
BINOMIAL THEOREM

If a, b ��R and n ��N, then

(a + b)n = nC
0 
anb0 + nC

1 
an–1 b1 + nC

2 
an–2b2 +...+ nC

n 
a0bn

REMARKS  :

1. If the index of the binomial is n then the expansion

contains n + 1 terms.

2. In each term, the sum of indices of a and b is always n.

3. Coefficients of the terms in binomial expansion

equidistant from both the ends are equal.

4. (a–b)n = nC
0
anb0 – nC

1
an–1 b1 + nC

2
an–2b2– ...+ (–1)n

nC
0
a0bn.

GENERAL TERM AND MIDDLE TERMS IN

  EXPANSION OF (A + B)N

t
r+1 

= nC
r 
an–r br

t
r+1

is called a general term for all r ��N and 0 �� r ��n.

Using this formula we can find any term of the expansion.

MIDDLE TERM (S) :

1. In (a + b)n if n is even then the number of terms in

the expansion is odd. Therefore there is only one

middle term and it is 
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term.

2. In (a + b)n, if n is odd then the number of terms in

the expansion is even. Therefore there are two

middle terms and those are
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terms.

BINOMIAL THEOREM FOR ANY INDEX

If n is negative integer then n! is not defined. We state

binomial theorem in another form.
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THEOREM :

If n is any real number, a = 1, b = x and |x| < 1 then

(1 + x)n = 1 + nx + ...x
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Here there are infinite number of terms in the expansion,

The general term is given by
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(i) Expansion is valid only when – 1 < x < 1

(ii) nC
r
 can not be used because it is defined only for

natural number, so nC
r
 will be written

as
!r

)1rn().........1n(n 
��

(iii) As the series never terminates, the number of terms

in the series is infinite.

(iv) General term of the series (1 + x)–n = T
r + 1

� (–1)r
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(v) General term of the series (1 – x)–n � T
r + 1

= x
!r
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(vi) If first term is not 1, then make it unity in the

following way. 1
a

x
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REMARKS :

1. If |x| < 1 and n is any real number, then

(1–x)n = 1–nx + ...x
!3
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The general term is given by
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2. If n is any real number and |b| < |a|, then
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While expanding (a + b)n where n is a negative integer or a

fraction, reduce the binomial to the form in which the first

term is unity and the second term is numerically less than

unity.

Particular expansion of the binomials for negative index,

| x | < 1

1.
1)x1(

x1
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= 1 – x + x2 – x3 + x4 – x5 + .....
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= 1 – 2x + 3x2 – 4x3 + .....
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= 1 + 2x + 3x2 + 4x3 + .....

  BINOMIAL COEFFICIENTS

The coefficients nC
0
, nC

1
, nC

2
,..., nC

n 
in the expansion of (a+b)n

are called the binomial coefficients and denoted by C
0
, C

1
,

C
2
, ....., C

n 
respectively

Now

(1 + x)n = nC
0
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1
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2
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n
xn ..... (i)

Put x = 1.
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� The sum of all binomial coefficients is 2n.

Put x = –1, in equation (i),
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� The sum of even coefficients = The sum of odd coefficients
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   Properties of Binomial Coefficient

For the sake of convenience the coefficients
nC

0
, nC

1
, ............, nC

r
,............... nC

n
 are usually denoted by

C
0
, C

1
,......, C
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n
 respectively.
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     Some Important Results

(i) (1 + x)n = C
0
 + C

1
x + C

2
x2 + .......... + C

n
xn ,

Putting x = 1 and – 1, we get
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(ii) Differentiating (1 + x)n = C
0
 + C

1
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2
x2 + ........ + C

n
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on both sides we have, n(1 + x)n – 1

= C
1
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2
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3
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Differentiating (1) again and again we will have

different results.

(iii) Integrating (1 + x)n, we have,
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 (where C is a constant)

Put x = 0, we get C = – 
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Put x = 1 in (2) we get
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Put x = – 1 in (2) we get,
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Illustration

Find the coefficient of x4 in the expansion of
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= (1 + x) (1 + x + x2 + x3 + x4 +...... to �)

= [1 + x + x2 + x3 + x4 + ....... to �] +

 [x + x2 + x3 + x4+ ......... to �]

= 1 + 2x + 2x2 + 2x3 + 2x4 + 2x5 + ...... to �

Hence coefficient of x4 = 2

Illustration

Find the square root of 99 correct to 4 places of deicmal.
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= 10 [1–0.005 – 0.0000125 + ......... to �]

= 10 (.9949875) = 9.94987 = 9.9499

  Multinomial Expansion

In the expansion of (x
1
 + x

2
 +........ +x

n
)m where m, n � N and

x
1
, x

2
, ..........., x

n
 are independent variables, we have

(i) Total number of terms = m + n – 1C
n – 1

(ii) Coefficient of n321 r

n
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(iii) Sum of all the coefficients is obtained by putting all

the variables x
1
 equal to 1.

Illustration

Find the total number of terms in the expansion of

(1 + a + b)10 and coefficient of a2b3.

Sol. Total number of terms = 10 + 3 – 1 C
3 – 1

 =12C
2
 = 66

Coefficient of a2b3 =
!5!3!2

!10

��  =2520
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