Chapter-01

Rational Numbers

- Rational numbers are closed under the operations of addition, subtraction and multiplication.
- The operations addition and multiplication are
(i) commutative for rational numbers.
(ii) associative for rational numbers.
- The rational number 0 is the additive identity for rational numbers.
- The rational number 1 is the multiplicative identity for rational numbers.
- The additive inverse of the rational number $\frac{\mathrm{a}}{\mathrm{b}}$ is $\frac{\mathrm{a}}{}$ and vice-versa.
- The reciprocal or multiplicative inverse of the rational number $\frac{\mathrm{a}}{\mathrm{b}}$ is $\frac{\mathrm{c}}{\mathrm{d}}$ if $\frac{\mathrm{a}}{\mathrm{b}} \times \frac{\mathrm{c}}{\mathrm{d}}=$.
- Distributivity of rational numbers: For all rational numbers a, b and $c, a(b+c)=a b+a c$ and $a(b-c)=a b-a c$
- Rational numbers can be represented on a number line.
- Between any two given rational numbers there are countless rational numbers. The idea of mean helps us to find rational numbers between two rational numbers.
- Positive Rationals: Numerator and Denominator both are either positive or negative. Example: ${ }_{7}^{4}, \overline{-4}$
- Negative Rationals: Numerator and Denominator both are of opposite signs. Example: $\frac{-2}{11}, \frac{4}{-9}$
- Additive Inverse: Additive inverse (negative) $\frac{a}{b}+\frac{-a}{b}=\frac{-a}{b}+\frac{a}{b}=0 . \frac{-}{b}$ is the additive inverse of ${ }_{b}$ and ${ }_{b}$ is the additive inverse of $\frac{-}{b}$.
- Mulitiplicative Inverse (reciprocal): ${ }_{b}{ }_{b} \times{ }_{d}{ }_{d}=1={ }_{d} \times{ }^{c} \times{ }_{b}$ where ${ }_{d}$ is the reciprocal of ${ }_{b}$. Zero has no reciprocal. The reciprocal of 1 is 1 and of -1 is -1 .

