Circles

Introduction

Circle

A circle is defined as the locus of the points at a given distance from a certain fixed point.

Chord

The straight line joining any 2 points on the circle is called a chord.
AB is a chord.
The longest chord is called the diameter if passes through the centre of the circle.

A diameter is twice the length of the radius. CD is a diameter.
A secant is a line cutting a circle into two parts. PQR is a secant.

Circumference

The set of all the points on a circle constitute the circumference of the circle. In simple language we can say that the boundary curve of the circle (or perimeter) is its circumference.

Arc

Any part of the circumference is called an arc.
A diameter cuts a circle into 2 equal parts. An arc less than a semicircle is called a minor arc. An arc more than a semicircle is called a major arc.
$\widehat{A D C}$ is a minor arc and $\overparen{A B C}$ is a major arc.

Sector

A portion cut off by two radii is called a sector.
Segment: a portion of a circle cut off by a chord is called a segment.

Concentric circles

Circles having the same centre are called concentric circles.

Theorem 1

A straight line drawn from the centre of a circle to bisect a chord which is not a diameter, is at right angles to the chord.

Data:

$A B$ is a chord of a circle with centre O.
M is the mid-point of $A B$. OM is joined

To Prove:

$\angle \mathrm{AMO}=\angle \mathrm{BMO}=90^{\circ}$

Construction:

Join AO and BO.

Proof:

Statement

Reason

In $\triangle^{5} \mathrm{AOM}$ and BOM

1. $\mathrm{AO}=\mathrm{BO}$
2. $A M=B M$
3. $O M=O M$
4. $\triangle A O M \cong \triangle B O M$
radii
data
common
5. $\therefore \angle \mathrm{AMO}=\angle \mathrm{BMO}$
(5.s.5.)
statement (4)
6. But $\angle \mathrm{AMO}+\angle \mathrm{BMO}=180^{\circ}$
7. $\therefore \angle \mathrm{AMO}=\angle \mathrm{BMO}=90^{\circ}$
linear pair
statements (5) and (6)

Theorem 2: (Converse of theorem 1)

The perpendicular to a chord from the centre of a circle bisects the chord.

Data:

$A B$ is a chord of a circle with centre O, $O M \perp A B$.

To Prove:

$\mathrm{AM}=\mathrm{BM}$.

Construction:

Join AO and BO.

Proof:

Statement
In $A^{\text {s }} \mathrm{AOM}$ and BOM

1. $\angle A M O=\angle B M O$
2. $A O=B O$
3. $O M=O M$
4. $\triangle A O M \cong \triangle B O M$
5. $\mathrm{AM}=\mathrm{BM}$

Reason

each 90° (data)
radii
Common
(R.H.S.)

Statement (4)

Converse of a theorem is the transposition of a statement consisting of 'data' and 'to prove'.
We elaborate it from the example of previous two theorems:

Theorem	Converse of theorem
1. Data: M is the mid-point of AB	To prove: M is the mid-point of AB.
2. To prove: $\mathrm{OM} \perp \mathrm{AB}$	Data: $\mathrm{OM} \perp \mathrm{AB}$

Theorem 3

Equal chords of a circle are equidistant from the centre.

Data:

AB and CD are equal chords of a circle with centre O . $\mathrm{OK} \perp \mathrm{AB}$ and $\mathrm{OL} \perp \mathrm{CD}$.

To Prove:
OK = OL

Construction:

Join AO and CO.

Proof:

Statement

1. $A K=\frac{1}{2} A B$
2. $C L=\frac{1}{2} C D$
3. But $A B=C D$
4. $\therefore A K=C L$

In $\triangle^{5} \mathrm{AOK}$ and COL
5. $\angle A K O=\angle C L O$
6. $\mathrm{AO}=\mathrm{CO}$
7. $\mathrm{AK}=\mathrm{CL}$
8. $\therefore \triangle A O K \cong \triangle C O L$
9. $\therefore O K=O L$.

Reason
\perp from the centre bisects the chord.
\perp from the centre bisects the chord.
data
statements (1), (2) and (3)
each 90° (data)
radii
statement (4)
(R.H.S.)
statement (8)

Theorem 4 (Converse of 3)

Chords which are equidistant from the centre of a circle are equal.

Data:

AB, CD are chords of a circle with centre O .

```
OK \perpAB,OL \perpCD and OK = OL.
```

To Prove:
$A B=C D$.

Construction:

Join AO and CO.

Proof:

Statement
In $\triangle^{5} \mathrm{AOK}$ and COL

1. $\angle \mathrm{AKO}=\angle \mathrm{CLO}$
2. $\mathrm{AO}=\mathrm{CO}$
3. $O K=O L$
4. $\triangle \mathrm{AOK} \cong \triangle C O L$
5. $\therefore \mathrm{AK}=\mathrm{CL}$
6. But $A K=\frac{1}{2} A B$
7. $\mathrm{CL}=\frac{1}{2} \mathrm{CD}$
8. $\therefore A B=C D$

Reason

each 90° (data)
radii
data
(R.H.S.)
statement (4)
\perp from centre bisects the chord.
\perp from centre bisects the chord
statements (5), (6) and (7)

Theorem 5

There is one circle, and only one, which passes through three given points not in a straight line.

Data:

X, Y and Z are three points not in a straight line.

To Prove:

A unique circle passes through X, Y and Z .

Construction:

Join XY and YZ. Draw perpendicular bisectors of XY and YZ to meet at O .

Proof:

Statement

1. $\mathrm{OX}=\mathrm{OY}$
2. $\mathrm{OY}=\mathrm{OZ}$
3. $O X=O Y=O Z$
4. O is the only point equidistant from X, Y and Z.
5. With O as centre and radius $O X$, a circle can be drawn to pass through X, Y and Z.
$6 . \therefore$ the circle with centre O is a unique circle statement (5) passing through X, Y and Z.

Reason

O lies on the \perp bisector of XY .

O lies on the \perp bisector of $\mathrm{Y} Z$
statements (1) and (2)
statement (3)
statement (4)

Angle Properties (Angle, Cyclic Quadrilaterals and Arcs)

In fig.(i), the straight line AB students $\angle \mathrm{APB}$ on the circumference.

$\angle A P B$ can be said to be subtended by arc AMB, on the remaining part of the circumference.

In fig.(ii), arc $A M B$ subtends $\angle A P B$ on the circumference, and it subtends $\angle A O B$ at the centre.

In fig. (iii), $\angle \mathrm{APB}$ and $\angle \mathrm{AQB}$ are in the same segment.

Let us study the theorems based on the angle properties of the circles.

Theorem 6

The angle which an arc of a circle subtends at the centre is double the angle which it subtends at any point on the remaining part of the circumference.

Data:

Arc AMB subtends $\square \mathrm{AOB}$ at the centre O of the circle and $\square \mathrm{APB}$ on the remaining part of the circumference.

To Prove:

$\angle \mathrm{AOB}=2 \angle \mathrm{APB}$

Construction:

Join PO and produce it to Q . Let $\square \mathrm{APQ}=\mathrm{x}$ and $\square \mathrm{BPQ}=\mathrm{y}$.

Proof:

Statement

1. $\angle \mathrm{AOQ}=\angle \mathrm{x}+\angle \mathrm{A}$
2. $\angle x=\angle A$
3. $\therefore \angle A O Q=2 \angle x$
4. $\angle \mathrm{BOQ}=2 \angle \mathrm{y}$

For fig.(i) and fig.(iii)
5. $\angle \mathrm{AOQ}+\angle \mathrm{BOQ}=2 \angle x+2 \angle y$
6. $\Rightarrow \angle \mathrm{AOB}=2(\angle \mathrm{x}+\angle \mathrm{y})$
7. For fig.(ii)
$\angle \mathrm{BOQ}-\angle \mathrm{AOQ}=2 \angle \mathrm{y}-2 \angle \mathrm{x}$
8. $\angle \mathrm{AOB}=2(\angle \mathrm{y}-\angle \mathrm{x}) \quad$ statement (8)
9. $\therefore \angle \mathrm{AOB}=2 \angle \mathrm{APB}$ statement (9)

Theorem 7

Angles in the same segment of a circle are equal.

Data:

$\angle \mathrm{APB}$ and $\angle \mathrm{AQB}$ are in the same segment of a circle with centre O .

To Prove:

$\angle A P B=\angle A Q B$

Construction:

Join AO and BO.
Let arc AMB subtend angle x at the centre O .

Proof:

Statement

Reason

1. $\angle x=2 \angle \mathrm{APB}$
\angle at centre $=2 \times \angle$ on the circumference
2. $\angle x=2 \angle A Q B$
\angle at centre $=2 \times \angle$ on the circumference
3. $\therefore \angle \mathrm{APB}=\angle \mathrm{AQB}$
statements (1) and (2)

Theorem 8

The angle in a semicircle is a right angle.

Data:

$A B$ is a diameter of a circle with centre O.P is any point on the circle

To Prove:

$\angle \mathrm{APB}=90^{\circ}$

Proof:

Statement

1. $\angle \mathrm{APB}=\frac{1}{2} \angle \mathrm{AOB}$
2. $\angle \mathrm{AOB}=180^{\circ}$
3. $\therefore \angle \mathrm{APB}=\frac{1}{2} \times 180^{\circ}$
4. $\therefore \angle \mathrm{APB}=90^{\circ}$

Reason

\angle at the centre $=2 \times \angle$ on the oce.

AOB is a straight line
Statements (1) and (2)

Statement (3)

Cyclic Quadrilaterals

If the vertices of a quadrilateral lie on a circle, the quadrilateral is called a cyclic quadrilateral. The vertices are called concyclic points.

In the given figure, ABCD is a cyclic quadrilateral. The vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are concyclic points.

Theorem 9

The opposite angles of a quadrilateral inscribed in a circle (cyclic) are supplementary.

Data:

ABCD is a cyclic quadrilateral; O is the centre of the circle.

To Prove:

(i) $\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
(ii) $\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$

Construction:

Join BO and DO.
Let $\angle \mathrm{BOD}=\mathrm{x}$ and reflex $\angle \mathrm{BOD}=\mathrm{y}$

Proof:

Statement

1. $\angle A=\frac{1}{2} \angle X$
2. $\angle C=\frac{1}{2} \angle y$
3. $\angle A+\angle C=\frac{1}{2} \angle x+\frac{1}{2} \angle y$
4. $\angle A+\angle C=\frac{1}{2}(\angle x+\angle y)$
5. But $\angle x+\angle y=360^{\circ}$
6. $\therefore \angle A+\angle C=\frac{1}{2} \times 360^{\circ}$
7. $\therefore \angle A+\angle C=180^{\circ}$
8. Also $\angle \mathrm{ABC}+\angle \mathrm{ADC}=180^{\circ}$

Reason
 \angle at the centre $=2(\angle$ on the circumference)
 \angle at the centre $=2(\angle$ on the circumference)
 Statements (1) and (2)

Statement (3)
$\angle s$ at a point
statements (4) and (5)
statement (6)
same way as statement (7)

Corollary:

The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.

Data:

ABCD is a cyclic quadrilateral. BC is produced to E .

To Prove:

$\angle D C E=\angle A$

Proof:

Statement

1. $\angle A+\angle B C D=180^{\circ}$
2. $\angle \mathrm{BCD}+\angle \mathrm{DCE}=180^{\circ}$
3. $\therefore \angle \mathrm{BCD}+\angle \mathrm{DCE}=\angle \mathrm{A}+\angle \mathrm{BCD}$
4. $\therefore \angle D C E=\angle A$.

Reason

Opp. $\angle \mathrm{s}$ of a cyclic quad.
linear pair
Statements (1) and (2)
Statement (2)

Alternate Segment Property

Theorem 10:

The angle between a tangent and a chord through the point of contact is equal to the angle in the alternate segment.

Data:

A straight line SAT touches a given circle with centre O at A . AC is a chord through the point of contact $\mathrm{A} . \angle \mathrm{ADC}$ is an angle in the alternate segment to $\angle \mathrm{CAT}$ and $\angle \mathrm{AEC}$ is an angle in the alternate segment to $\angle \mathrm{CAS}$.
To Prove:
(i) $\angle \mathrm{CAT}=\angle \mathrm{ADC}$
(ii) $\angle \mathrm{CAS}=\angle \mathrm{AEC}$

Construction:

Draw AOB as diameter and join BC and OC.

Proof:

Statement	Reason 1. $\angle O A C=\angle O C A=x$
2. $\angle C A T+\angle X=90^{\circ}$	\because tangent-radius property
3. $\angle A O C+\angle X+\angle x=180^{\circ}$	sum of the angles of a \triangle
4. $\angle A O C=180^{\circ}-2 \angle x$	statement (3)
5. AIsO $\angle A O C=2 \angle A D C$	\angle at the centre $=2 \angle$ on the Oce.
6. $\angle C A T=90^{\circ}-x$	Statement (2)
7. $2 \angle C A T=180^{\circ}-2 x$	Statement (6)
8. $\therefore \angle C A T=2 \angle A D C$	Statement (4), (5) and (7)
9. $\angle C A T=\angle A D C$	Sinear pair (8)
10. $\angle C A S+\angle C A T=180^{\circ}$	Opp. angles of a cyclic quad
11. $\angle A D C+\angle A E C=180^{\circ}$	Statements (10) and (11)
12. $\angle C A S+\angle C A T=\angle A D C+\angle A E C$	Statements (9) and (12)
13. $\therefore \angle C A S=\angle A E C$	

Theorem 11

In equal circles (or in the same circle), if two arcs subtend equal angles at the centres, they are equal.

Data:

AXB and CYD are equal circles with centres P and Q ; arcs $\mathrm{AMB}, \mathrm{CND}$ subtend equal angles APB, CQD.

To Prove:

$\operatorname{arc} \mathrm{AMB}=\operatorname{arc} \mathrm{CND}$.

Proof:

Statement

Reason

1. Apply $\bigcirc C Y D$ to $\odot A X B$ so that centre Q falls on centre P and QC along PA and D on the same side as B.
\therefore Oce. CYD overlaps Oce. AXB.
2. \therefore C falls on A.
3. $\angle \mathrm{APB}=\angle \mathrm{CQD}$
4. $\therefore \mathrm{QD}$ falls along PB
5. $\therefore \mathrm{D}$ falls on B
6. \therefore arc CND coincides with arc AMB.
7. $\operatorname{arc} \mathrm{AMB}=\operatorname{arc} \mathrm{CND}$
```
O Os are equal (data)
\becausePA = QC (data)
data
statements (1) and (3)
QD = PB (data)
statements (2) and (5)
statement (6)
```


Theorem 12 (Converse of 11)

In equal circles (or in the same circle) if two arcs are equal, they subtend equal angles at the centres.

Data:

In equal circles AXB and CYD , equal arcs AMB and CND subtend $\angle \mathrm{APB}$ and $\angle \mathrm{CQD}$ at the centres P and Q respectively.

To Prove:

$\angle A P B=\angle C Q D$.

Proof:

Statement

1. Apply $\bigcirc C Y D$ to $A X B$ so that centre Q falls on centre P and QC along PA , and D on the same side as B .
\therefore Oce. CYD overlaps Oce. AXB
2. $\therefore C$ falls on A
3. arc $\mathrm{AMB}=\operatorname{arc} \mathrm{CND}$
4. \therefore D falls on B.
5. $\therefore \mathrm{QD}$ coincides with PB and QC coincides with PA

Reason

Os are
equal (data)
$\mathrm{PA}=\mathrm{QC}$ (data)
Data
Statements (1),
(2) and (3)

Statements (1),
(2) and (4)

Statement (5)

In case of the same circle:

Fig.(ii) and fig.(iii) may be considered to be two equal circles obtained from fig.(i) and then the above proofs may be applied.

Theorem 13

In equal circles (or in the same circle), if two chords are equal, they cut off equal arcs.

Data:

In equal circles AXB and CYD , with centres P and Q , chord $\mathrm{AB}=$ chord CD .

To Prove:

$\operatorname{arc} \mathrm{AMB}=\operatorname{arc} \mathrm{CND} ; \operatorname{arc} \mathrm{AXB}=\operatorname{arc} \mathrm{CYD}$

Proof:

Statement
In $\Delta^{5} \mathrm{ABP}$ and CDQ

1. $\mathrm{AP}=\mathrm{CQ}$
2. $B P=D Q$
3. $A B=C D$
4. $\triangle \mathrm{ABP} \equiv \triangle \mathrm{CDQ}$
5. $\therefore \angle \mathrm{APB}=\angle \mathrm{CQD}$
6. arc $\mathrm{AMB}=\operatorname{arc} \mathrm{CND}$
7. $\bigcirc A X B-\operatorname{arc} A M B=\varrho C Y D-\operatorname{arc} C N D$
8. $\therefore \operatorname{arc} \mathrm{AXB}=\operatorname{arc} \mathrm{CYD}$.

Reason

radii of equal. ©s.
radii of equal \bigcirc s
data
(S.S.S.)
statement (4)
statement (5)
equal arcs [statement (6)]
statement (7)

Theorem 14 (Converse of 13)

In equal circles (or in the same circle) if two arcs are equal, the chords of the arcs are equal.

Data:

Equal circles AXB, CYD with centres P and Q have $\operatorname{arc} \mathrm{AMB}=\operatorname{arc} \mathrm{CND}$.

To Prove:

chord $\mathrm{AB}=$ chord CD

Construction:

Join AP, BP, CQ and DQ.

Proof:

Statement
In $\triangle^{5} \mathrm{ABP}$ and CDQ

1. $\mathrm{AP}=\mathrm{CQ}$
2. $B P=D Q$
3. $\angle \mathrm{APB}=\mathrm{CQD}$
4. $\therefore \triangle A B P \cong \triangle C D Q$
5. $\therefore A B=C D$

Reason

radii of equal O s
radii of equal O s
$\because \operatorname{arc} \mathrm{AMB}=\operatorname{arc} \mathrm{CND}$

(S.A.S.)

statement (4)

Theorem 15

If two chords of a circle intersect internally, then the product of the length of the segments are equal.

Data:

$A B$ and $C D$ are chords of a circle intersecting internally at P.

To Prove:

$\mathrm{AP} \times \mathrm{BP}=\mathrm{CP} \times \mathrm{DP}$.

Construction:

Join AC and BD.

Proof:

Statement

In $\triangle^{s} \mathrm{APC}$ and DPB

1. $\angle A=\angle D$
2. $\angle C=\angle B$
3. $\therefore \triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$
4. $\therefore \frac{A P}{D P}=\frac{C P}{B P}$
5. $\therefore A P \times B P=C P \times D P$

Reason
$\angle s$ in the same segment
\angle sin the same segment
AA similarity
Statement (3)

Statement (4)

Theorem 16

If two chords of a circle intersect externally, then the product of the lengths of the segments are equal.

Data:

$A B$ and $C D$ are chords of a circle intersecting externally at P.

To Prove:

$\mathrm{AP} \times \mathrm{BP}=\mathrm{CP} \times \mathrm{DP}$.

Construction:

Join AC and BD.

Proof:

Statement

In $\triangle^{5} \mathrm{ACP}$ and DBP

1. $\angle \mathrm{A}=\angle \mathrm{BDP}$
2. $\angle \mathrm{C}=\angle \mathrm{DBP}$
3. $\therefore \triangle A C P \sim \triangle D B P$
4. $\therefore \frac{A P}{D P}=\frac{C P}{B P}$
5. $\therefore A P \times B P=C P \times D P$

Reason

ext. \angle of a cyclic quad. $=$ int. opp. \angle ext. \angle of a cyclic quad. $=$ int. opp. \angle AA similarity Statement (3)

Statement (4)

Theorem 17

If a chord and a tangent intersect externally, then the product of the lengths of the segments of the chord is equal to the square on the length of the tangent from the point of contact to the point of intersection.

Data:

A chord AB and a tangent TP at a point T on the circle intersect at P .

To Prove:
$\mathrm{AP} \times \mathrm{BP}=\mathrm{PT}^{2}$

Construction:

Join AT and BT.

Proof:

\quad Statement	Angle in the alternate segment
In $\triangle^{s} \mathrm{APT}$ and TPB	
1. $\angle \mathrm{A}=\angle \mathrm{BTP}$	Common
2. $\angle \mathrm{P}=\angle \mathrm{P}$	AA similarity
3. $\therefore \triangle \mathrm{APT} \sim \triangle \mathrm{PPB}$	Statement (3)
4. $\frac{\mathrm{AP}}{\mathrm{PT}}=\frac{\mathrm{PT}}{\mathrm{BP}}$	
5. $\mathrm{AP} \times \mathrm{BP}=\mathrm{PT}^{2}$	Statement (4)

Test for Concyclic Points

(a) Converse of the statement, 'Angles in the same segment of a circle are equal', is one test for concyclic points. We state:

If two equal angles are on the same side of a line and are subtended by it, then the four points are concyclic. In the figure, if $\angle \mathrm{P}=\angle \mathrm{Q}$ and the points P, Q are on the same side of AB , then the points $\mathrm{A}, \mathrm{B}, \mathrm{Q}$ and P are concyclic.

(b) Converse of 'opposite angles of a cyclic quadrilateral are supplementary' is one more test for concyclic points.

We state:

If the opposite angles of a quadrilateral are supplementary, then its vertices are concyclic. In the figure, if $\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$, then $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are concyclic points.

