Areas of Parallelograms and Triangles

Triangle

A plane figure bounded by three straight lines is called a triangle.
A triangle is the simplest polygon. It is a closed plane figure formed by three line segments.
Hence a triangle has an area.

A rectangle has two triangular regions. Hence the area of a rectangle is the union of two triangular regions.

A polygonal region can be expressed as the union of a finite number of triangular regions.

Area of a Polygonal Region

The sides of a polygon are line segments and line segments have lengths. So it is natural to think that there may be some similar properties between the concept area of polygonal region and those of the length of a line segment.
Let us recall the concept of length.

You will find that the areas of regions behave in the same way as line segments.

Unit area

Every polygonal region has an area. There is a hundred square region of side (one) meter; called a square metre which is the unit area. The area of a polygonal region in square meters (sq-m or m^{2}) is a positive real number.

Notation of area

The area of a polygonal region R is denoted by ar (R). If $\operatorname{ar}(R)$ in square meters is x then we write ar $(R)=x m^{2}$.

Area axioms

(a) Congruent area axiom

If $\triangle A B C \cong \triangle P Q R$ then $\operatorname{ar}($ Region of $\triangle A B C)=\operatorname{ar}($ region $\triangle P Q R)$
(b) Area monotone axiom

If R_{1} and R_{2} are two polygonal regions such that $R_{1} \subset R_{2}$ then ar $\left(R_{1}\right) \leq \operatorname{ar}\left(R_{2}\right)$.
(c) Area addition axiom

If R_{1} and R_{2} are two polygonal regions whose intersection is either a finite number of line segments or single point and $R=R_{1}+R_{2}$ then $\operatorname{ar}\left(R_{0}\right)=\operatorname{ar}\left(R_{1}\right)+\operatorname{ar}\left(R_{2}\right)$.
In figs (i) the region is divided into two regions R_{1} and R_{2}. Note that $R_{1}+R_{2}=R$.
$\therefore \quad$ ar $(R)=a r\left(R_{1}\right)+a r\left(R_{2}\right)$
Similarly in fig (ii),
$\operatorname{ar}(\mathrm{PQRS})=\operatorname{ar}\left(R_{1}\right)+\operatorname{ar}\left(R_{2}\right)$.
(d) Area of a rectangular region

Given that $\mathrm{AB}=\mathrm{a}$ metres and $\mathrm{AD}=\mathrm{b}$ metres than $\operatorname{ar}(\mathrm{ABCD})=\mathrm{ab}$ sq. m .
(Rect. area axiom)

Theorem 1

Statement:

Diagonals of a parallelogram divides it into two triangles of equal area.

Given:
$A B C D$ is a parallelogram. $A C$ is one of the diagonals of the parallelogram $A B C D$.

To prove:

$$
\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{DBC})
$$

Proof:

In triangles ABD and DBC ,
$\mathrm{AB}=\mathrm{DC}($ Opposite sides of parallelogram)
$\mathrm{AD}=\mathrm{BC}$ (Opposite sides of parallelogram)
$\mathrm{BD}=\mathrm{BD}$ (common side)
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$ (sss congruency condition)
$\therefore \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{DBC})$
(area congruency axiom)

Theorem 2

Statement:

Parallelograms on the same base and between the same parallel lines are equal in area.

Given:

$A B C D$ and $A B E F$ are two parallelograms standing on the same base $A B$ and between the same parallels AB and CF .

To prove:

```
ar (|m ABCD})=ar(|m ABEF
```


Proof:

```
\(\operatorname{ar}(|\mid m \mathrm{ABCD})=\operatorname{ar}(\) quad. ABED\()+\operatorname{ar}(\triangle \mathrm{EBC})\)
....(1) (area addition axiom)
\(\operatorname{ar}(|\mid \mathrm{m} \mathrm{ABEF})=\operatorname{ar}(\) quad. ABED\()+\operatorname{ar}(\triangle \mathrm{AFD})\)
....(2) (area addition axiom)
```

Now in triangles EBC and AFD,
$\mathrm{AF}=\mathrm{BE}$ (opposite sides of a parallelogram)
$\mathrm{AD}=\mathrm{BC}($ opposite sides of a parallelogram $)$

$$
\widehat{\mathrm{AFD}}=\mathrm{BEC}(\mathrm{AB} \| \mathrm{BE} \text { and } \mathrm{FC} \text { is a transversal })
$$

$\therefore \hat{A F D}$ and BEC are corresponded angles

$$
\mathrm{EF}=\mathrm{AB}=\mathrm{CD}
$$

$$
\mathrm{EF}-\mathrm{DE}=\mathrm{CD}-\mathrm{DE}
$$

$$
\text { i.e., } \mathrm{FD}=\mathrm{EC}
$$

$$
\Delta \mathrm{EBC} \cong \triangle \mathrm{AFD}(\text { SAS congruency condition })
$$

$$
\therefore \operatorname{ar}(\triangle \mathrm{EBC})=\operatorname{ar}(\triangle \mathrm{AFD}) \ldots(3)
$$

(area congruency condition)

From (1), (2) and (3),
$\operatorname{ar}\left(\|^{m} \mathrm{ABCD}\right)=\operatorname{ar}\left(\|^{\mathrm{m}} \mathrm{ABEF}\right)$

Corollary

Statement:

Parallelograms on equal bases and between the same parallels are equal in area.

Given:

$\|^{\mathrm{m}} \mathrm{ABCD}$ and $\|^{\mathrm{m}} \mathrm{PQRS}$ are between the same parallels 1 and m such that $A B=P Q$ (equal bases).

To prove:

```
ar (|m ABCD) = ar (|m PQRS )
```


Construction:

Draw the altitude EF and GH.

Proof:

1 ||m (Given)
$\therefore \mathrm{EF}=\mathrm{GH}$ (perpendicular distance
between the same parallels)

$$
\begin{aligned}
& \operatorname{ar}(\| \mathrm{mBCD})=\mathrm{AB} \times \mathrm{EF} \\
& \left(\text { area of a } \|^{\mathrm{m}}=\text { base } \times \text { alr }\right) \\
& \operatorname{ar}(\| \mathrm{m} \mathrm{PQRS})=\mathrm{PQ} \times \mathrm{GH} \\
& \text { Since } \mathrm{AB}=\mathrm{GH} \text { (given }) \\
& \text { and } \mathrm{EF}=\mathrm{GH}(\text { construction }) \\
& \therefore \operatorname{ar}(\| \mathrm{m} \mathrm{ABCD})=\operatorname{ar}(\| \mathrm{m} \mathrm{PQRS})
\end{aligned}
$$

Theorem 3

Statement:

Triangles on the same base and between the same parallels are equal in area.

Given:
Triangles ABC and DBC stand on the same BC and between the same parallels 1 and m .

To prove:

$\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{DBC})$

Construction:

$\mathrm{CE} \| \mathrm{AB}$ and $\mathrm{BF} \| \mathrm{CA}$

Proof:
$\|^{\mathrm{m}} A B C E$ and $\|^{\mathrm{m}}$ DCBF stand on the same base BC and between the same parallels 1 and m .
$\therefore \operatorname{ar}(\| m \mathrm{ABCE})=\operatorname{ar}(\| m$ DCBF$)$
AC is a diagonal of $\|^{\mathrm{m}} \mathrm{ABCE}$. It divides the parallelogram into two triangles of equal area.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{ACE})$
or $\operatorname{ar}(\triangle A B C)=\frac{1}{2} \operatorname{ar}(| | m \triangle A B C E) \ldots$

Similarly we can prove that

$$
\operatorname{ar}(\triangle \mathrm{DBC})=\frac{1}{2} \operatorname{ar}(| | \mathrm{mDCBF}) \ldots(3
$$

From (1), (2) and (3), we can write

$$
\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{DBC})
$$

Hence the theorem is proved.

Theorem 4

Relation between the triangles of equal area and their corresponding altitudes

Recall that altitude is the perpendicular drawn from a vertex to its opposite side. Now let us draw two triangles of equal area and one side of one equal to the corresponding side of the other and find out the relationship between corresponding altitudes. Let us state the theorem.

Statement:

Triangles having equal areas and having one side of one of the triangle equal to one side of the other have their corresponding altitudes equal.

Given:

Two triangles ABC and DEF are such that
(i) $\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{DEF})$
(ii) $\mathrm{BC}=\mathrm{EF}$

AM and DN are altitudes of triangle ABC and triangle DEF respectively.

To prove:

AM = DN

Proof:

In triangle $\mathrm{ABC}, \mathrm{AM}$ is the altitude, BC is the base.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{2} \mathrm{BC} \times \mathrm{AM} \ldots$
In $\triangle \mathrm{DEF}, \mathrm{DN}$ is the altitude and EF is the base.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle \mathrm{DEF})=\frac{1}{2} \mathrm{EF} \times \mathrm{DN} \ldots \tag{2}
\end{equation*}
$$

Since ar $(\triangle A B C)=$ ar $(\triangle D E F)$
$\therefore \quad \frac{1}{2} B C \times A M=\frac{1}{2} E F \times D N$
Also $\mathrm{BC}=\mathrm{EF}$ (given)
$\therefore 1 / 2 \mathrm{AM}=1 / 2 \mathrm{DN}$
i.e., $\mathrm{AM}=\mathrm{DN}$.

Hence the theorem is proved.

