BASIC CONCEPTS

INVERSE CIRCULAR FUNCTIONS

	Function	Domain	Range
1.	$y = \sin^{-1} x \operatorname{iff} x = \sin y$	$-1 \leq x \leq 1$,	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
2.	$y = \cos^{-1} x$ iff $x = \cos y$	$-1 \leq x \leq 1$	[0, <i>π</i>]
3.	$y = \tan^{-1} x \operatorname{iff} x = \tan y$	$-\infty < x < \infty$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
4.	$y = \cot^{-1} x \text{ iff } x = \cot y$	$-\infty < x < \infty$	[0, <i>π</i>]
5.	$y = cosec^{-1} x iff x = cosec y$	$\left(-\infty,-1 ight]\cup\left[1,\infty ight]$	$\left[-\frac{\pi}{2}.0\right)\cup\left(0,\frac{\pi}{2}\right]$
6.	$y = \sec^{-1} x \text{ iff } x = \sec y$	$\left(-\infty,-1 ight]\cup\left[1,\infty ight]$	$\left[0.\frac{\pi}{2}\right)\cup\left(\frac{\pi}{2},\pi\right]$

(i) Sin⁻¹x & tan⁻¹x are increasing functions in their domain.
(ii) Cos⁻¹x & cot⁻¹x are decreasing functions in over domain.

PROPERTY – I

```
(i) \sin^{-1} x + \cos^{1} x = \pi/2, for all x \in [-1, 1]

Sol. Let, \sin^{-1} x = \theta ... (i)

then, \theta \in [-\pi/2, \pi/2] [\because x \in [-1, 1]]

\Rightarrow -\pi/2 \le \theta \le \pi/2

\Rightarrow -\pi/2 \le -\theta \le \pi/2

\Rightarrow 0 \le \frac{\pi}{2} - \theta \le \pi/2

\Rightarrow \frac{\pi}{2} - \theta \in [0, \pi]

Now, \sin^{-1} x = \theta
```

$$\Rightarrow x = \sin \theta$$

$$\Rightarrow x = \cos\left(\frac{\pi}{2} - \theta\right)$$

$$\Rightarrow \cos^{-1} x = \frac{\pi}{2} - \theta$$

$$\{\because x \in [-1, 1] \text{ and } (\pi/2 - \theta) \in [0, \pi])$$

$$\Rightarrow \theta + \cos^{-1} x = \pi/2 \qquad \dots \text{ (ii)}$$

from (i) and (ii), we get

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$

... (i)

(ii)
$$\tan^{1} x + \cot^{1} x = \pi^{2}, f \text{ or all } x \in \mathbb{R}$$

Sol. Let, sec $^{1} x = 0$...(i)
then, $\theta \in (-\pi^{2}, \pi^{2}) \quad (\because, x \in \mathbb{R})$
 $\Rightarrow -\frac{\pi}{2} < \theta < \frac{\pi}{2}$
 $\Rightarrow 0 < \frac{\pi}{2} - \theta < \pi$
 $\Rightarrow 0 + \cot^{1} x = \frac{\pi}{2}$
 $= 0 (\pi^{2} - \theta) \in (0, \pi)$
 $\Rightarrow x = \cot(\pi^{2} - \theta)$
 $\Rightarrow x = \cot(\pi^{2} - \theta)$
 $\Rightarrow 0 + \cot^{1} x = \frac{\pi}{2}$
 $= 0 (\pi^{2} - \theta) = (0, \pi)$
 $\Rightarrow 0 + \cot^{1} x = \frac{\pi}{2}$
 $= 0 (\pi^{2} - \theta) = (0, \pi)$
 $\Rightarrow 0 + \cot^{1} x = \frac{\pi}{2}$
 $= 0 (\pi^{2} - \theta) = (-\pi^{2}, \pi^{2} - \theta < (0, \pi))$
 $\Rightarrow 0 + \cot^{1} x = \frac{\pi}{2}$
 $= 0 (\pi^{2} - \pi^{2} - \theta) = (-\infty)$
 $\Rightarrow 0 + \cot^{1} x = \frac{\pi}{2}$
 $= 0 (\pi^{2} - \pi^{2} - \theta) = (-\infty)$
 $(ii) sec^{1} + cosec^{1} x = \pi^{2}$
 $(iii) sec^{1} + cosec^{1} x = \pi^{2}$
 $(iii) sec^{1} + cosec^{1} x = \pi^{2}$
 $(iii) sec^{1} + cosec^{1} x = \pi^{2}$
 $\Rightarrow -\pi^{2} - \theta < \pi^{2} + \frac{\pi}{2}$
 $\Rightarrow 0 = \cos^{-1} (\frac{1}{x})$
 $\Rightarrow 0 = \cos^{-1} (\frac{1}{x}) = \sec^{-1} (x)$

(iii)
$$\tan^{-1}\left(\frac{1}{x}\right) = \begin{cases} \cot^{-1}x \ , & \text{for } x > 0 \\ -\pi + \cot^{-1}x, & \text{for } x < 0 \end{cases}$$

Sol. Let $\cot^{-1}x = 0$. Then $x \in R, x \neq 0$ and $\theta \in [0, \pi] \dots$ (i)
Now two cases arises :
Case I : When $x > 0$
In this case, $\theta \in (0, \pi/2)$
 \therefore $\cot^{-1}x = 0$
 $\Rightarrow x = \cot \theta$
 $\Rightarrow x = \cot \theta$
 $\Rightarrow \frac{1}{x} = \tan \theta$
 $\theta = \tan^{-1}\left(\frac{1}{x}\right) \dots$ (ii)
from (i) and (ii), we get $\{\because \theta \in (0, \pi/2)\}$
 $\tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1}x$, for all $x > 0$.
Case II : When $x < 0$
In this case $\theta \in (\pi/2, \pi)$ $\{\because x = \cot \theta < 0\}$
Now, $\frac{\pi}{2} < \theta < \pi$
 $\Rightarrow -\frac{\pi}{2} < \theta - \pi < 0$
 $\Rightarrow \theta - \pi \in (-\pi/2, 0)$
 \therefore $\cot^{-1}x = \theta$
 $\Rightarrow x = \cot \theta$
 $\Rightarrow \frac{1}{x} = \tan \theta$
 $\Rightarrow \frac{1}{x} = -\tan (\pi - \theta)$
 $\Rightarrow \frac{1}{x} = \tan (\theta - \pi) \quad \{\because \tan (\pi - \theta) = -\tan \theta\}$
 $\Rightarrow \tan^{-1}\left(\frac{1}{x}\right) = -\pi + \theta$... (iii)
from (i) and (iii), we get

$$\tan^{-1}\left(\frac{1}{x}\right) = -\pi + \cot^{-1}x, \text{ if } x < 0$$

Hence,

$$\tan^{-1}\left(\frac{1}{x}\right) = \begin{cases} \cot^{-1} x, & \text{for } x > 0\\ -\pi + \cot^{-1} x, & \text{for } x < 0 \end{cases}$$

PROPERTY – III

(i) $\cos^{-1}(-x) = \pi - \cos^{-1}(x)$, for all $x \in [-1, 1]$ (ii) $\sec^{-1}, (-x) = \pi - \sec^{-1} x$, for all $x \in (-\infty, -1] \cup [1, \infty)$ (iii) $\cot^{-1}(-x) = \pi - \cot^{-1}x$, for all $x \in \mathbb{R}$ (iv) $\sin^{-1}(-x) = -\sin^{-1}(x)$, for all $x \in [-1, 1]$ (v) $\tan^{-1}(-x) = -\tan^{-1}x$, for all $x \in \mathbb{R}$ (vi) $\operatorname{cosec}^{-1}(-x) = -\operatorname{cosec}^{-1} x$, for all $x \in (-\infty, -1] \cup [1, \infty)$ **Sol.** (ii) Clearly, $-x \in [-1, 1]$ for all $x \in [-1, 1]$ let $\cos^{-1}(-x) = \theta$...(i) then, $-x = \cos \theta$ \Rightarrow x = - cos θ $\Rightarrow x = \cos(\pi - \theta)$ $\{ \because x \in [-1, 1] \text{ and } \pi - \theta \in [0, \pi] \text{ for all } \theta \in [0, \pi] \}$ $\cos^{-1} x = \pi - \theta$ $\Rightarrow \theta = \pi - \cos^{-1} x$... (ii) from (i) and (ii), we get $\cos^{-1}(-x) = \pi - \cos^{-1}x$ Similarly, we can prove other results. (i) Clearly, $-x \in [-1, 1]$ for all $x \in [-1, 1]$ let $\sin^{-1}(-x) = \theta$ then, $-x = \sin \theta$... (i) \Rightarrow x = - sin θ $x = \sin(-\theta)$ \Rightarrow $-\theta = \sin^{-1}x$ \Rightarrow $\{ \because x \in [-1, 1] \text{ and } -\theta \in [-\pi/2, \pi/2] \text{ for all } \theta \in [-\pi/2, \pi/2] \}$ $\theta = -\sin^{-1}x \dots (ii)$ \Rightarrow from (i) and (ii), we get $\sin^{-1}(-x) = -\sin^{-1}(x)$

PROPERTY – IV

- (i) $\sin(\sin^{-1}x) = x$, for all $x \in [-1, 1]$
- (ii) $\cos(\cos^{-1} x) = x$, for all $x \in [-1, 1]$
- (iii) $\tan(\tan^{-1}x) = x$, for all $x \in R$
- (iv) $\operatorname{cosec}(\operatorname{cosec}^{-1} x) = x$, for all $x \in (-\infty, -1] \cup [1, \infty)$
- (v) sec (sec⁻¹x) = x, for all $x \in (-\infty, -1] \cup [1, \infty)$
- (vi) $\cot(\cot^{-1}x) = x$, for all $x \in R$
- Sol. We know that, if $f : A \to B$ is a bijection, then $f^{-1} : B \to A$ exists such that fof⁻¹(y) = f(f⁻¹(y)) = y for all $y \in B$.

Clearly, all these results are direct consequences of this property.

Aliter : Let $\theta \in [-\pi/2, \pi/2]$ and $x \in [-1, 1]$ such that $\sin \theta = x$.

then, $\theta = \sin^{-1} x$

 $\therefore \quad x = \sin \theta = \sin (\sin^{-1} x)$

Hence, $\sin(\sin^{-1}x) = x$ for all $x \in [-1, 1]$

Similarly, we can prove other results.

Remark : It should be noted that,

 $\sin^{-1}(\sin \theta) \neq \theta$, if $\notin [-\pi/2, \pi/2]$. Infact, we have

$$\sin^{-1}(\sin \theta) = \begin{cases} -\pi - \theta, & \text{if } \theta \in [-3\pi/2, -\pi/2] \\ \theta, & \text{if } \theta \in [-\pi/2, \pi/2] \\ \pi - \theta, & \text{if } \theta \in [\pi/2, 3\pi/2] \\ -2\pi + \theta, & \text{if } \theta \in [3\pi/2, 5\pi/2] \end{cases} \text{ and so on.}$$

Similarly,

$$\cos^{-1}(\cos\theta) = \begin{cases} -\theta, & \text{if } \theta \in [-\pi, 0] \\ \theta, & \text{if } \theta \in [0, \pi] \\ 2\pi - \theta, & \text{if } \theta \in [\pi, 2\pi] \\ -2\pi + \theta, & \text{if } \theta \in [2\pi, 3\pi] \end{cases} \text{ and so on.}$$

$$\tan^{-1}(\tan \theta) = \begin{cases} -\pi - \theta, & \text{if } \theta \in [-\pi/2, -\pi/2] \\ \theta, & \text{if } \theta \in [-\pi/2, \pi/2] \\ \theta - \pi, & \text{if } \theta \in [\pi/2, 3\pi/2] \\ \theta - 2\pi, & \text{if } \theta \in [3\pi/2, 5\pi/2] \\ \end{cases} \text{ and so on.}$$

PROPERTY – V

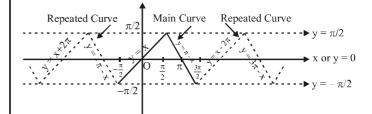
- (i) Sketch the graph for $y = \sin^{-1}(\sin x)$
- **Sol.** As, $y = \sin^{-1}(\sin x)$ is periodic with period 2π .
- :. to draw this graph we should draw the graph for one interval of length 2π and repeat for entire values of x.

As we know,

$$\sin^{-1}(\sin x) = \begin{cases} x; & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ (\pi - x); & -\frac{\pi}{2} \le \pi - x < \frac{\pi}{2} \\ (i.e., \frac{\pi}{2} \le x \le \frac{3\pi}{2}) \end{cases}$$

or
$$\sin^{-1}(\sin x) = \begin{cases} x, & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \frac{3\pi}{2}, \end{cases}$$

which is defined for the interval of length 2 π , plotted as ;



Thus, the graph for $y = \sin^{-1}(\sin x)$, is a straight line up and a straight line down with slopes 1 and -1 respectively lying

between
$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$
.

Note ...

Students are adviced to learn the definition of $\sin^{-1}(\sin x)$ as,

$$y = \sin^{-1}(\sin x) = \begin{cases} x + 2\pi & ; & -\frac{5\pi}{2} \le x \le -\frac{3\pi}{2} \\ -\pi - x & ; & -\frac{3\pi}{2} \le x \le -\frac{\pi}{2} \\ x & ; & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ \pi - x & ; & \frac{\pi}{2} \le x \le \frac{3\pi}{2} \\ x - 2\pi & ; & \frac{3\pi}{2} \le x \le \frac{5\pi}{2} & \dots \text{ and so on} \end{cases}$$

- (ii) Sketch the graph for $y = \cos^{-1}(\cos x)$.
- **Sol.** As, $y = \cos^{-1}(\cos x)$ is periodic with period 2π .
- $\therefore \quad \text{to draw this graph we should draw the graph for one interval} \\ \text{of length } 2\pi \text{ and repear for entire values of } x \text{ of length } 2\pi.$

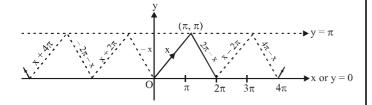
As we know;

$$\cos^{-1}(\cos x) = \begin{cases} x; & 0 \le x \le \pi \\ 2\pi - x; & 0 \le 2\pi - x \le \pi, \end{cases}$$

or

 $\cos^{-1}(\cos x) = \begin{cases} x; & 0 \le x \le \pi \\ 2\pi - x; & \pi \le x \le 2\pi, \end{cases}$

Thus, it has been defined for $0 < x < 2\pi$ that has length 2π . So, its graph could be plotted as;



Thus, the curve $y = \cos^{-1}(\cos x)$.

(iii) Sketch the graph for $y = \tan^{-1}(\tan x)$.

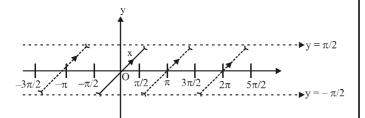
Sol. As $y = \tan^{-1}(\tan x)$ is periodic with period π .

:. to draw this graph we should draw the graph for one interval of length π and repeat for entire values of x.

As we know; $\tan^{-1}(\tan x) = \left\{ x; -\frac{\pi}{2} < x < \frac{\pi}{2} \right\}$

Thus, it has been defined for $-\frac{\pi}{2} < x < \frac{\pi}{2}$ that has length π .

So, its graph could be plotted as;



Thus, the curve for $y = \tan^{-1} (\tan x)$, where y is not defined

for
$$x \in (2n+1)\frac{\pi}{2}$$
.

FORMULAS

(i)
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}, xy < 1$$

(ii)
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}, xy > -1$$

(iii)
$$2 \tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2}, |x| < 1$$

(iv)
$$2 \tan^{-1} x = \sin^{-1} \frac{2x}{1+x^2}, |x| \le 1$$

(v)
$$2 \tan^{-1} x = \cos^{-1} \frac{1-x^2}{1+x^2}, x \ge 0$$

(vi)
$$\sin^{-1}x + \sin^{-1}y = \sin^{-1}(x\sqrt{1-y^2} + y\sqrt{1-x^2})$$

(vii)
$$\sin^{-1} x - \sin^{-1} y = \sin^{-1} (x \sqrt{1 - y^2} - y \sqrt{1 - x^2})$$

(viii)
$$\cos^{-1}x + \cos^{-1}y = \cos^{-1}(xy - \sqrt{1 - x^2}\sqrt{1 - y^2})$$

(ix)
$$\cos^{-1} x - \cos^{-1} y = \cos^{-1} (xy + \sqrt{1 - x^2} \sqrt{1 - y^2})$$

(x) If
$$\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1}$$

$$\begin{bmatrix} \frac{x + y + z - xyz}{1 - xy - yz - zx} \end{bmatrix} \text{if, } x > 0, y > 0, z > 0 \&$$

$$xy + yz + zx < 1$$
Note:
(i) If $\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \pi \text{ then } x + y + z = xyz$
(ii) If $\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \frac{\pi}{2}$ then $xy + yz + zx = 1$

REMEMBER THAT:

(i)
$$\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2} \implies x = y = z = 1$$

(ii)
$$\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = 3\pi x = y = z = -1$$

(iii)
$$\tan^{-1} 1 + \tan^{-1} 2 + 2 \tan^{-1} 3 =$$

$$\tan^{-1} 1 + \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \frac{\pi}{2}$$