CuAPTER NINE

MECHANICAL PROPERTIES OF SOLIDS

9.1

In Chapter 7, we studied the rotation of the bodies and then
realised that the motion of a body depends on how mass is
distributed within the body. We restricted ourselves to simpler
situations of rigid bodies. A rigid body generally means a
hard solid object having a definite shape and size. But in
reality, bodies can be stretched, compressed and bent. Even
the appreciably rigid steel bar can be deformed when a
sufficiently large external force is applied on it. This means
that solid bodies are not perfectly rigid.

A solid has definite shape and size. In order to change (or
deform) the shape or size of a body, a force is required. If
you stretch a helical spring by gently pulling its ends, the
length of the spring increases slightly. When you leave the
ends of the spring, it regains its original size and shape. The
property of a body, by virtue of which it tends to regain its
original size and shape when the applied force is removed, is
known as elasticity and the deformation caused is known
as elastic deformation. However, if you apply force to a lump
of putty or mud, they have no gross tendency to regain their
previous shape, and they get permanently deformed. Such
substances are called plastic and this property is called
plasticity. Putty and mud are close to ideal plastics.

The elastic behaviour of materials plays an important role
in engineering design. For example, while designing a
building, knowledge of elastic properties of materials like steel,
concrete etc. is essential. The same is true in the design of
bridges, automobiles, ropeways etc. One could also ask —
Can we design an aeroplane which is very light but
sufficiently strong? Can we design an artificial limb which
is lighter but stronger? Why does a railway track have a
particular shape like I? Why is glass brittle while brass is
not? Answers to such questions begin with the study of how
relatively simple kinds of loads or forces act to deform
different solids bodies. In this chapter, we shall study the
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elastic behaviour and mechanical properties of
solids which would answer many such
questions.

9.2 ELASTIC BEHAVIOUR OF SOLIDS

We know that in a solid, each atom or molecule
is surrounded by neighbouring atoms or
molecules. These are bonded together by
interatomic or intermolecular forces and stay
in a stable equilibrium position. When a solid is
deformed, the atoms or molecules are displaced
from their equilibrium positions causing a
change in the interatomic (or intermolecular)
distances. When the deforming force is removed,
the interatomic forces tend to drive them back
to their original positions. Thus the body regains
its original shape and size. The restoring
mechanism can be visualised by taking a model
of spring-ball system shown in the Fig. 9.1. Here
the balls represent atoms and springs represent
interatomic forces.
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Fig. 9.1 Spring-ball model for the illustration of elastic
behaviour of solids.

If you try to displace any ball from its
equilibrium position, the spring system tries to
restore the ball back to its original position. Thus
elastic behaviour of solids can be explained in
terms of microscopic nature of the solid. Robert
Hooke, an English physicist (1635 - 1703 A.D)
performed experiments on springs and found
that the elongation (change in the length)
produced in a body is proportional to the applied
force or load. In 1676, he presented his law of

elasticity, now called Hooke’s law. We shall
study about it in Section 9.4. This law, like
Boyle’s law, is one of the earliest quantitative
relationships in science. It is very important to
know the behaviour of the materials under
various kinds of load from the context of
engineering design.

9.3 STRESS AND STRAIN

When a force is applied on body, it is deformed
to a small or large extent depending upon the
nature of the material of the body and the
magnitude of the deforming force. The
deformation may not be noticeable visually in
many materials but it is there. When a body is
subjected to a deforming force, a restoring force
is developed in the body. This restoring force is
equal in magnitude but opposite in direction to
the applied force. The restoring force per unit
area is known as stress. If Fis the force applied
and A is the area of cross section of the
body,
Magnitude of the stress = F/A 9.1)
The SI unit of stress is N m™? or pascal (Pa)
and its dimensional formula is [ ML T2 ].
There are three ways in which a solid may
change its dimensions when an external force
acts on it. These are shown in Fig. 9.2. In
Fig.9.2(a), a cylinder is stretched by two equal
forces applied normal to its cross-sectional area.
The restoring force per unit area in this case
is called tensile stress. If the cylinder is
compressed under the action of applied forces,
the restoring force per unit area is known as
compressive stress. Tensile or compressive
stress can also be termed as longitudinal stress.
In both the cases, there is a change in the
length of the cylinder. The change in the length
AL to the original length L of the body (cylinder
in this case) is known as longitudinal strain.

L
Longitudinal strain T

However, if two equal and opposite deforming
forces are applied parallel to the cross-sectional
area of the cylinder, as shown in Fig. 9.2(b),
there is relative displacement between the
opposite faces of the cylinder. The restoring force
per unit area developed due to the applied
tangential force is known as tangential or
shearing stress.

(9.2)
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Robert Hooke
(1635 - 1703 A.D.)
Robert Hooke was born on July 18, 1635 in Freshwater, Isle of Wight. He was
one of the most brilliant and versatile seventeenth century English scientists.
He attended Oxford University but never graduated. Yet he was an extremely
talented inventor, instrument-maker and building designer. He assisted Robert
Boyle in the construction of Boylean air pump. In 1662, he was appointed as
Curator of Experiments to the newly founded Royal Society. In 1665, he became
Professor of Geometry in Gresham College where he carried out his astronomi-
cal observations. He built a Gregorian reflecting telescope; discovered the fifth
star in the trapezium and an asterism in the constellation Orion; suggested that
Jupiter rotates on its axis; plotted detailed sketches of Mars which were later
used in the 19" century to determine the planet’s rate of rotation; stated the
inverse square law to describe planetary motion, which Newton modified later
etc. He was elected Fellow of Royal Society and also served as the Society’s

Secretary from 1667 to 1682. In his series of observations presented in Micrographia, he suggested
wave theory of light and first used the word ‘cell’ in a biological context as a result of his studies of cork.

Robert Hooke is best known to physicists for his discovery of law of elasticity: Ut tensio, sic vis (This
is a Latin expression and it means as the distortion, so the force). This law laid the basis for studies of

stress and strain and for understanding the elastic materials.

As a result of applied tangential force, there
is a relative displacement Ax between opposite
faces of the cylinder as shown in the Fig. 9.2(b).
The strain so produced is known as shearing
strain and it is defined as the ratio of relative
displacement of the faces Ax to the length of
the cylinder L.

X

Shearing strain =tan 6 9.3)

where 6 is the angular displacement of the
cylinder from the vertical (original position of
the cylinder). Usually 6 is very small, tan 6
is nearly equal to angle 6, (if 8 = 10°, for
example, there is only 1% difference between 6
and tan 6).

(a) (b)

It can also be visualised, when a book is
pressed with the hand and pushed horizontally,
as shown in Fig. 9.2 (c¢).

Thus, shearing strain =tan 8= 0 9.4

In Fig. 9.2 (d), a solid sphere placed in the
fluid under high pressure is compressed
uniformly on all sides. The force applied by the
fluid acts in perpendicular direction at each
point of the surface and the body is said to be
under hydraulic compression. This leads to
decrease in its volume without any change of
its geometrical shape.

The body develops internal restoring forces
that are equal and opposite to the forces applied
by the fluid (the body restores its original shape
and size when taken out from the fluid). The
internal restoring force per unit area in this case

(c) (d)

Fig. 9.2 (a) Cylinder subjected to tensile stress stretches it by an amount AL. (b} A cylinder subjected to
shearing (tangential) stress deforms by an angle 8 .(c) A book subjected to a shearing stress
{d) A solid sphere subjected to a uniform hydraulic stress shrinks in volume by an amount AV.



is known as hydraulic stress and in magnitude
is equal to the hydraulic pressure (applied force
per unit area).

The strain produced by a hydraulic pressure
is called volume strain and is defined as the
ratio of change in volume (AV) to the original
volume (V).

Vv

Vv
Since the strain is a ratio of change in
dimension to the original dimension, it has no
units or dimensional formula.

Volume strain (9.5)

9.4

Stress and strain take different forms in the
situations depicted in the Fig. (9.2). For small
deformations the stress and strain are
proportional to each other. This is known as
Hooke’s law.

Thus,

stress o< strain

stress = kX strain (9.6)
where k is the proportionality constant and is
known as modulus of elasticity.

Hooke’s law is an empirical law and is found
to be valid for most materials. However, there
are some materials which do not exhibits this
linear relationship.

9.5

The relation between the stress and the strain
for a given material under tensile stress can be
found experimentally. In a standard test of
tensile properties, a test cylinder or a wire is
stretched by an applied force. The fractional
change in length (the strain) and the applied
force needed to cause the strain are recorded.
The applied force is gradually increased in steps
and the change in length is noted. A graph is
plotted between the stress (which is equal in
magnitude to the applied force per unit area)
and the strain produced. A typical graph for a
metal is shown in Fig. 9.3. Analogous graphs
for compression and shear stress may also be
obtained. The stress-strain curves vary from
material to material. These curves help us to
understand how a given material deforms with
increasing loads. From the graph, we can see
that in the region between O to A, the curve is
linear. In this region, Hooke’s law is obeyed.

The body regains its original dimensions when
the applied force is removed. In this region, the
solid behaves as an elastic body.
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A typical stress-strain curve for a metal.

In the region from A to B, stress and strain
are not proportional. Nevertheless, the body still
returns to its original dimension when the load
is removed. The point B in the curve is known
as yield point (also known as elastic limit} and
the corresponding stress is known as yield
strength (Sy) of the material.

If the load is increased further, the stress
developed exceeds the yield strength and strain
increases rapidly even for a small change in the
stress. The portion of the curve between B and
D shows this. When the load is removed, say at
some point C between B and D, the body does
not regain its original dimension. In this case,
even when the stress is zero, the strain is not
zero. The material is said to have a permanent
set. The deformation is said to be plastic
deformation. The point D on the graph is the
ultimate tensile strength (S ) of the material.
Beyond this point, additional strain is produced
even by a reduced applied force and fracture
occurs at point E. If the ultimate strength and
fracture points D and E are close, the material
is said to be brittle. If they are far apart, the
material is said to be ductile.

As stated earlier, the stress-strain behaviour
varies from material to material. For example,
rubber can be pulled to several times its original
length and still returns to its original shape.
Fig. 9.4 shows stress-strain curve for the elastic
tissue of aorta, present in the heart. Note that
although elastic region is very large, the material
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Fig. 9.4 Stress-strain curve for the elastic tissue of
Aorta, the large tube (vessel) carrying blood
Jfrom the heart.

does not obey Hooke’s law over most of the
region. Secondly, there is no well defined plastic
region. Substances like tissue of aorta, rubber
etc. which can be stretched to cause large strains
are called elastomers.

9.6 ELASTIC MODULI

The proportional region within the elastic limit
of the stress-strain curve (region OA in Fig. 9.3)
is of great importance for structural and
manufacturing engineering designs. The ratio
of stress and strain, called modulus of elasticity,
is found to be a characteristic of the material.

9.6.1 Young’s Modulus

Experimental observation show that for a given
material, the magnitude of the strain produced
is same whether the stress is tensile or
compressive. The ratio of tensile (or compressive)
stress (o) to the longitudinal strain () is defined as
Young’'s modulus and is denoted by the symbol Y.

= 9.7)
From Egs. (9.1) and (9.2), we have

= (F/A)/(AL/L)

=(Fx L) /(Ax AL) (9.8)

Since strain is a dimensionless quantity, the
unit of Young’'s modulus is the same as that of
stress i.e., N m or Pascal (Pa). Table 9.1 gives
the values of Young’s moduli and yield strengths
of some materials.

From the data given in Table 9.1, it is noticed
that for metals Young's moduli are large.
Therefore, these materials require a large force
to produce small change in length. To increase
the length of a thin steel wire of 0.1 c¢m? cross-
sectional area by 0.1%, a force of 2000 N is
required. The force required to produce the same
strain in aluminium, brass and copper wires
having the same cross-sectional area are 690 N,
900 N and 1100 N respectively. It means that
steel is more elastic than copper, brass and
aluminium. It is for this reason that steel is

Table 9.1 Young’'s moduli and yield strengths of some materials.

Substance Denslty P Young s modulus | Ultimate Yield strength
(kg m?) Y (10° Nm?) strengths S, (10° N m?)
10° N m*

Aluminium 2710 110

Copper 8890 110 400 200
Iron (wrought) 7800-7900 190 330 170
Steel 7860 200 400 250
Glass® 2190 65 50 —
Concrete 2320 30 40 —
Wood* 525 13 50 —
Bone* 1900 9 170 —
Polystyrene 1050 S, 48 —

# substance tested under compression
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preferred in heavy-duty machines and in
structural designs. Wood, bone, concrete and
glass have rather small Young's moduli.

1 Example 9.1 A structural steel rod has a
radius of 10 mm and a length of 1.0 m. A
100 kN force stretches it along its length.
Calculate (a) stress, (b) elongation, and (c})
strain on the rod. Young's modulus, of
structural steel is 2.0 x 10'! N m?2.

Answer We assume that the rod is held by a
clamp at one end, and the force F is applied at
the other end, parallel to the length of the rod.
Then the stress on the rod is given by

F

F
Stres: =—=—
A nr

100 10°N
5 2
314 10 ™m
=3.18x 108 Nm2
The elongation,
(F/A)L

Y

AL =

3.18 10°Nm ™2 1m

2 10"Nm™

1.59x 10°m
=1.59 mm

The strain is given by

Strain = AL/L
=(1.59 x 103 m)/(1m)
=1.59x 1073
=0.16 % t

Example 9.2 A copper wire of length 2.2
m and a steel wire of length 1.6 m, both of
diameter 3.0 mm, are connected end to end.
When stretched by a load, the net
elongation is found to be 0.70 mm. Obtain
the load applied.

Answer The copper and steel wires are under
a tensile stress because they have the same
tension (equal to the load W) and the same area
of cross-section A. From Eq. (9.7) we have stress
= strain x Young’s modulus. Therefore
W/A=Y x (AL/L)=Y_x (AL /L)

where the subscripts ¢ and s refer to copper
and stainless steel respectively. Or,
AL /AL = (Y /Y)x (L /L)
Given L, =2.2m, L .= 1.6 m,
From Table 9.1 Y_=1.1 x 10" N.m2, and
Y,=2.0x 10" N.m?2,
AL /AL =(2.0x 10'/1.1x 10") x (2.2/1.6) =2.5.
The total elongation is given to be
AL +AL = 7.0 x 10" m

Solving the above equations,
AL =5.0 x 10*m, and AL =2.0 x 10 m.
Therefore
W =(Ax Y, x AL)/L,

=n(1.5x 1092 [(5.0x 10%*x 1.1x 10')/2.2]

=1.8x 102N t

Example 9.3 In a human pyramid in a
circus, the entire weight of the balanced
group is supported by the legs of a
performer who is lying on his back (as
shown in Fig. 9.5). The combined mass of
all the persons performing the act, and the
tables, plaques etc. involved is 280 kg. The
mass of the performer lying on his back at
the bottom of the pyramid is 60 kg. Each
thighbone (femur) of this performer has a
length of 50 cm and an effective radius of
2.0 cm. Determine the amount by which
each thighbone gets compressed under the
extra load.

Fig. 9.5 Human pyramid in a circus.
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Answer Total mass of all the performers,
tables, plaques etc. =280 kg

Mass of the performer = 60 kg

Mass supported by the legs of the performer
at the bottom of the pyramid

=280 -60 =220 kg

Weight of this supported mass

=220kgwt. =220 x 9.8 N = 2156 N.

Weight supported by each thighbone of the
performer = % (2156) N = 1078 N.

From Table 9.1, the Young’s modulus for bone
is given by

Y = 9.4x 10° Nm™2.

Length of each thighbone L = 0.5 m

the radius of thighbone = 2.0 cm

Thus the cross-sectional area of the thighbone
A=rx(2x10%?>m?=1.26x 10°m>
Using Eq. (9.8), the compression in each
thighbone (AL} can be computed as

AL [(Fx L)/(Yx A}l

[(1078% 0.5)/(9.4x 10°%x 1.26%x 109)]
4.55%x 10°m or 4.55x 102 cm.

This is a very small change! The fractional
decrease in the thighbone is AL/L = 0.00009
or 0.0091%. t

9.6.2 Determination of Young’s Modulus of
the Material of a Wire

A typical experimental arrangement to determine
the Young’s modulus of a material of wire under
tension is shown in Fig. 9.6. It consists of two
long straight wires of same length and equal
radius suspended side by side from a fixed rigid
support. The wire A (called the reference wire)
carries a millimetre main scale M and a pan to
place a weight. The wire B (called the
experimental wire) of uniform area of cross-
section also carries a pan in which known
weights can be placed. A vernier scale V is
attached to a pointer at the bottom of the
experimental wire B, and the main scale M is
fixed to the reference wire A. The weights placed
in the pan exert a downward force and stretch
the experimental wire under a tensile stress. The
elongation of the wire (increase in length) is
measured by the vernier arrangement. The
reference wire is used to compensate for any
change in length that may occur due to change
in room temperature, since any change in length
of the reference wire due to temperature change

will be accompanied by an equal change in
experimental wire. (We shall study these
temperature effects in detail in Chapter 11.)

L L1
A B
Reference Experimental
Wire Wire

E \%
M o z—| (Vernier Scale)
(Metre Scale) = a:

— LA

Fig. 9.6 An arrangement for the determination of
Young’s modulus of the material of a wire.

Both the reference and experimental wires are
given an initial small load to keep the wires
straight and the vernier reading is noted. Now
the experimental wire is gradually loaded with
more weights to bring it under a tensile stress
and the vernier reading is noted again. The
difference between two vernier readings gives
the elongation produced in the wire. Let rand L
be the initial radius and length of the
experimental wire, respectively. Then the area
of cross-section of the wire would be nr?. Let M
be the mass that produced an elongation AL in
the wire. Thus the applied force is equal to Mg,
where g is the acceleration due to gravity. From
Eq. (9.8), the Young's modulus of the material
of the experimental wire is given by

o Mg L
- =

=Mgx L/(nr? x AL) 9.9)
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9.6.3 Shear Modulus
The ratio of shearing stress to the corresponding
shearing strain is called the shear modulus of
the material and is represented by G. It is also
called the modulus of rigidity.

G = shearing stress (¢)/shearing strain

G = (F/A)/(Ax/L)

=(Fx L)/(Ax AX (9.10)
Similarly, from Eq. (9.4)
G =(F/A)/6
=F/(Ax 6 (9.11)
The shearing stress ¢, can also be expressed as
o=Gx#8 (9.12)

SI unit of shear modulus is N m2 or Pa. The
shear moduli of a few common materials are
given in Table 9.2. It can be seen that shear
modulus (or modulus of rigidity) is generally less
than Young’'s modulus (from Table 9.1). For most
materials G= Y/3.

Table 9.2 Shear moduli (G) of some common

materials

G (10° Nm™>2

or GPa)
Aluminium 25
Brass 36
Copper 42
Glass 23
Iron 70
Lead 5.6
Nickel 77
Steel 84
Tungsten 150
Wood 10

Example 9.4 A square lead slab of side 50
cm and thickness 10 cm is subject to a
shearing force (on its narrow face) of 9.0 x
10* N. The lower edge is riveted to the floor.
How much will the upper edge be displaced?

Answer The lead slab is fixed and the force is
applied parallel to the narrow face as shown in
Fig. 9.7. The area of the face parallel to which
this force is applied is
A =50cmx 10 cm
=0.5mx 0.1m
= 0.05 m2

Therefore, the stress applied is
= (9.4 x 10* N/0.05 m?)
=1.80 x 10° N.m2

50 cm 1

Fig. 9.7

We know that shearing strain = (Ax/L)= Stress /G.

Therefore the displacement Ax = (Stress x L}/ G
=(1.8x 10° Nm=2x 0.5m)/(5.6 x 10°N m?)
=1.6x 10*m=0.16 mm t

9.6.4 Bulk Modulus

In Section (9.3), we have seen that when a body
is submerged in a fluid, it undergoes a hydraulic
stress (equal in magnitude to the hydraulic
pressure). This leads to the decrease in the
volume of the body thus producing a strain called
volume strain [Eq. (9.5)]. The ratio of hydraulic
stress to the corresponding hydraulic strain is
called bulk modulus. It is denoted by symbol B.

B=-p/AV/V) (9.13)

The negative sign indicates the fact that with
an increase in pressure, a decrease in volume
occurs. That is, if p is positive, AV is negative.
Thus for a system in equilibrium, the value of
bulk modulus B is always positive. SI unit of
bulk modulus is the same as that of pressure
i.e., N m2 or Pa. The bulk moduli of a few
common materials are given in Table 9.3.

The reciprocal of the bulk modulus is called
compressibility and is denoted by k. It is defined
as the fractional change in volume per unit
increase in pressure.

k=(1/B) =-(1/Ap) x (AV/V) (9.14)

It can be seen from the data given in Table
9.3 that the bulk moduli for solids are much
larger than for liquids, which are again much
larger than the bulk modulus for gases (air).
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Table 9.3 Bulk moduli (B) of some common
Materials

Material
Solids

B (10° N m™2 or GPa)

Thus solids are least compressible whereas gases
are most compressible. Gases are about a million
times more compressible than solids! Gases have

large compressibilities, which vary with pressure
and temperature. The incompressibility of the
solids is primarily due to the tight coupling
between the neighbouring atoms. The molecules
in liquids are also bound with their neighbours
but not as strong as in solids. Molecules in gases
are very poorly coupled to their neighbours.

Table 9.4 shows the various types of stress,
strain, elastic moduli, and the applicable state
of matter at a glance.

[+

Example 9.5 The average depth of Indian
Ocean is about 3000 m. Calculate the
fractional compression, AV/V, of water at
the bottom of the ocean, given that the bulk
modulus of water is 2.2 x 10° N m2. (Take

g =10 m s?)

Answer The pressure exerted by a 3000 m

column of water on the bottom layer

p=hpg =3000m x 1000 kg m=x 10 m s2
=3 x 107 kg m! s2
=3 x 10" N m?

Fractional compression AV/V, is
AV/V =stress/B =3x 10'Nm?)/(2.2x 10°Nm3)
=1.36x 102o0r 1.36 % t

Table 9.4 Stress, strain and various elastic moduli

Type of
stress

Stress Strain Elastic Name of | State of
modulus modulus | Mater




9.7

The elastic behaviour of materials plays an
important role in everyday life. All engineering
designs require precise knowledge of the elastic
behaviour of materials. For example while
designing a building, the structural design of
the columns, beams and supports require
knowledge of strength of materials used. Have
you ever thought why the beams used in
construction of bridges, as supports etc. have a
cross-section of the type I? Why does a heap of
sand or a hill have a pyramidal shape? Answers
to these questions can be obtained from the
study of structural engineering which is based
on concepts developed here.

Cranes used for lifting and moving heavy loads
from one place to another have a thick metal rope
to which the load is attached. The rope is pulled
up using pulleys and motors. Suppose we want
to make a crane, which has a lifting capacity of
10 tonnes or metric tons (1 metric ton = 1000
kg). How thick should the steel rope be? We
obviously want that the load does not deform the
rope permanently. Therefore, the extension
should not exceed the elastic limit. From Table
9.1, we find that mild steel has a yield strength
(Sy) of about 300 x 108 N m=2. Thus, the area of
cross-section (A) of the rope should at least be

A2 W/S, = Mg/S, (9.15)

= (10*kgx 10ms?)/(300x 10° Nm?)

= 3.3x 10t m?
corresponding to a radius of about 1 cm for a
rope of circular cross-section. Generally a large
margin of safety (of about a factor of ten in the
load) is provided. Thus a thicker rope of radius
about 3 cm is recommended. A single wire of
this radius would practically be a rigid rod. So
the ropes are always made of a number of thin
wires braided together, like in pigtails, for ease
in manufacture, flexibility and strength.

A bridge has to be designed such that it can
withstand the load of the flowing traffic, the force
of winds and its own weight. Similarly, in the
design of buildings use of beams and columns
is very common. In both the cases, the
overcoming of the problem of bending of beam
under a load is of prime importance. The beam
should not bend too much or break. Let us
consider the case of a beam loaded at the centre
and supported near its ends as shown in
Fig. 9.8. Abar of length [, breadth b, and depth d

when loaded at the centre by a load W sags by
an amount given by

6= WI3/(4bd?Y) (9.16)

« J4 >

W

A beam supported at the ends and loaded
at the centre.

This relation can be derived using what you
have already learnt and a little calculus. From
Eq. (9.16), we see that to reduce the bending for
a given load, one should use a material with a
large Young’'s modulus Y. For a given material,
increasing the depth d rather than the breadth
b is more effective in reducing the bending, since
d is proportional to d - and only to b '(of course
the length ! of the span should be as small as
possible). But on increasing the depth, unless
the load is exactly at the right place (difficult to
arrange in a bridge with moving traffic), the deep
bar may bend as shown in Fig. 9.9(b). This is
called buckling. To avoid this, a common
compromise is the cross-sectional shape shown
in Fig. 9.9(c). This section provides a large load-
bearing surface and enough depth to prevent
bending. This shape reduces the weight of the
beam without sacrificing the strength and hence
reduces the cost.

(a) (b) (c)

Different cross-sectional shapes of a
beam. (a) Rectangular section of a bar;
(b} A thin bar and how it can buckle;
(c) Commonly used section for a load
bearing bar.



Use of pillars or columns is also very common
in buildings and bridges. A pillar with rounded
ends as shown in Fig. 9.10(a) supports less load
than that with a distributed shape at the ends
[Fig. 9.10(b)]. The precise design of a bridge
or a building has to take into account
the conditions under which it will function, the
cost and long period, reliability of usable
materials etc.

(a) (b)

Pillars or columns: (a) a pillar with
rounded ends, (b) Pillar with distributed
ends.

The answer to the question why the maximum
height of a mountain on earth is ~10 km can
also be provided by considering the elastic
properties of rocks. A mountain base is not
under uniform compression and this provides
some shearing stress to the rocks under which
they can flow. The stress due to all the material
on the top should be less than the critical
shearing stress at which the rocks flow.

At the bottom of a mountain of height h, the
force per unit area due to the weight of the
mountain is hpg where p is the density of the
material of the mountain and g is the
acceleration due to gravity. The material at the
bottom experiences this force in the vertical
direction, and the sides of the mountain are free.
Therefore this is not a case of pressure or bulk
compression. There is a shear component,
approximately hpg itself. Now the elastic limit
for a typical rock is 30 x 107 N m2. Equating
this to hpg, with p =3 x 103 kg m gives

hpg =30x 10" Nm?2. Or
h = 30x 10°'Nm?/3x 10°kgm?®x 10 ms?)
= 10 km

which is more than the height of Mt. Everest!

1.  Stressis the restoring force per unit area and strain is the fractional change in dimension.

In general there are three types of stresses (a) tensile stress — longitudinal stress
(associated with stretching) or compressive stress (associated with compression),
(b) shearing stress, and (c) hydraulic stress.
For small deformations, stress is directly proportional to the strain for many materials.
This is known as Hooke’s law. The constant of proportionality is called modulus of
elasticity. Three elastic moduli viz., Young's modulus, shear modulus and bulk modulus
are used to describe the elastic behaviour of objects as they respond to deforming
forces that act on them.
A class of solids called elastomers does not obey Hooke’s law.
When an object is under tension or compression, the Hooke’s law takes the form

F/A = YAL/L
where AL/Lis the tensile or compressive strain of the object, Fis the magnitude of the
applied force causing the strain, A is the cross-sectional area over which F is applied
(perpendicular to A) and Yis the Young's modulus for the object. The stress is F/A.
A pair of forces when applied parallel to the upper and lower faces, the solid deforms so
that the upper face moves sideways with respect to the lower. The horizontal
displacement AL of the upper face is perpendicular to the vertical height L. This type of
deformation is called shear and the corresponding stress is the shearing stress. This
type of stress is possible only in solids.
In this kind of deformation the Hooke’s law takes the form

F/A=Gx AL/L
where AL is the displacement of one end of object in the direction of the applied force F,
and G is the shear modulus.
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5.  When an object undergoes hydraulic compression due to a stress exerted by a
surrounding fluid, the Hooke’s law takes the form
p=B(AV/V),
where p is the pressure (hydraulic stress) on the object due to the fluid, AV/V (the
volume strain) is the absolute fractional change in the object’s volume due to that
pressure and B is the bulk modulus of the object.

POINTS TO PONDER

1. In the case of a wire, suspended from celing and stretched under the action of a weight
(F) suspended from its other end, the force exerted by the ceiling on it is equal and
opposite to the weight. However, the tension at any cross-section A of the wire is just F
and not 2F. Hence, tensile stress which is equal to the tension per unit area is equal to
F/A.

2. Hooke’s law is valid only in the linear part of stress-strain curve.

3. The Young's modulus and shear modulus are relevant only for solids since only solids
have lengths and shapes.

4. Bulk modulus is relevant for solids, liquid and gases. It refers to the change in volume
when every part of the body is under the uniform stress so that the shape of the body
remains unchanged.

5. Metals have larger values of Young’s modulus than alloys and elastomers. A material
with large value of Young’s modulus requires a large force to produce small changes in
its length.

6. In daily life, we feel that a material which stretches more is more elastic, but it a is
misnomer. In fact material which stretches to a lesser extent for a given load is considered
to be more elastic.

7. In general, a deforming force in one direction can produce strains in other directions
also. The proportionality between stress and strain in such situations cannot be described
by just one elastic constant. For example, for a wire under longitudinal strain, the
lateral dimensions (radius of cross section) will undergo a small change, which is described
by another elastic constant of the material (called Poisson ratio).

8. Stress is not a vector quantity since, unlike a force, the stress cannot be assigned a
specific direction. Force acting on the portion of a body on a specified side of a section
has a definite direction.

EXERCISES

9.1 A steel wire of length 4.7 m and cross-sectional area 3.0 x 10® m? stretches by the
same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 x 107° m?
under a given load. What is the ratio of the Young’s modulus of steel to that of copper?

9.2 Figure 9.11 shows the strain-stress curve for a given material. What are (a) Young's
modulus and (b) approximate yield strength for this material?



MECHANICAL PROPERTIES OF SOLIDS 243

0 0.001 0.002 0.003 0.004
Strain

Fig. 9.11

9.3 The stress-strain graphs for materials A and B are shown in Fig. 9.12.

9.4

9.5

Stress
>

Stress
o9}

v

Strain ! Strain

Fig. 9.12
The graphs are drawn to the same scale.
(a) Which of the materials has the greater Young’s modulus?
(b) Which of the two is the stronger material?

Read the following two statements below carefully and state, with reasons, if it is true
or false.

(a) The Young's modulus of rubber is greater than that of steel;

(b) The stretching of a coil is determined by its shear modulus.

Two wires of diameter 0.25 cm, one made of steel and the other made of brass are
loaded as shown in Fig. 9.13. The unloaded length of steel wire is 1.5 m and that of
brass wire is 1.0 m. Compute the elongations of the steel and the brass wires.

1.5 m
Steel

Cd 4.0kg

1.0m
Brass

| | 6.0 kg

Fig. 9.13
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9.6 The edge of an aluminium cube is 10 cm long. One face of the cube is firmly fixed to a
vertical wall. A mass of 100 kg is then attached to the opposite face of the cube. The
shear modulus of aluminium is 25 GPa. What is the vertical deflection of this face?

9.7 Four identical hollow cylindrical columns of mild steel support a big structure of mass
50,000 kg. The inner and outer radii of each column are 30 and 60 cm respectively.
Assuming the load distribution to be uniform, calculate the compressional strain of
each column.

9.8 A piece of copper having a rectangular cross-section of 15.2 mm x 19.1 mm is pulled in
tension with 44,500 N force, producing only elastic deformation. Calculate the resulting
strain?

9.9 A steel cable with a radius of 1.5 cm supports a chairlift at a ski area. If the maximum
stress is not to exceed 10® N m™2, what is the maximum load the cable can support ?

9.10 A rigid bar of mass 15 kg is supported symmetrically by three wires each 2.0 m long.
Those at each end are of copper and the middle one is of iron. Determine the ratios of
their diameters if each is to have the same tension.

9.11 A 14.5 kg mass, fastened to the end of a steel wire of unstretched length 1.0 m, is
whirled in a vertical circle with an angular velocity of 2 rev/s at the bottom of the circle.
The cross-sectional area of the wire is 0.065 cm?. Calculate the elongation of the wire
when the mass is at the lowest point of its path.

9.12 Compute the bulk modulus of water from the following data: Initial volume = 100.0
litre, Pressure increase = 100.0 atm (1 atm = 1.013 x 10° Pa), Final volume = 100.5
litre. Compare the bulk modulus of water with that of air (at constant temperature).
Explain in simple terms why the ratio is so large.

9.13 What is the density of water at a depth where pressure is 80.0 atm, given that its
density at the surface is 1.03 x 103 kg m™3?

9.14 Compute the fractional change in volume of a glass slab, when subjected to a hydraulic
pressure of 10 atm.

9.15 Determine the volume contraction of a solid copper cube, 10 cm on an edge, when
subjected to a hydraulic pressure of 7.0 x 10° Pa.

9.16 How much should the pressure on a litre of water be changed to compress it by 0.10%?

Additional Exercises

9.17 Anvils made of single crystals of diamond, with the shape as shown in
Fig. 9.14, are used to investigate behaviour of materials under very high pressures.
Flat faces at the narrow end of the anvil have a diameter of 0.50 mm, and the wide ends
are subjected to a compressional force of 50,000 N. What is the pressure at the tip of
the anvil?

. «—
Diamond cones Metal gasket

Fig. 9.14
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9.18 Arod of length 1.05 m having negligible mass is supported at its ends by two wires of
steel (wire A) and aluminium (wire B} of equal lengths as shown in
Fig. 9.15. The cross-sectional areas of wires A and B are 1.0 mm? and 2.0 mm?,
respectively. At what point along the rod should a mass m be suspended in order to
produce (a) equal stresses and (b) equal strains in both steel and aluminium wires.

VI

1.05m

Fig. 9.15

9.19 A mild steel wire of length 1.0 m and cross-sectional area 0.50 x 102 cm? is
stretched, well within its elastic limit, horizontally between two pillars. A mass of 100
g is suspended from the mid-point of the wire. Calculate the depression at the mid-
point.

9.20 Two strips of metal are riveted together at their ends by four rivets, each of diameter
6.0 mm. What is the maximum tension that can be exerted by the riveted strip if the
shearing stress on the rivet is not to exceed 6.9 x 107 Pa? Assume that each rivet is to
carry one quarter of the load.

9.21 The Marina trench is located in the Pacific Ocean, and at one place it is nearly eleven
km beneath the surface of water. The water pressure at the bottom of the trench is
about 1.1 x 10® Pa. A steel ball of initial volume 0.32 m? is dropped into the ocean and
falls to the bottom of the trench. What is the change in the volume of the ball when it
reaches to the bottom?



9.1
9.2

9.3

9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

9.15
9.16

1.8

ANSWERS

Chapter 9

(@) From the given graph for a stress of 150 X 10% N m™ the strain is 0.002

(b) Approximate yield strength of the material is 3 X 10* N m™

(a) Material A

(b) Strength of a material is determined by the amount of stress required to cause
fracture: material A is stronger than material B.

(a) False (b)

1.5X 10*m (steel); 1.3 X 10*m (brass)

Deflection =4 X 10%m

2.8x 10°

0.127

7.07x10°N
copper/Diron =1.25

1.539X 10*m
2.026 X 10° Pa
1.034 X 10° kg/m®
0.0027

0.058 cm®
2.2 x 108 N/m?
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9.17 Pressure at the tip of anvil is 2.5 X 10! Pa
9.18 (a) 0.7m (b) 0.43 m from steel wire

9.19 Approximately 0.01 m
9.20 260kN

9.21 2.51x10*m?

Chapter 10

10.3 (a) decreases (b) nof gases increases, nof liquid decreases with temperature (c) shear
strain, rate of shear strain (d) conservation of mass, Bernoulli’s equation (e) greater.

10.5 6.2x10%Pa
10.6 10.5m

10.7 Pressure at that depth in the sea is about 3 x 107 Pa. The structure is suitable since it
can withstand far greater pressure or stress.

10.8 6.92x 10°Pa
10.9 0.800

10.10 Mercury will rise in the arm containing spirit; the difference in levels of mercury will be
0.221 cm.

10.11 No, Bernoulli’s principle applies to streamline flow only.

10.12 No, unless the atmospheric pressures at the two points where Bernoulli’s equation is
applied are significantly different.

10.13 9.8 x 102 Pa (The Reynolds number is about 0.3 so the flow is laminar).
10.14 1.5x 10°N

10.15 Fig (a) is incorrect [Reason: at a constriction (i.e. where the area of cross-section of the
tube is smaller), flow speed is larger due to mass conservation. Consequently pressure
there is smaller according to Bernoulli’s equation. We assume the fluid to be
incompressible].

10.16 0.64ms!
10.17 2.5x 102N m*
10.18 4.5 x 102 N for (b) and (c), the same as in (a).

10.19 Excess pressure = 310 Pa, total pressure = 1.0131 x 10° Pa. However, since data are
correct to three significant figures, we should write total pressure inside the drop as
1.01 x 10° Pa.

10.20 Excess pressure inside the soap bubble = 20.0 Pa; excess pressure inside the air bubble
in soap solution = 10.0 Pa. Outside pressure for air bubble = 1.01 x 10% + 0.4 x 10 x 9.8
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10.21
10.22

10.23

10.24
10.25
10.26
10.27
10.28
10.29
10.30

10.31

11.1

11.2
11.3

11.4

11.5

x 1.2 = 1.06 x 10° Pa. The excess pressure is so small that up to three significant
figures, total pressure inside the air bubble is 1.06 x 10° Pa.

55 N (Note, the base area does not affect the answer)

(a) absolute pressure = 96 cm of Hg; gauge pressure = 20 cm of Hg for (a), absolute
pressure = 58 cm of Hg, gauge pressure = -18 cm of Hg for (b); (b) mercury would rise in
the left limb such that the difference in its levels in the two limbs becomes19 cm.

Pressure (and therefore force) on the two equal base areas are identical. But force is
exerted by water on the sides of the vessels also, which has a nonzero vertical component
when the sides of the vessel are not perfectly normal to the base. This net vertical
component of force by water on sides of the vessel is greater for the first vessel than the
second. Hence the vessels weigh different even when the force on the base is the same
in the two cases.

0.2m

(a) The pressure drop is greater (b) More important with increasing flow velocity.
(@ 0.98ms!; (b)1.24 x 10°m?®s’!

4393 kg

58cms!, 3.9x 109N

5.34 mm

For the first bore, pressure difference (between the concave and convex side) =2 x 7.3
x 102 / 3 x 103 = 48.7 Pa. Similarly for the second bore, pressure difference = 97.3 Pa.
Consequently, the level difference in the two bores is [48.7 / (10°x9.8)] m = 5.0 mm.

The level in the narrower bore is higher. (Note, for zero angle of contact, the radius of the
meniscus equals radius of the bore. The concave side of the surface in each bore is at 1 atm).

(b) 8 km. If we consider the variation of g with altitude the height is somewhat more,
about 8.2 km.

Chapter 11

Neon: -248.58 °C =-415.44 °F;
CO,: -56.60°C = -69.88 °F

(use t. = %tc +32)

T, =(4/7) T,
384.8K

(a) Triple-point has a unique temperature; fusion point and boiling point temperatures
depend on pressure; (b) The other fixed point is the absolute zero itself; (c) Triple-point
is 0.01°C, not O °C; (d) 491.69.

(@) T, = 392.69K, T,= 391.98 K; (b) The discrepancy arises because the gases are not
perfectly ideal. To reduce the discrepancy, readings should be taken for lower and



lower pressures and the plot between temperature measured versus absolute pressure
of the gas at triple point should be extrapolated to obtain temperature in the limit
pressure tends to zero, when the gases approach ideal gas behaviour.

Actual length of the rod at 45.0 °C = (63.0 + 0.0136) cm = 63.0136 cm. (However, we
should say that change in length up to three significant figures is 0.0136 cm, but the
total length is 63.0 cm, up to three significant places. Length of the same rod at 27.0 °C
= 63.0 cm.

When the shatft is cooled to temperature — 69°C the wheel can slip on the shaft.
The diameter increases by an amount = 1.44 x 102 cm.

3.8x 102N

Since the ends of the combined rod are not clamped, each rod expands freely.
Al =021 cm,Al,_, = 0.126 cm = 0.13 cm

Total change in length = 0.34 cm. No ‘thermal stress’ is developed at the junction since
the rods freely expand.

0.0147 = 1.5x10?
103 °C

1.5kg

0.43J g'K!; smaller

The gases are diatomic, and have other degrees of freedom (i.e. have other modes of
motion) possible besides the translational degrees of freedom. To raise the temperature
of the gas by a certain amount, heat is to be supplied to increase the average energy of
all the modes. Consequently, molar specific heat of diatomic gases is more than that of
monatomic gases. It can be shown that if only rotational modes of motion are considered,
the molar specific heat of diatomic gases is nearly (5/2) R which agrees with the
observations for all the gases listed in the table, except chlorine. The higher value of
molar specific heat of chlorine indicates that besides rotational modes, vibrational modes
are also present in chlorine at room temperature.

(a) At the triple point temperature = - 56.6 °C and pressure = 5.11 atm.
(b) Both the boiling point and freezing point of CO, decrease if pressure decreases.

(c) The critical temperature and pressure of CO, are 31.1 °C and 73.0 atm respectively.
Above this temperature, CO, will not liquefy even if compressed to high pressures.

(d) (@) vapour (b) solid (c) liquid
(@) No, vapour condenses to solid directly.
(b) It condenses to solid directly without passing through the liquid phase.

(c) It turns to liquid phase and then to vapour phase. The fusion and boiling points
are where the horizontal line on P-T diagram at the constant pressure of 10 atm
intersects the fusion and vaporization curves.

(d) Itwill not exhibit any clear transition to the liquid phase, but will depart more and
more from ideal gas behaviour as its pressure increases.
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11.18 4.3 g/min
11.19 3.7kg
11.20 238°C

11.22 9 min

Chapter 12

12.1 16 g per min

12.2 934J
12.4 2.64
12.5 16.9dJ

12.6 (a) 0.5 atm (b) zero (c) zero (assuming the gas to be ideal) (d) No, since the process
(called free expansion) is rapid and cannot be controlled. The intermediate states are
non-equilibrium states and do not satisfy the gas equation. In due course, the gas
does return to an equilibrium state.

12.7 15%, 3.1x10%J

12.8 25W
12.9 450J
12.10 104

Chapter 13
13.1 4x10*

13.3 (a) The dotted plot corresponds to ‘ideal’ gas behaviour; (b) T, > T,: (c) 0.26 J K'%;
(d) No, 6.3 x 107 kg of H, would yield the same value

13.4 0.14 kg

13.5 5.3x10°% m?

13.6 6.10x 10%

13.7 (@ 6.2x102'J (b) 1.24 x 1019J () 2.1 x 1016y

13.8 Yes, according to Avogadro’s law. No, v__is largest for the lightest of the three gases;
neon.

13.9 2.52x103K



Use the formula for mean free path :

i 1
J2 nd?

where d is the diameter of a molecule. For the given pressure and temperature
N/V=5.10x10®m?and =1.0x10"m. v__=5.1x10>ms".

v -
collisional frequency = rins 5.1 10°s™ . Time taken for the collision = d / v =4x

10'% s. Time taken between successive collisions =1/ v__ =2 x 10'°s. Thus the time
taken between successive collisions is 500 times the time taken for a collision. Thus a
molecule in a gas moves essentially free for most of the time.

Nearly 24 cm of mercury flows out, and the remaining 52 cm of mercury thread plus the
48 cm of air above it remain in equilibrium with the outside atmospheric pressure (We
assume there is no change in temperature throughout).

Oxygen

Carbon[1.29 A |; Gold [1.59 A]; Liquid Nitrogen [1.77 A 1; Lithium [ 1.73 A |; Liquid
fluorine[1.88 A |

(b). (c)

(b) and (c): SHM; (a) and (d) represent periodic but not SHM [A polyatomic molecule has a
number of natural frequencies; so in general, its vibration is a superposition of SHM’s of
a number of different frequencies. This superposition is periodic but not SHM].

(b) and (d) are periodic, each with a period of 2 s; (a) and (c) are not periodic. [Note in (c),
repetition of merely one position is not enough for motion to be periodic; the entire
motion during one period must be repeated successively].

(@) Simple harmonic, T = (27/@; (b) periodic, T =(2z/@ but not simple harmonic;
(c) simple harmonic, T = (z/@; (d) periodic, T = (2x/@ but not simple harmonic;
(e) non-periodic; (f) non-periodic (physically not acceptable as the function —ecas t—-ee.

@0, ++;MO0,--;()-00; d—-——-; @+ + +; )- - -

(c) represents a simple harmonic motion.

A= [p cm, ¢=7n/4;B= \/E cm, a=r/4.
219N

Frequency 3.2 s™'; maximum acceleration of the mass 8.0 m s2; maximum speed of the
mass 0.4 m s™.

(@ x=2sin 20t
(b) x=2cos 20t
() x=-2cos 20t
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14.11

14.13

14.14
14.15

14.16

14.17

14.18

14.19

where xis in cm. These functions differ neither in amplitude nor frequency.
They differ in initial phase.

(a) x=-3sin ntwhere xis in cm.

(b) x=-2cos ﬁt where xis in cm.

2
(a) F/kfor both (a) and (b).

b) T=2z  for(a) and 2z \/Z for (b)
2k

100 m/min
8.4s
(@) For a simple pendulum, k itself is proportional to m, so m cancels out.

(b) sin 8 < 6 ; if the restoring force, mg sin 0 is replaced by mg6, this amounts to
effective reduction in g for large angles and hence an increase in time period T

over that given by the formula T = 2= \/Z where one assumes siné = 6.
g

(c) Yes, the motion in the wristwatch depends on spring action and has nothing to do
with acceleration due to gravity.

(d) Gravity disappears for a man under free fall, so frequency is zero.

l
T=27 W . Hint: Effective acceleration due to gravity will get reduced
g +v

due to radial acceleration v?/R acting in the horizontal plane.

In equilibrium, weight of the cork equals the up thrust. When the cork is depressed
by an amount x, the net upward force is Axp,g. Thus the force constant k=Ap,g.

Using m= Ahp, and T=2n \/% one gets the given expression.

When both the ends are open to the atmosphere, and the difference in levels of the
liquid in the two arms is h, the net force on the liquid column is Ahpg where A is the
area of cross-section of the tube and p is the density of the liquid. Since restoring force
is proportional to h, motion is simple harmonic.
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14.20 T=2n / Vm where B is the bulk modulus of air. For isothermal changes B = P.
Ba*

14.21 (a) 5x10*'Nm™; (b) 1344.6 kg s!

T T
14.22 Hint: Average K.E. = ljl:nvzdt ; Average P.E.= ljlkxzdt
TJ2 TJ2
0 0

14.23 Hint: The time period of a torsional pendulum is given by T=2x \/Z , where Iis the
o

moment of inertia about the axis of rotation. In our case I = 1 MR?, where M is the
2

mass of the disk and R its radius. Substituting the given values, o= 2.0 N m rad™.

14.24 (a) -5®ms2;0; (b)-3r’>ms2,0.4nrms?';(c)0;0.5tms!

U2
2
14.25 [Xo +w—ZJ

Chapter 15
15.1 0.5s
15.2 8.7s
15.3 2.06 x 10*N
15.4 Assume ideal gas law: P = PRT \where p is the density, M is the molecular mass, and
M

Tis the temperature of the gas. This gives v = ’ﬂ This shows that v is:
M
(@) Independent of pressure.

(b) Increases as T .
(c) The molecular mass of water (18) is less than that of N, (28) and O, (32).

Therefore as humidity increases, the effective molecular mass of air decreases
and hence v increases.
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15.5

15.6
15.7
15.8

15.9

15.10

15.11

15.12

15.13

15.14

15.15

15.16

The converse is not true. An obvious requirement for an acceptable function for a
travelling wave is that it should be finite everywhere and at all times. Only function (c)
satisfies this condition, the remaining functions cannot possibly represent a travelling
wave.

(@) 3.4x 10%m (b) 1.49 x 10®m

4.1 x10*m

(@) A travelling wave. It travels from right to left with a speed of 20 ms™.
(b) 3.0cm, 5.7 Hz

() =/4

(d) 3.5m

All the graphs are sinusoidal. They have same amplitude and frequency, but
different initial phases.

(@) 6.4 wrad
(b) 0.8 wrad
(¢) mrad

(d) (=/2) rad

(a) Stationary wave

(b) [=3m, n=60Hz and v= 180 m s for each wave
(c) 648N

(a) All the points except the nodes on the string have the same {requency and
phase, but not the same amplitude.

(b) 0.042m

(a) Stationary wave.

(b) Unacceptable function for any wave.
(c) Travelling harmonic wave.

(d) Superposition of two stationary waves.

@ 79ms?!
(b) 248N
347 ms™

(2n- 1)v

m ;n=1,2.3,....for a pipe with one end closed

Hint : v =

5.06 kin s!
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15.17 First harmonic (fundamental); No.
15.18 318Hz
15.20 (i) (a) 412 Hz, (b) 389 Hz, (ii) 340 m s!in each case.
15.21 400 Hz, 0.875 m, 350 m s. No, because in this case, with respect to the medium,
both the observer and the source are in motion.
15.22 (a) 1.666 cm, 87.75 cm s''; No, the velocity of wave propagation is -24 m s™
(b) All points at distances of nA (n=x1, £2, £3,....) where 4 = 12.6 m from the point
x=1cm.
15.23 (a) The pulse does not have a definite wavelength or frequency, but has a definite
speed of propagation (in a non-dispersive medium).
(b) No
15.24 y = 0.05 sin(at - kx); here o= 1.61 x10°s’!, k=4.84 m!; xand y are in m.
15.25 45.9kHz
15.26 1920 km
15.27 42.47 kHz



