider the quadratic equation $ax^2 + bx + c = 0$ where a, b, c $\in Q$ & a $\neq 0$ then;
 - (i) If D > 0 & is a perfect square, then roots are rational & unequal.
 - (ii) If $\alpha = p + \sqrt{q}$ is one root in this case, (where p is rational & \sqrt{q} is a surd) then the other root must be the conjugate of it i.e. $\beta = p - \sqrt{q}$ & vice versa.

Note...

Remember that a quadratic equation cannot have three different roots & if it has, it becomes an identity.

4. GRAPH OF QUADRATIC EXPRESSION

Consider the quadratic expression, $y = ax^2 + bx + c$, $a \neq 0 \& a, b, c \in R$ then ;

- (i) The graph between x, y is always a parabola.
 If a > 0 then the shape of the parabola is concave upwards & if a < 0 then the shape of the parabola is concave downwards.
- (ii) $y > 0 \forall x \in R$, only if a > 0 & D < 0
- (iii) $y < 0 \forall x \in R$, only if a < 0 & D < 0

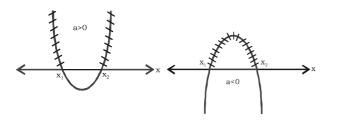
5. SOLUTION OF QUADRATIC INEQUALITIES

 $ax^2 + bx + c > 0$ (a $\neq 0$).

(i) If D > 0, then the equation $ax^2 + bx + c = 0$ has two different roots $(x_1 < x_2)$.

Then $a > 0 \implies x \in (-\infty, x_1) \cup (x_2, \infty)$

$$a < 0 \implies x \in (x_1, x_2)$$



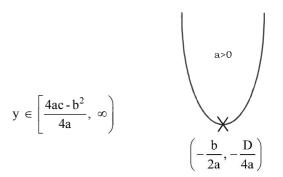
(ii) Inequalities of the form $\frac{P(x)}{Q(x)} \ge 0$ can be

quickly solved using the method of intervals (wavy curve).

6. MAX. & MIN. VALUE OF QUADRATIC EXPRESSION

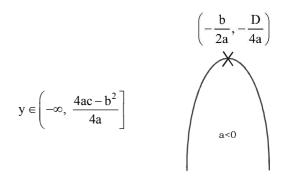
Maximum & Minimum Value of $y = ax^2 + bx + c$ occurs at x = -(b/2a) according as :

For a > 0, we have :



$$y_{\min} = \frac{-D}{4a}$$
 at $x = \frac{-b}{2a}$, and $y_{\max} \to \infty$

For a < 0, we have :



$$y_{max} = \frac{-D}{4a}$$
 at $x = \frac{-b}{2a}$, and $y_{min} \to -\infty$

QUADRATIC EQUATION

7. THEORY OF EQUATIONS

If $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ are the roots of the nth degree polynomial equation :

$$f(\mathbf{x}) = \mathbf{a}_0 \mathbf{x}^n + \mathbf{a}_1 \mathbf{x}^{n-1} + \mathbf{a}_2 \mathbf{x}^{n-2} + \dots + \mathbf{a}_{n-1} \mathbf{x} + \mathbf{a}_n = 0$$

where a_0, a_1, \dots, a_n are all real & $a_0 \neq 0$,

Then,

 $\sum \alpha_1 = -\frac{a_1}{a_0};$

 $\sum \alpha_1 \alpha_2 = \frac{a_2}{a_0};$

$$\sum \alpha_1 \alpha_2 \alpha_3 = -\frac{a_3}{a_0};$$

.....

$$\alpha_1 \alpha_2 \alpha_3 \dots \alpha_n = (-1)^n \frac{a_n}{a_0}$$

8. LOCATION OF ROOTS

Let $f(x) = ax^2 + bx + c$, where a > 0 & a, b, $c \in R$.

(i) Conditions for both the roots of f(x) = 0 to be greater than a specified number 'k' are :

 $D \ge 0$ & f(k) > 0 & (-b/2a) > k.

(ii) Conditions for both roots of f(x) = 0 to lie on either side of the number 'k' (in other words the number 'k' lies between the roots of f(x) = 0 is:

 $af(\mathbf{k}) < 0.$

- (iii) Conditions for exactly one root of f(x) = 0 to lie in the interval (k_1, k_2) i.e. $k_1 < x < k_2$ are : $D > 0 \quad \& \quad f(k_1) \cdot f(k_2) < 0.$
- (iv) Conditions that both roots of f(x) = 0 to be confined between the numbers $k_1 \& k_2$ are $(k_1 \le k_2)$:

 $D \ge 0 \& f(k_1) \ge 0 \& f(k_2) \ge 0 \& k_1 \le (-b/2a) \le k_2.$

Note...

Remainder Theorem : If f(x) is a polynomial, then f(h) is the remainder when f(x) is divided by x - h.

Factor theorem : If x = h is a root of equation f(x) = 0, then x-h is a factor of f(x) and conversely.

9. MAX. & MIN. VALUES OF RATIONAL EXPRESSION

Here we shall find the values attained by a rational

expression of the form $\frac{a_1x^2 + b_1x + c_1}{a_2x^2 + b_2x + c_2}$ for real values

of x.

Example No. 4 will make the method clear.

10. COMMON ROOTS

(a) Only One Common Root

Let α be the common root of $ax^2 + bx + c = 0$ &

 $a'x^2 + b'x + c' = 0$, such that a, $a' \neq 0$ and $ab' \neq a'b$.

Then, the condition for one common root is :

 $(ca'-c'a)^2 = (ab'-a'b)(bc'-b'c).$

(b) Two Common Roots

Let α , β be the two common roots of

 $ax^{2} + bx + c = 0 \& a'x^{2} + b'x + c' = 0,$

such that a, $a' \neq 0$.

Then, the condition for two common roots is :

$$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$$

11. RESOLUTION INTO TWO LINEAR FACTORS

The condition that a quadratic function

 $f(x, y) = ax^2 + 2 hxy + by^2 + 2 gx + 2 fy + c$

may be resolved into two linear factors is that ;

 $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$

OR
$$\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$$

12. FORMATION OF A POLYNOMIAL EQUATION

If $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ are the roots of the nth degree polynomial equation, then the equation is

 $x^{n} - S_{1}x^{n-1} + S_{2}x^{n-2} + S_{3}x^{n-3} + \dots + (-1)^{n}S_{n} = 0$

where S_k denotes the sum of the products of roots taken k at a time.

Particular Cases

(a) Quadratic Equation if α , β be the roots the quadratic equation, then the equation is :

 $x^{2} - S_{1}x + S_{2} = 0$ *i.e.* $x^{2} - (\alpha + \beta)x + \alpha\beta = 0$

(b) Cubic Equation if α , β , γ be the roots the cubic equation, then the equation is :

 $x^3 - S_1 x^2 + S_2 x - S_3 = 0$ *i.e.*

 $x^{3} - (\alpha + \beta + \gamma) x^{2} + (\alpha \beta + \beta \gamma + \gamma \alpha) x - \alpha \beta \gamma = 0$

- (i) If α is a root of equation f(x) = 0, the polynomial f(x) is exactly divisible by $(x \alpha)$. In other words, $(x \alpha)$ is a factor of f(x) and conversely.
- (ii) Every equation of nth degree $(n \ge 1)$ has exactly n roots & if the equation has more than n roots, it is an identity.

- (iii) If there be any two real numbers 'a' & 'b' such that f (a) & f (b) are of opposite signs, then f (x) = 0 must have atleast one real root between 'a' and 'b'.
- (iv) Every equation f(x) = 0 of degree odd has at least one real root of a sign opposite to that of its last term.

13. TRANSFORMATION OF EQUATIONS

- (i) To obtain an equation whose roots are reciprocals of the roots of a given equation, it is obtained by replacing x by 1/x in the given equation
- (ii) Transformation of an equation to another equation whose roots are negative of the roots of a given equation-replace x by x.
- (iii) Transformation of an equation to another equation whose roots are square of the roots of a given equation-replace x by \sqrt{x} .
- (iv) Transformation of an equation to another equation whose roots are cubes of the roots of a given equation–replace x by $x^{1/3}$.