Chapter-6

Squares and Square Roots

- Square: Number obtained when a number is multiplied by itself. It is the number raised to the power 2. $2^{2}=2 \times 2=4$ (square of 2 is 4).
- If a natural number m can be expressed as n^{2}, where n is also a natural number, then m is a square number.
- All square numbers end with $0,1,4,5,6$ or 9 at unit's place.
- Square numbers can only have even number of zeros at the end.
- Square root is the inverse operation of square.
- There are two integral square roots of a perfect square number.
- Positive square root of a number is denoted by the symbol $\sqrt{ }$ For example, $3^{2}=9$ gives $\sqrt{9}=3$
- Perfect Square or Square number: It is the square of some natural number. If $=n^{2}$, then m is a perfect square number where m and n are natural numbers. Example: $1=1 \times 1=1^{2}$, $4=2 \times 2=2^{2}$.

- Properties of Square number:

(i) A number ending in $2,3,7$ or 8 is never a perfect square. Example: 152, 1028, 6593 etc.
(ii) A number ending in $0,1,4,5,6$ or 9 may not necessarily be a square number. Example: 20, 31, 24, etc.
(iii) Square of even numbers are even. Example: $2^{2}=4,4^{2}=16$, etc.
(iv) Square of odd numbers are odd. Example: $5^{2}=25,9^{2}=81$, etc.
(v) A number ending in an odd number of zeroes cannot be a perferct square. Example: 10, 1000, 900000, etc.
(vi) The difference of squares of two consecutive natural number is equal to their sum. $(n+1)^{2}-n^{2}=n+1+n$. Example: $4^{2}-3^{2}=4+3=7,12^{2}-11^{2}=12+11=23$, etc.
(vii) A triplet ($\mathrm{m}, \mathrm{n}, \mathrm{p}$) of three natural numbers m, n and p is called Pythagorean triplet, if $m^{2}+n^{2}=p^{2} ; 3^{2}+4^{2}=25=5^{2}$

