CBSE Class-12 Physics Quick Revision Notes
 Chapter-07: Alternating Current

- Alternating Current:

The current whose magnitude changes with time and direction reverses periodically is called alternating current. a) Alternating emf E and current I at any time am given by:

Where $E_{0}=N B A \omega$

$$
I=I_{0} \sin (\omega t-\phi)
$$

Where $I_{0}=\frac{N B A \omega}{R}$
$\omega=2 \pi n=\frac{2 \pi}{T}$
Where T is the time period.

- Values of Alternating Current and Voltage
a) Instantaneous value:

It is the value of alternating current and voltage at an instant t.
b) Peak value:

Maximum values of voltage E_{0} and current I_{0} in a cycle are called peak values.
c) Mean value:

For complete cycle,

$$
\begin{aligned}
& \langle E\rangle=\frac{1}{T} \int_{0}^{T} E d t=0 \\
& \langle I\rangle=\frac{1}{T} \int_{0}^{T} I d t=0
\end{aligned}
$$

Mean value for half cycle: $E_{\text {mean }}=\frac{2 E_{0}}{\pi}$
d) Root - mean- square (rms) value:

$$
\begin{aligned}
& E_{r m s}=\left(\left\langle E^{2}\right\rangle\right)^{1 / 2}=\frac{E_{0}}{\sqrt{2}}=0.707 E_{0}=70.7 \% E_{0} \\
& I_{r m s}=\left(\left\langle I^{2}\right\rangle\right)^{1 / 2}=\frac{I_{0}}{\sqrt{2}}=0.707 I_{0}=70.7 \% I_{0}
\end{aligned}
$$

RMS values are also called apparent or effective values.

- Phase difference Between the EMF (Voltage) and the Current in an AC Circuit
a) For pure resistance:

The voltage and the current are in same phase i.e. phase difference $\phi=0$
b) For pure inductance:

The voltage is ahead of current by $\frac{\pi}{2}$ i.e. phase difference $\phi=+\frac{\pi}{2}$.
c) For pure capacitance:

The voltage lags behind the current by $\frac{\pi}{2}$ i.e. phase difference $\phi=-\frac{\pi}{2}$

- Reactance:

Reactance
a) $\mathrm{X}=\frac{E}{I}=\frac{E_{0}}{I_{0}}=\frac{E_{r m s}}{I_{r m s}} \pm \pi / 2$
b) Inductive reactance
$\mathrm{X}_{L}=\omega \mathrm{L}=2 \pi \mathrm{~nL}$
Capacitive reactance
c) $\mathrm{X}_{C}=\frac{1}{\omega C}=\frac{1}{2 \pi n C}$

- Impedance:

Impedance is defined as,

$$
Z=\frac{E}{I}=\frac{E_{0}}{I_{0}}=\frac{E_{r m s}}{I_{r m s}} \phi
$$

Where ϕ is the phase difference of the voltage E relative to the current I.
a) For $L-R$ series circuit:

$$
\begin{aligned}
& Z_{R L}=\sqrt{R^{2}+X_{L}^{2}}=\sqrt{R^{2}+\omega L^{2}} \\
& \tan \phi=\left(\frac{\omega L}{R}\right) \text { or } \phi=\tan ^{-1}\left(\frac{\omega L}{R}\right)
\end{aligned}
$$

b) For R - C series circuit:

$$
\begin{aligned}
& Z_{R C}=\sqrt{R^{2}+X_{C}^{2}}=\sqrt{R^{2}+\left(\frac{1}{\omega C}\right)^{2}} \\
& \tan \phi=\frac{1}{\omega C R} \text { Or } \phi=\tan ^{-1}\left(\frac{1}{\omega C R}\right)
\end{aligned}
$$

c) For L-C series circuit:

$$
\begin{aligned}
& Z_{L C R}=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& =\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}} \\
& \tan \phi=\frac{\left(\omega L-\frac{1}{\omega C}\right)}{R} \text { Or } \phi=\tan ^{-1}\left(\frac{\omega L-\frac{1}{\omega C}}{R}\right)
\end{aligned}
$$

- Conductance:

Reciprocal of resistance is called conductance.

$$
G=\frac{1}{R} m h o
$$

- Power in and AC Circuit:

a) Electric power = (current in circuit) \times (voltage in circuit)

$$
P=I E
$$

b) Instantaneous power:

$$
P_{\text {inst }}=E_{\text {inst }} \text { X } I_{\text {inst }}
$$

c) Average power:

$$
P_{a v}=\frac{1}{2} E_{0} I_{0} \cos \phi=E_{r m s} I_{r m s} \cos \phi
$$

d) Virtual power (apparent power):

$$
=\frac{1}{2} E_{0} I_{0}=E_{r m s} I_{r m s}
$$

- Power Factor:
a) Power factor

$$
\cos \phi=\frac{P_{a v}}{P_{v}}=\frac{R}{Z}
$$

b) For pure inductance

Power factor, $\cos \phi=1$
c) For pure capacitance

Power factor, $\cos \phi=0$
d) For LCR circuit

$$
\begin{gathered}
\text { Power factor, } \cos \phi=\frac{R}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}} \\
X=\left(\omega L-\frac{1}{\omega C}\right)
\end{gathered}
$$

- Wattless Current:

The component of current differing in phase by $\frac{\pi}{2}$ relative to the voltage, is called wattles current.

- The rms value of wattless current:

$$
\begin{aligned}
& =\frac{I_{0}}{\sqrt{2}} \sin \phi \\
& =I_{r m s} \sin \phi=\frac{I_{0}}{\sqrt{2}}\left(\frac{X}{Z}\right)
\end{aligned}
$$

- Choke Coil:

a) An inductive coil used for controlling alternating current whose self- inductance is high and resistance in negligible, is called choke coil.
b) The power factor of this coil is approximately zero.

- Series Resonant Circuit
a) When the inductive reactance (XL) becomes equal to the capacitive reactance (XC) in the circuit, the total impedance becomes purely resistive ($\mathrm{Z}=\mathrm{R}$).
b) In this state, the voltage and current are in same phase ($\phi=0$), the current and power are maximum and impedance is minimum. This state is called resonance.
c) At resonance,

$$
\omega_{r} L=\frac{1}{\omega_{r} C}
$$

Hence, resonance frequency is,

$$
f_{r}=\frac{1}{2 \pi \sqrt{L C}}
$$

d) In resonance, the power factor of the circuit is one.

- Half-Power Frequencies:

Those frequencies f_{1} and f_{2} at which the power is half of the maximum power (power at resonance), i.e., f_{1} and f_{2} are called half - power frequencies.

$$
\begin{aligned}
& P=\frac{1}{2} P_{\max } \\
& I=\frac{I_{\max }}{\sqrt{2}} \\
& \therefore P=\frac{P_{\max }}{2}
\end{aligned}
$$

- Band - Width:
a) The frequency interval between half - power frequencies is called band - width.
\therefore Bandwidth $\Delta \mathrm{f}=f_{2}-f_{1}$
b) For a series LCR resonant circuit,

$$
\Delta \mathrm{f}=\frac{1}{2 \pi} \frac{R}{L}
$$

- Quality Factor (Q):

$$
\begin{aligned}
& Q=2 \pi \times \frac{\text { Maximum energy stored }}{\text { Energy dissipated per cycle }} \\
& =\frac{2 \pi}{T} \times \frac{\text { Maximum energy stored }}{\text { Mean power dissipated }} \\
& O r \\
& Q=\frac{\omega_{r} L}{R}=\frac{1}{\omega_{r} C R}=\frac{f_{r}}{\left(f_{2}-f_{1}\right)}=\frac{f_{r}}{\Delta f}
\end{aligned}
$$

