2

Fractions and Decimals

Learn and Remember

- 1. Fraction can be expressed in the form of $\frac{a}{b}$ (a and b are integers and $b \neq 0$) where a is numerator and b is denominator.
- 2. The set of fractions is closed with respect to addition, multiplication and division.
- 3. Product of two fraction = $\frac{\text{Product of their numerators}}{\text{Product of their denominators}}$.
- 4. Fraction acts as an operator 'of '. For example, $\frac{1}{3}$ of 3 is
 - $\frac{1}{3} \times 3 = 1.$
- 5. A reciprocal of a fraction is interchanging of numerator and denominator.
- **6.** To divide a fraction by another fraction. We multiply the first fraction by the reciprocal of the other.
- 7. A decimal number has two parts namely the whole part and decimal part.
- 8. Decimal numbers can be added or subtracted by writing in columns with their decimal points directly below each other so that tenth should come under tenths, hundredth should come under hundredths and so on.
- **9.** Multiplying two decimal numbers ignoring the decimal point and put the decimal point in the product by counting the digits from its right most place.
- 10. To multiply a decimal number by 10, 100 or 1000 move the decimal point in the number to the right by as many places as there are zero over 1.
- 11. While dividing two decimal numbers, first shift the decimal point to the right by equal number of places in both to convert the divisor to a whole number.

FRACTIONS AND DECIMALS

12. To divide a decimal by 10, 100 or 1000 shift the digits in the decimal number to the left by as many places there are zeros over 1, to get quotient.

TEXTBOOK QUESTIONS SOLVED

Exercise 2.1 (Page No. 31)

1.	Sol	ve:								
	(<i>i</i>)	2 -	$\frac{3}{5}$		(ii)	$4 + \frac{7}{8}$		(iii	() $\frac{3}{5}$ +	$\frac{2}{7}$
	(<i>iv</i>)	$\frac{9}{11}$	$-\frac{4}{15}$		(v)	$\frac{7}{10}$ +	$\frac{2}{5} + \frac{3}{2}$	(01	() $2\frac{2}{3}$.	$+3\frac{1}{2}$
	(vii)	$8\frac{1}{2}$	$-3\frac{5}{8}$. 1000vr						
ol.	(<i>i</i>)	2 -	$\frac{3}{5} =$	$\frac{10-3}{5}$:	$=\frac{7}{5}=$	$1\frac{2}{5}$	1 T	OM -	1 1 5	
	(ii)	4 +	$\frac{7}{8} =$	$\frac{32+7}{8}$	$=\frac{39}{8}$	$=4\frac{7}{8}$	aking L. aking L.	C.M. of	1 and 5	3 is 8.)
	(iii)	$\frac{3}{5} +$	$\frac{2}{7} =$	$\frac{21+10}{35}$	$=\frac{31}{35}$	(Ta	king L.C	.M. of {	5 and 7	is 35.)
	(<i>iv</i>)	$\frac{9}{11}$	$-\frac{4}{15}$:	= $\frac{135 - 165}{165}$	<u>44</u> = ($\frac{91}{165}$ Takin	g L.C.M.	of 11 a	nd 15 is	165.)
	(v)	$\frac{7}{10}$ +	$+\frac{2}{5}+$	$\frac{3}{2} = \frac{7}{2}$	+ 4 +	15 Taking	LCM	of 10. !	i and 2	is 10.)
				$=\frac{2}{1}$	$\frac{6}{0} = \frac{1}{2}$	$\frac{.3}{5} = 2$	$\frac{3}{5}$ Change	into mi	xed fra	ction.)
	(vi)	$2\frac{2}{3}$	$+3\frac{1}{2}$	$\frac{8}{2} = \frac{8}{3} +$	$-\frac{7}{2}$	(Ch	ange int	o impro	per fra	ction.)
				$=\frac{16+}{6}$	21	(T	aking L.	C.M. of	3 and 2	2 is 6.)
				$=\frac{37}{6}$	$= 6\frac{1}{6}$. (Change	into mi	xed fra	ction.)

26 MATHEMATICS-VII (*vii*) $8\frac{1}{2} - 3\frac{5}{8} = \frac{17}{2} - \frac{29}{8}$ (Change into improper fraction.) $=\frac{68-29}{8}$ (Taking L.C.M. of 2 and 8 is 8.) $=\frac{39}{8}=4\frac{7}{8}$. (Change into mixed fraction.) Q2. Arrange the following in descending order: (i) $\frac{2}{9}, \frac{2}{3}, \frac{8}{21}$ (ii) $\frac{1}{5}, \frac{3}{7}, \frac{7}{10}$. **Sol.** (i) $\frac{2}{9}, \frac{2}{3}, \frac{8}{21}$ $\Rightarrow \quad \frac{14}{63}, \frac{42}{63}, \frac{24}{63}$ (Converting into like fractions.) On arranging the numerators in descending order when denominators are same. $\Rightarrow \frac{42}{63} > \frac{24}{63} > \frac{14}{63}$ Write in their actual form. Therefore, $\frac{2}{3} > \frac{8}{21} > \frac{2}{9}$. (*ii*) $\frac{1}{5}, \frac{3}{7}, \frac{7}{10}$ $\Rightarrow \frac{14}{70}, \frac{30}{70}, \frac{49}{70}$ (Converting into like fractions.) On arranging the numerators in descending order when denominators are same. $\Rightarrow \quad \frac{49}{70} > \frac{30}{70} > \frac{14}{70}$ Write in their actual form. Therefore, $\frac{7}{10} > \frac{3}{7} > \frac{1}{5}.$

FR

Q

Se

	4 11	$\frac{9}{11}$	$\frac{2}{11}$	- 74	
	3 11	$\frac{5}{11}$	$\frac{7}{11}$	al a V	
	8 11	$\frac{1}{11}$	$\frac{6}{11}$	eriquin	
(Along th	e first row $\frac{4}{11}$	$+\frac{9}{11}+\frac{2}{11}=\frac{15}{11}$).		
Civon the	sum of first ros	$w = \frac{4}{-} + \frac{9}{-}$	$+\frac{2}{-}=\frac{1}{-}$.5	
Given, the	Sull of hist iov	11 11 m of onch r	11 1	.1 mn and	also
diagonals.	we find the st	2 5 7	3+5	+7 1	5
The sum o	f second row =	$\frac{3}{11} + \frac{3}{11} + \frac{3}{11}$	$\frac{1}{1} = \frac{3}{11}$		11
are daning of	8	1 6	8+1+	6 15	
The sum o	f third row = $\frac{1}{12}$	$\overline{1} + \overline{11} + \overline{11}$	= 11	= 11	
The sum o	f first column =	$\frac{4}{11} + \frac{3}{11} + \frac{3}{11}$	$\frac{8}{11} = \frac{4+}{11}$	$\frac{3+8}{1} =$	15
		11 11	1 9	11 + 5 + 1	11
The sum o	f second column	$n = \frac{3}{11} + \frac{3}{11}$	$+\frac{1}{11}=-\frac{1}{2}$	11	= 11
	W. (1) (二) (二) (二) (二) (二) (二) (二) (二) (二) (二	2 7	6 2 -	-7+6	15
17-27-29	t third column	= + +	11 =	11	11
The sum o			**	11	- de de
The sum o	f first diagonal	(left to right)	G A	15+6	15
The sum o	f first diagonal		$\frac{6}{11} = \frac{4}{11}$	$\frac{+5+6}{11}$	$=\frac{15}{11}$
The sum of	f first diagonal	$(11 11) \\ (1eft to right) \\ = \frac{4}{11} + \frac{5}{11} +$	$\frac{6}{11} = \frac{4}{\text{ft}}$	$\frac{+5+6}{11}$	$=\frac{15}{11}$
The sum of	f first diagonal	$ \begin{array}{c} 11 & 11 \\ (\text{left to right}) \\ = \frac{4}{11} + \frac{5}{11} + \\ \text{al (right to le} \\ = \frac{2}{11} + \frac{5}{11} + \frac{5}{11} \end{array} $	$\frac{6}{11} = \frac{4}{11}$ $\frac{6}{11} = \frac{4}{2}$	$\frac{+5+6}{11}$ +5+8	$=\frac{15}{11}$

MATHEMATICS-VII

Sol. Given that the sheet of paper is in rectangular form.

Then, the length of sheet = $12\frac{1}{2}$ cm

and breadth of sheet = $10\frac{2}{3}$ cm.

We know, perimeter of rectangle = 2(length + breadth)

$$= 2\left(12\frac{1}{2} + 10\frac{2}{3}\right) = 2\left(\frac{25}{2} + \frac{32}{3}\right)$$
$$= 2\left(\frac{25 \times 3 + 32 \times 2}{6}\right) = 2\left(\frac{75 + 64}{6}\right)$$
$$= \frac{139}{3} = 46\frac{1}{3} \text{ cm.}$$

5 cm

3-3 cm

i cm

Thus, the perimeter of rectangular sheet is $46\frac{1}{2}$ cm.

- Q5. Find the perimeters of (i) △ABE (ii) the rectangle BCDE in this figure. Whose perimeter is greater?
- **Sol.** (i) We have to find $\triangle ABE$'s perimeter Given in $\triangle ABE$,

$$AB = \frac{5}{2}$$
 cm, $BE = 2\frac{3}{4}$ cm, $AE = 3\frac{3}{5}$ cm

We know, the perimeter of $\triangle ABE = AB + BE + AE$

$$= \left(\frac{5}{2} + 2\frac{3}{4} + 3\frac{3}{5}\right) \operatorname{cm} = \left(\frac{5}{2} + \frac{11}{4} + \frac{18}{5}\right) \operatorname{cm}$$
$$= \left(\frac{50 + 55 + 72}{20}\right) \operatorname{cm} = \frac{177}{20} \operatorname{cm}$$

Thus, the perimeter of $\triangle ABE$ is $8\frac{17}{20}$ cm.

(ii) Rectangle BCDE's perimeter = ?Given in rectangle BCDE,

$$BE = 2\frac{3}{4}$$
 cm, $ED = \frac{7}{6}$ cm

FRACTIONS AND DECIMALS

We know, the perimeter of rectangle = 2(length + breadth)

$$= 2\left(2\frac{3}{4} + \frac{7}{6}\right) \operatorname{cm} = 2\left(\frac{11}{4} + \frac{7}{6}\right) \operatorname{cm}$$
$$= 2\left(\frac{33 + 14}{12}\right) \operatorname{cm} = \frac{47}{6} = 7\frac{5}{6} \operatorname{cm}$$

Thus, the perimeter of rectangle BCDE is $7\frac{5}{6}$ cm.

Comparing the perimeter of triangle and perimeter of rectangle,

$$8\frac{17}{20}$$
 cm > $7\frac{5}{6}$ cm

Thus, the perimeter of triangle ABE is greater than rectangle BCDE.

Q6. Salil wants to put a picture in a frame. The picture is

 $7\frac{3}{5}$ cm wide. To fit in the frame the picture cannot be more than $7\frac{3}{10}$ cm wide. How much should the picture be trimmed?

Sol. Given the width of the picture = $7\frac{3}{5}$ cm

Chen Net Sectioned and

and the width of the picture frame = $7\frac{3}{10}$ cm.

Therefore, the picture should be trimmed = $\left(7\frac{3}{5} - 7\frac{3}{10}\right)$ cm

$$= \left(\frac{38}{5} - \frac{73}{10}\right) \operatorname{cm} = \left(\frac{76 - 73}{10}\right) \operatorname{cm}$$
$$= \frac{3}{10} \operatorname{cm}$$

Thus, the pictured should be trimmed by $\frac{3}{10}$ cm.

Q7. Ritu ate $\frac{3}{5}$ part of an apple and the remaining apple was eaten by her brother Somu. How much part of the apple did Somu eat? Who had the larger share? By how much?

Sol. The part of an apple eaten by Ritu = $\frac{3}{5}$

And part of an apple eaten by Somu = $1 - \frac{3}{5} = \frac{5-3}{5} = \frac{2}{5}$

Thus, Somu ate $\frac{2}{5}$ part of an apple.

Comparing the parts of apple $\frac{3}{5} > \frac{2}{5}$. Thus, Ritu had the larger share than her brother Somu. Larger share will be more $=\frac{3}{5} - \frac{2}{5} = \frac{3-2}{5} = \frac{1}{5}$ part.

Thus, Ritu's part is $\frac{1}{5}$ more than Somu's part.

Q8. Michael finished colouring a picture in ¹/₁₂ hour. Vaibhav finished colouring the same picture in ³/₄ hour. Who worked longer? By what fraction was it longer?
Sol. Time taken by Michael to colour the picture = ⁷/₁₂ hour.

Time taken by Vaibhav to colour the picture = $\frac{3}{4}$ hour.

To find longer time, let us compare $\frac{7}{12}$ and $\frac{3}{4}$. Converting them to like fractions, we have,

 $\frac{7}{12} \text{ and } \frac{3 \times 3}{4 \times 3} = \frac{9}{12}$ Since, 7 < 9 so $\frac{7}{12} < \frac{9}{12}$ Therefore, $\frac{7}{12}$ hour $< \frac{3}{4}$ hour Thus, Vaibhav worked longer time. Vaibhav worked longer time = $\left(\frac{3}{4} - \frac{7}{12}\right)$ hour = $\left(\frac{9-7}{12}\right)$ hour FRACTIONS AND DECIMALS

 $=\left(\frac{2}{12}\right)$ hour $=\frac{1}{6}$ hour

Thus, Vaibhav took $\frac{1}{6}$ hour more than Michael.

Exercise 2.2 (Page No. 36-37)

Q1. Which of the drawings (a) to (d) show:

30

31

34
(b)
$$\frac{2}{3}$$
 of (i) 18 (ii) 27
(i) $\frac{2}{3}$ of 18 = $\frac{2}{3} \times 18 = 2 \times 6 = 12$
(ii) $\frac{2}{3}$ of 27 = $\frac{2}{3} \times 27 = 2 \times 9 = 18$.
(c) $\frac{3}{4}$ of (i) 16 (ii) 36
(i) $\frac{3}{4}$ of 16 = $\frac{3}{4} \times 16 = 3 \times 4 = 12$
(ii) $\frac{3}{4}$ of 36 = $\frac{3}{4} \times 36 = 3 \times 9 = 27$.
(d) $\frac{4}{5}$ of (i) 20 (ii) 35
(i) $\frac{4}{5}$ of 20 = $\frac{4}{5} \times 20 = 4 \times 4 = 16$
(ii) $\frac{4}{5}$ of 35 = $\frac{4}{5} \times 35 = 4 \times 7 = 28$.
Q6. Multiply and express as a mixed fraction:
(a) $3 \times 5\frac{1}{5}$ (b) $5 \times 6\frac{3}{4}$ (c) $7 \times 2\frac{1}{4}$
(d) $4 \times 6\frac{1}{3}$ (e) $3\frac{1}{4} \times 6$ (f) $3\frac{2}{5} \times 8$.
Sol. (a) $3 \times 5\frac{1}{5} = 3 \times \frac{26}{5} = \frac{3 \times 26}{5} = \frac{78}{5} = 15\frac{3}{5}$.
(b) $5 \times 6\frac{3}{4} = 5 \times \frac{27}{4} = \frac{5 \times 27}{4} = \frac{135}{4} = 33\frac{3}{4}$.
(c) $7 \times 2\frac{1}{4} = 7 \times \frac{9}{4} = \frac{7 \times 9}{4} = \frac{63}{4} = 15\frac{3}{4}$.
(d) $4 \times 6\frac{1}{3} = 4 \times \frac{19}{3} = \frac{4 \times 19}{3} = \frac{76}{3} = 25\frac{1}{3}$.
(e) $3\frac{1}{4} \times 6 = \frac{13}{4} \times 6 = \frac{13 \times 3}{2} = \frac{39}{2} = 19\frac{1}{2}$.
(f) $3\frac{2}{5} \times 8 = \frac{17}{5} \times 8 = \frac{17 \times 8}{5} = \frac{136}{5} = 27\frac{1}{5}$.

FRAC	CTIONS AND DECIMALS	35
Q7.	Find: (14 of ege 10 41)	
	(a) $\frac{1}{2}$ of (i) $2\frac{3}{4}$ (ii) $4\frac{2}{9}$ (b) $\frac{5}{8}$ of (i) $3\frac{5}{6}$ (ii) $9\frac{2}{3}$.	
Sol.	(a) $\frac{1}{2}$ of (i) $2\frac{1}{4}$ (ii) $4\frac{1}{9}$	
	(i) $\frac{1}{2}$ of $2\frac{3}{4} = \frac{1}{2} \times \frac{11}{4} = \frac{11}{8} = 1\frac{3}{8}$	
	(<i>ii</i>) $\frac{1}{2}$ of $4\frac{2}{9} = \frac{1}{2} \times \frac{38}{9} = \frac{19}{9} = 2\frac{1}{9}$.	
	(b) $\frac{5}{8}$ of (i) $3\frac{5}{6}$ (ii) $9\frac{2}{3}$	
	(<i>i</i>) $\frac{5}{8}$ of $3\frac{5}{6} = \frac{5}{8} \times \frac{23}{6} = \frac{115}{48} = 2\frac{19}{48}$	
	(<i>ii</i>) $\frac{5}{8}$ of $9\frac{2}{3} = \frac{5}{8} \times \frac{29}{3} = \frac{145}{24} = 6\frac{1}{24}$.	
Q8.	Vidya and Pratap went for a picnic. Their mother gave them a water bottle that contained 5 litres of water	ve er.
	Vidya consumed $\frac{2}{5}$ of the water. Pratap consumed th	e
	remaining water.	
	(i) How much water did Vidya drink?	
	(<i>ii</i>) What fraction of the total quantity of water did Prata drink?	ıp
Sol.	Given,	
	(i) Total quantity of water in bottle = 5 litres	
	Vidya consumed = $\frac{2}{\pi}$ of 5 litres = $\frac{2}{\pi} \times 5$ litres = 2 litres	i.
	Thus, Vidya drank 2 litres water from the bottle.	
	(<i>ii</i>) Pratap consumed = $\left(1 - \frac{2}{5}\right)$ part of bottle	
	$=\frac{5-2}{5}=\frac{3}{5}$ part of bottle.	
	Pratap consumed = $\frac{3}{5}$ of 5 litres water <i>i.e.</i> , $\frac{3}{5} \times 5$	00
	Thus, Pratap drank $\frac{3}{5}$ part the total quantity of water.	00

36	MATHEMATICS-VII
Exercise 2.3 (Page No. 41)	
Q1. Find:	
(i) $\frac{1}{4}$ of (a) $\frac{1}{4}$ (b) $\frac{3}{5}$	(c) $\frac{4}{3}$
(<i>ii</i>) $\frac{1}{7}$ of (a) $\frac{2}{9}$ (b) $\frac{6}{5}$	(c) $\frac{3}{10}$.
Sol. (i) $\frac{1}{4}$ of (a) $\frac{1}{4}$ (b) $\frac{3}{5}$ (c) $\frac{4}{3}$	
(a) $\frac{1}{4}$ of $\frac{1}{4} = \frac{1}{4} \times \frac{1}{4} = \frac{1 \times 1}{4 \times 4} = \frac{1}{16}$	
(b) $\frac{1}{4}$ of $\frac{3}{5} = \frac{1}{4} \times \frac{3}{5} = \frac{1 \times 3}{4 \times 5} = \frac{3}{20}$	
(c) $\frac{1}{4}$ of $\frac{4}{3} = \frac{1}{4} \times \frac{4}{3} = \frac{1 \times 4}{4 \times 3} = \frac{1}{3}$.	
(<i>ii</i>) $\frac{1}{7}$ of (a) $\frac{2}{9}$ (b) $\frac{6}{5}$ (c) $\frac{3}{10}$	
(a) $\frac{1}{7}$ of $\frac{2}{9} = \frac{1}{7} \times \frac{2}{9} = \frac{1 \times 2}{7 \times 9} = \frac{2}{63}$	
(b) $\frac{1}{7}$ of $\frac{6}{5} = \frac{1}{7} \times \frac{6}{5} = \frac{1 \times 6}{7 \times 5} = \frac{6}{35}$	
(c) $\frac{1}{7}$ of $\frac{3}{10} = \frac{1}{7} \times \frac{3}{10} = \frac{1 \times 3}{7 \times 10} = \frac{3}{70}$.	
Q2. Multiply and reduce to lowest form (if	possible):
(i) $\frac{2}{3} \times 2\frac{2}{3}$ (ii) $\frac{2}{7} \times \frac{7}{9}$ (iii) $\frac{3}{8} \times \frac{6}{2}$	$\frac{6}{4} (iv) \frac{9}{5} \times \frac{3}{5}$
(v) $\frac{1}{3} \times \frac{15}{8}$ (vi) $\frac{11}{2} \times \frac{3}{10}$ (vii)	$\frac{4}{5} \times \frac{12}{7}.$
Sol. (i) $\frac{2}{3} \times 2\frac{2}{3} = \frac{2}{3} \times \frac{8}{3} = \frac{2 \times 8}{3 \times 3} = \frac{16}{9} = 1\frac{7}{9}$	•
(<i>ii</i>) $\frac{2}{7} \times \frac{7}{9} = \frac{2 \times 7}{7 \times 9} = \frac{14}{63} = \frac{2}{9}$.	
(<i>iii</i>) $\frac{3}{8} \times \frac{6}{4} = \frac{3 \times 6}{8 \times 4} = \frac{18}{32} = \frac{9}{16}$.	

FRAC	TION	S AND	DEC		S		_		11					37	
	(<i>iv</i>)	$\frac{9}{5}$	$\times \frac{3}{5}$	$=\frac{9}{5}$	$\frac{\times 3}{\times 5}$	$=\frac{27}{28}$	$\frac{7}{5} = 3$	$\frac{2}{25}$	1						
	(v)	$\frac{1}{3}$	$\times \frac{15}{8}$	= -	$\frac{1 \times 1}{3 \times 8}$	$\frac{5}{3} =$	$\frac{15}{24} =$	= 5/8							
	(vi)	$\frac{11}{2}$	$\times \frac{3}{1}$	$\frac{3}{0} =$	$\frac{11\times}{2\times 1}$	$\frac{3}{10} =$	$\frac{33}{20}$	= 1	$\frac{13}{20}$.						
(vii)	$\frac{4}{5}$	$\times \frac{12}{7}$	$=\frac{4}{3}$	4×1 5×7	<u>2</u> =	$\frac{48}{35} =$	$=1\frac{1}{3}$	3 5.						
Q3.	Mu	ltip	ly t	he fo	ollo	wing	g fra	ictio	ons:						
	(i)	$\frac{2}{5}$	$\times 5\frac{1}{4}$	- -	ii) ($6\frac{2}{5}$	$<\frac{7}{9}$	(iii	$\frac{3}{2}$	× 5	1	(iv)	$\frac{5}{6}$ ×	$2\frac{3}{7}$	
	(v)	$3\frac{2}{5}$	$\times \frac{4}{7}$	and.	(v	i) 2	$\frac{3}{5}$ ×	3	(vi	i) 3	$\frac{4}{7}$ ×	$\frac{3}{5}$.			
Sol.	(<i>i</i>)	$\frac{2}{5}$	$\times 5\frac{1}{4}$	$=\frac{2}{4}$	$\frac{2}{5} \times$	$\frac{21}{4}$	$=\frac{2}{5}$	$\frac{21}{\times 4}$	$=\frac{21}{10}$	$\frac{1}{2} = 2$	$\frac{1}{10}$.				
	(ii)	$6\frac{2}{5}$	$\times \frac{7}{9}$	= -	$\frac{32}{5}$	$\frac{7}{9}$	$=\frac{32}{5}$	$\frac{\times 7}{\times 9}$	$=\frac{22}{4}$	$\frac{24}{5} =$	$4\frac{44}{45}$				
((iii)	$\frac{3}{2}$	$\times 5\frac{1}{3}$		$\frac{3}{2}$ ×	$\frac{16}{3}$	$=\frac{3}{2}$	×16 ×3	$=\frac{48}{6}$	3 = 8					
	(iv)	$\frac{5}{6}$,	$\times 2\frac{3}{7}$	$=\frac{t}{c}$	$\frac{5}{5}$ ×	$\frac{17}{7}$	$=\frac{5}{6}$	×17 ×7	$=\frac{85}{42}$	$\frac{5}{2} = 2$	$\frac{1}{42}$.				
	(v)	$3\frac{2}{5}$	$\times \frac{4}{7}$	= -	$\frac{17}{5}$ ×	$\frac{4}{7}$ =	$=\frac{17}{5}$	$\frac{\times 4}{\times 7}$	$=\frac{68}{35}$	3 = 1	$\frac{33}{35}$.				
((vi)	$2\frac{3}{5}$	× 3	$=\frac{13}{5}$	×	3 = -	3×3 5×1	=	$\frac{39}{5} =$	$7\frac{4}{5}$.	eo b A by				
(1	vii)	$3\frac{4}{7}$	$\times \frac{3}{5}$	= -	$\frac{25}{7}$ ×	$\frac{3}{5}$	= 25	$\frac{\times 3}{\times 5}$	$=\frac{75}{35}$	$\frac{5}{5} = \frac{1}{7}$	$\frac{5}{7} =$	$2\frac{1}{7}$	Tinie Shei	-102	
Q4.	Wh	ich	is gr	reat	er?										
	(<i>i</i>)	$\frac{2}{7}$	of $\frac{3}{4}$	or	$\frac{3}{5}$	of $\frac{5}{8}$	1 4 1 S	(i	(i) $\frac{1}{2}$	of	$\frac{6}{7}$ o	or $\frac{2}{3}$	of	$\frac{3}{7}$.	

MATHEMATICS-VII 38 **Sol.** (i) $\frac{2}{7}$ of $\frac{3}{4}$ or $\frac{3}{5}$ of $\frac{5}{8}$ (ii) $\frac{1}{2}$ of $\frac{6}{7}$ or $\frac{2}{3}$ of $\frac{3}{7}$ $\frac{2}{7} \times \frac{3}{4}$ or $\frac{3}{5} \times \frac{5}{8}$ $\frac{1}{2} \times \frac{6}{7}$ or $\frac{2}{3} \times \frac{3}{7}$ Thus, $\frac{3}{5}$ of $\frac{5}{8}$ is greater. Thus, $\frac{1}{2}$ of $\frac{6}{7}$ is greater. Q5. Saili plants 4 saplings in a row in her garden. The distance between two adjacent saplings is $\frac{3}{4}$ m. Find the distance between the first and the last sapling. **Sol.** Given that the distance between two adjacent saplings = $\frac{1}{4}$ m. Saili planted 4 saplings in a row, then number of gap in saplings = 3. Therefore, the distance between the first and the last saplings $= 3 \times \frac{3}{4} m = \frac{9}{4} m = 2\frac{1}{4} m.$ Thus, the distance between the first and the last saplings is $2\frac{1}{4}$ m. Q6. Lipika reads a book for $1\frac{3}{4}$ hours everyday. She reads the entire book in 6 days. How many hours in all were required by her to read the book? **Sol.** Time taken by Lipika to read a book = $1\frac{1}{4}$ hours. She reads entire book in 6 days. Now, total hours taken by her to read the entire book $=1\frac{3}{4} \times 6 = \frac{7}{4} \times 6 = \frac{21}{2} = 10\frac{1}{2}$ hours. Thus, $10\frac{1}{2}$ hours were required by her to read the book.

39 FRACTIONS AND DECIMALS Q7. A car runs 16 km using 1 litre of petrol. How much distance will it cover using $2\frac{3}{4}$ litres of petrol? Sol. In 1 litre of petrol, car covers the distance = 16 km. In $2\frac{3}{4}$ litres of petrol, car covers the distance = $2\frac{3}{4}$ of 16 km $=\frac{11}{4} \times 16 \text{ km} = 44 \text{ km}$ Thus, car will cover 44 km distance. Q8. (a) (i) Provide the number in the box \Box , such that $\frac{2}{3} \times \Box = \frac{10}{30}.$ (ii) The simplest form of the number obtained in is (b) (i) Provide the number in the box \square , such that $\frac{3}{5} \times \square = \frac{24}{75}.$ (ii) The simplest form of the number obtained in Sol. (a) (i) Given, $\frac{2}{3} \times \square = \frac{10}{30}$ $\frac{2\times5}{3\times10} = \frac{10}{30}$ Therefore, $\frac{2}{3} \times \frac{5}{10} = \frac{10}{30}$ Thus, (*ii*) The simplest form of $\frac{5}{10}$ is $\frac{1}{2}$. (b) (i) Given, $\frac{3}{5} \times \square = \frac{24}{75}$

Therefore,

 $\frac{8\times8}{\times15} = \frac{24}{75}$

40 MATHEMATICS-VII Thus, $\frac{3}{5} \times \boxed{\frac{8}{15}} = \frac{24}{75}$ (*ii*) The simplest form of $\frac{8}{15}$ is $\frac{8}{15}$. Exercise 2.4 (Page No. 46) Q1. Find: (i) $12 \div \frac{3}{4}$ (ii) $14 \div \frac{5}{6}$ (iii) $8 \div \frac{7}{3}$ (*iv*) $4 \div \frac{8}{3}$ (*v*) $3 \div 2\frac{1}{3}$ (*vi*) $5 \div 3\frac{4}{7}$. **Sol.** (i) $12 \div \frac{3}{4} = 12 \times \text{reciprocal of } \frac{3}{4}$ $= 12 \times \frac{4}{3} = \frac{48}{3} = 16.$ (*ii*) $14 \div \frac{5}{6} = 14 \times \text{reciprocal of } \frac{5}{6}$ $= 14 \times \frac{6}{5} = \frac{14 \times 6}{5} = \frac{84}{5} = 16\frac{4}{5}.$ (iii) $8 \div \frac{7}{3} = 8 \times \text{reciprocal of } \frac{7}{3}$ $= 8 \times \frac{3}{7} = \frac{8 \times 3}{7} = \frac{24}{7} = 3\frac{3}{7}$ (iv) $4 \div \frac{8}{3} = 4 \times \text{reciprocal of } \frac{8}{3}$ $= 4 \times \frac{3}{8} = \frac{4 \times 3}{8} = \frac{3}{2} = 1\frac{1}{2}.$ (v) $3 \div 2\frac{1}{3} = 3 \times \text{reciprocal of} \left(2\frac{1}{3}\right)$ = $3 \times \text{reciprocal of } \frac{7}{2}$ $= 3 \times \frac{3}{7} = \frac{3 \times 3}{7} = \frac{9}{7} = 1\frac{2}{7}.$

FRACTIONS AND DECIMALS

(vi)
$$5 \div 3\frac{4}{7} = 5 \times \text{reciprocal of} \left(3\frac{4}{7}\right)$$

= $5 \times \text{reciprocal of} \left(\frac{25}{7}\right)$
= $5 \times \frac{7}{25} = \frac{5 \times 7}{25} = \frac{7}{5} = 1$

Q2. Find the reciprocal of each of the following fractions. Classify the reciprocals as proper fractions, improper fractions and whole numbers.

<i>(i)</i>	$\frac{3}{7}$ (<i>ii</i>)	$\frac{5}{8}$	$(iii) \frac{9}{7}$	$(iv) \frac{6}{5}$
(v)	$\frac{12}{7}$ (vi)	1 8	(<i>vii</i>) $\frac{1}{11}$.	
Sol. (<i>i</i>)	Reciprocal of	$\frac{3}{7} = \frac{7}{3}$ —	ightarrow improper fract	tion.
(ii)	Reciprocal of	$\frac{5}{8} = \frac{8}{5}$ —	ightarrow improper fract	tion.
(iii)	Reciprocal of	$\frac{9}{7} = \frac{7}{9}$ —	ightarrow proper fraction	n.
(<i>iv</i>)	Reciprocal of	$\frac{6}{5} = \frac{5}{6}$ —	ightarrow proper fraction	n.
(v)	Reciprocal of	$\frac{12}{7} = \frac{7}{12} - $	\longrightarrow proper fracti	on.
(vi)	Reciprocal of	$\frac{1}{8} = 8 \longrightarrow$	whole number.	
(vii)	Reciprocal of	$\frac{1}{11} = 11$ —	\rightarrow whole number	r.
Q3. Fin	ıd:			
(i)	$\frac{7}{3} \div 2$	(<i>ii</i>) $\frac{1}{4}$	$\frac{4}{9} \div 5$ (i	<i>iii</i>) $\frac{6}{13} \div 7$
(<i>iv</i>)	$4\frac{1}{3} \div 3$	(v) 3	$\frac{1}{2}$ ÷ 4	(i) $4\frac{3}{7} \div 7$.
Sol. (i)	$\frac{7}{3} + 2 = \frac{7}{3} \times$	$\frac{1}{2} = \frac{7 \times 1}{3 \times 2}$	$=\frac{7}{6}=1\frac{1}{6}.$	

41

$$\begin{array}{ll} (i) & \frac{4}{9} + 5 = \frac{4}{9} \times \frac{1}{5} = \frac{4 \times 1}{9 \times 5} = \frac{4}{45}, \\ (ii) & \frac{6}{13} + 7 = \frac{6}{13} \times \frac{1}{7} = \frac{6 \times 1}{13 \times 7} = \frac{6}{91}, \\ (iv) & 4\frac{1}{3} + 3 = \frac{13}{3} \times \frac{1}{3} = \frac{13 \times 1}{3 \times 3} = \frac{13}{9} = 1\frac{4}{9}, \\ (iv) & 4\frac{1}{3} + 3 = \frac{13}{7} \times \frac{1}{3} = \frac{7 \times 1}{2 \times 4} = \frac{7}{8}, \\ (v) & 3\frac{1}{2} + 4 = \frac{7}{2} \times \frac{1}{4} = \frac{7 \times 1}{7 \times 7} = \frac{31}{49}, \\ (vi) & 4\frac{3}{7} + 7 = \frac{31}{7} \times \frac{1}{7} = \frac{31 \times 1}{7 \times 7} = \frac{31}{49}, \\ (vi) & 4\frac{3}{7} + 7 = \frac{31}{7} \times \frac{1}{7} = \frac{31 \times 1}{7 \times 7} = \frac{31}{49}, \\ (vi) & 2\frac{1}{3} + \frac{3}{5} & (v) & 3\frac{1}{2} \pm \frac{8}{3} & (vi) & \frac{2}{5} \pm 1\frac{1}{2} \\ (vii) & 3\frac{1}{5} \pm 1\frac{2}{3} & (viii) & 2\frac{1}{5} \pm 1\frac{1}{5}, \\ (vii) & 3\frac{1}{5} \pm 1\frac{2}{3} & (viii) & 2\frac{1}{5} \pm 1\frac{1}{5}, \\ (vii) & \frac{4}{9} + \frac{2}{3} = \frac{4}{9} \times \frac{3}{2} = \frac{4 \times 3}{9 \times 2} = \frac{2}{3}, \\ (iii) & \frac{4}{9} + \frac{2}{3} = \frac{4}{9} \times \frac{3}{2} = \frac{4 \times 3}{9 \times 2} = \frac{2}{3}, \\ (iii) & \frac{3}{7} + \frac{8}{7} = \frac{3}{7} \times \frac{7}{8} = \frac{3 \times 7}{7 \times 8} = \frac{3}{9}, \\ (iv) & 2\frac{1}{3} + \frac{3}{5} = \frac{7}{3} \times \frac{5}{3} = \frac{7 \times 5}{3 \times 3} = \frac{35}{9} = 3\frac{8}{9}, \\ (v) & 3\frac{1}{2} + \frac{8}{3} = \frac{7}{2} \times \frac{3}{8} = \frac{7 \times 3}{2 \times 8} = \frac{21}{16} = 1\frac{5}{16}, \\ (vi) & \frac{2}{5} + 1\frac{1}{2} = \frac{2}{5} + \frac{3}{2} = \frac{2}{5} \times \frac{2}{3} = \frac{2 \times 2}{5 \times 3} = \frac{4}{15}, \\ (vii) & 3\frac{1}{5} + 1\frac{2}{3} = \frac{16}{5} + \frac{5}{3} = \frac{16}{5} \times \frac{3}{5} = \frac{16 \times 3}{5 \times 5} = \frac{48}{25} = 1\frac{23}{25}, \\ (viii) & 2\frac{1}{5} + 1\frac{1}{5} = \frac{11}{5} + \frac{6}{5} = \frac{11}{5} \times \frac{5}{6} = \frac{11 \times 5}{5 \times 6} = \frac{11}{6} = 1\frac{5}{6}. \\ \end{array}$$

43 FRACTIONS AND DECIMALS Exercise 2.5 (Page No. 47-48) Q1. Which is greater? (i) 0.5 or 0.05 (*ii*) 0.7 or 0.5 (*iii*) 7 or 0.7 (v) 2.03 or 2.30 (vi) 0.8 or 0.88. (iv) 1.37 or 1.49 Sol. (i) 0.5 > 0.05 (ii) 0.7 > 0.5 (iii) 7 > 0.7(v) 2.03 < 2.30(vi) 0.8 < 0.88. (iv) 1.37 < 1.49 Q2. Express as rupees using decimals: (i) 7 paise (ii) 7 rupees 7 paise (iii) 77 rupees 77 paise (*iv*) 50 paise (*v*) 235 paise. Sol. We know, 100 paise = Re. 1 main = mm 000,00.01 ⇒ 1 paise = Re. $\frac{1}{100}$ (*i*) 7 paise = Re. $\frac{7}{100}$ = Re. 0.07. (*ii*) 7 rupees 7 paise = Rs. 7 + Re. $\frac{1}{100}$ = Rs. (7 + 0.07) = Rs. 7.07. (*iii*) 77 rupees 77 paise = Rs. 77 + Re. $\frac{11}{100}$ = Rs.(77 + 0.77) = Rs.77.77.(*iv*) 50 paise = Re. $\frac{50}{100}$ = Re. 0.50. (v) 235 paise = Rs. $\frac{235}{100}$ = Rs. 2.35. Q3. (i) Express 5 cm in metre and kilometre. (ii) Express 35 mm in cm, m and km. Sol. (i) Express 5 cm in metre and kilometre • 5 cm in kilometre • 5 cm in metre We know, We know, 1,00,000 cm = 1 kilometre 100 cm = 1 metre $1 \text{ cm} = \frac{1}{100} \text{ metre}$ $1 \text{ cm} = \frac{1}{1,00,000} \text{ kilometre}$ $5 \text{ cm} = \frac{1}{100} \times 5 \text{ metre} \quad 5 \text{ cm} = \frac{5}{1,00,000} \text{ kilometre}$ Thus, 5 cm = 0.05 metre. Thus, 5 cm = 0.00005kilometre.

44

MATHEMATICS-VII

(ii) Express 35 mm in cm, m and km. • 35 mm in cm. • 35 mm in m We know, 10 mm = 1 cmWe know, 1000 mm = 1 m $1 \text{ mm} = \frac{1}{10} \text{ cm}$ $1 \text{ mm} = \frac{1}{1000} \text{ m}$ Therefore, $35 \text{ mm} = \frac{35}{10} \text{ cm}$ $35 \text{ mm} = \frac{35}{1000} \text{ m}$ = 3.5 cm. Therefore, 35 mm $= 0.035 \,\mathrm{m}.$ • 35 mm in km We know, 10,00,000 mm = 1 km $1 \text{ mm} = \frac{1}{10,00,000} \text{ km}$ $35 \text{ mm} = \frac{35}{10,00,000} \text{ km}$ Therefore, 35 mm = 0.000035 km. Q4. Express in kg: (*ii*) 3470 g (*iii*) 4 kg 8 g. (i) 200 g Sol. We know, 1000 g = 1 kg $1 g = \frac{1}{1000} kg$ (*i*) $200 \text{ g} = 200 \text{ g of } \frac{1}{1000} \text{ kg} = \left(200 \times \frac{1}{1000}\right) \text{ kg} = \frac{200}{1000} \text{ kg} = 0.2 \text{ kg}.$ (*ii*) 3470 g = 3470 g of $\frac{1}{1000}$ kg = $\left(3470 \times \frac{1}{1000}\right)$ kg = $\frac{3470}{1000}$ kg = 3.470 kg.(*iii*) $4 \text{ kg } 8 \text{ g} = 4 \text{ kg} + 8 \text{ g} = 4 \text{ kg} + 8 \text{ g} \text{ of } \frac{1}{1000} \text{ kg}$ = 4 kg + $\left(8 \times \frac{1}{1000}\right)$ kg = 4 kg + $\left(\frac{8}{1000}\right)$ kg = 4 kg + 0.008 kg = 4.008 kg.Q5. Write the following decimal numbers in the expanded form: (i) 20.03 (ii) 2.03 (iii) 200.03 (iv) 2.034.

FRACTIONS AND DECIMALS **Sol.** (i) $20.03 = 2 \times 10 + 0 \times 1 + 0 \times \frac{1}{10} + 3 \times \frac{1}{100}$. (*ii*) $2.03 = 2 \times 1 + 0 \times \frac{1}{10} + 3 \times \frac{1}{100}$. (*iii*) $200.03 = 2 \times 100 + 0 \times 10 + 0 \times 1 + 0 \times \frac{1}{10} + 3 \times \frac{1}{100}$. (*iv*) $2.034 = 2 \times 1 + 0 \times \frac{1}{10} + 3 \times \frac{1}{100} + 4 \times \frac{1}{1000}$ Q6. Write the place value of 2 in the following decimal numbers: (i) 2.56 (ii) 21.37 (iii) 10.25 (iv) 9.42 (v) 63.352. Sol. (i) 2.56 \rightarrow 2×1 \Rightarrow 2 ones. (ii) 21.37 $2 \times 10 = 20 \implies 2 \text{ tens.}$ (iii) 10.25 \longrightarrow $2 \times \frac{1}{10} = \frac{2}{10} \Rightarrow 2$ tenths. (iv) 9.42 \longrightarrow $2 \times \frac{1}{100} = \frac{2}{100} \Rightarrow 2$ hundredths. (v) 63.352 \longrightarrow 2 × $\frac{1}{1000} = \frac{2}{1000} \Rightarrow$ 2 thousandths. Q7. Dinesh went from place A to place B and from there to place C. A is 7.5 km from B and B is 12.7 km from C. Ayub went from place A to place D and from there to place C. D is 9.3 km from A D and C is 11.8 km from D. Who travelled more and by how much? Sol. Distance covered by Dinesh when he went from place A to place B = 7.5 km

MATHEMATICS-VII

12.7 km

On comparing the total distance of Ayub and Dinesh

 $\therefore 21.1 \text{ km} > 20.2 \text{ km}$

46

So, Ayub covered the more distance = (21.1 - 20.2) km = 0.9 km Thus, Ayub travelled more distance by 0.9 km or 900 m.

- Q8. Shyama bought 5 kg 300 g apples and 3 kg 250 g mangoes. Sarala bought 4 kg 800 g oranges and 4 kg 150 g bananas. Who bought more fruits?
- Sol. Shyama bought apples = 5 kg 300 g and mangoes = 3 kg 250 g. Total weight of fruits bought by Shyama = 5 kg 300 g + 3 kg 250 g

= 8 kg 550 g.

Now, Sarala bought oranges = 4 kg 800 g and bananas = 4 kg 150 g

Total weight of fruits bought by Sarala = 4 kg 800 g + 4 kg 150 g = 8 kg 950 g.

On comparing the quantity of fruits 8 kg 550 g < 8 kg 950 g Thus, Sarala bought more fruits.

- Q9. How much less is 28 km than 42.6 km?
- Sol. The difference of 42.6 km and 28 km is 42.6 28.0 = 14.6 km Therefore, 14.6 km is less.

Exercise 2.6 (Page No. 52)

Q1. Find:

<i>(i)</i>	0.2×6	(ii)	8 × 4.6	(iii)	2.71×5
(iv)	20.1 × 4	(v)	0.05×7	(vi)	211.02×4
(vii)	2×0.86.				

FRACTIONS AND DECIMALS	47
Sol. (<i>i</i>) $0.2 \times 6 = 1.2$	(<i>ii</i>) $8 \times 4.6 = 36.8$
(<i>iii</i>) $2.71 \times 5 = 13.55$	$(iv) 20.1 \times 4 = 80.4$
(v) $0.05 \times 7 = 0.35$	(vi) 211.02 × 4 = 844.08
(vii) 2 × 0.86 = 1.72.	
Q2. Find the area of rectangle v	whose length is 5.7 cm and
breadth is 3 cm.	
Sol. Given, length of rectangle = 5	5.7 cm
and breadth of rectangle = $3 c$	m
We know, the area of rectangle	= length × breadth
	$= (5.7 \times 3) \text{ cm}^2 = 17.1 \text{ cm}^2$
Thus, the area of rectangle is 1	7.1 cm^2 .
Q3. Find:	
(<i>i</i>) 1.3×10 (<i>ii</i>) 36.8×10^{-10}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(iv) 168.07 × 10 (v) 31.1 ×	100 (<i>vi</i>) 156.1 × 100
(vii) 3.62 × 100 $(viii)$ 43.07	$\times 100$ (12) 0.5 $\times 10$
$(x) 0.08 \times 10$ $(xt) 0.9 \times 10$	(ii) 36.8 × 10 = 368.0
Sol. (<i>i</i>) $1.3 \times 10 = 13.0$	(ii) 168 07 × 10 = 1680.70
(u) 21 1 × 100 - 3110 0	(vi) 156.1 × 100 = 15610.0
(vii) 3.62 × 100 = 362.00	(viii) 43.07 × 100 = 4307.00
$(ir) 0.5 \times 10 = 5.0$	(x) $0.08 \times 10 = 0.80$
$(xi) 0.9 \times 100 = 90.0$	$(xii) 0.03 \times 1000 = 30.00.$
Q4. A two-wheeler covers a dist	ance of 55.3 km in one litre
of petrol. How much distand	ce will it cover in 10 litres of
Sol. In one litre, a two-wheeler cov	ers a distance = 55.3 km
In 10 litres, it covers a distanc	$e = (55.3 \times 10) \text{ km} = 553.0 \text{ km}$
Thus, 553 km distance will be c	overed by it in 10 litres of petrol.
Q5. Find :	
$(i) 2.5 \times 0.3$ $(ii) 0.1 \times 0.1$	× 51.7 (iii) 0.2 × 316.8
(iv) 1.3 x 3.1 (v) 0.5	× 0.05 (vi) 11.2 × 0.15
(vii) 1.07 × 0.02 $(viii)$ 10.0	5×1.05 (<i>ix</i>) 101.01×0.01
(x) 100.01 x 1.1.	
Sol (i) $2.5 \times 0.3 = 0.75$	(<i>ii</i>) $0.1 \times 51.7 = 5.17$
$(iii) 0.2 \times 316.8 = 63.36$	(<i>iv</i>) $1.3 \times 3.1 = 4.03$
$(n) 0.5 \times 0.05 = 0.025$	(<i>vi</i>) $11.2 \times 0.15 = 1.680$
(vii) 1.07 × 0.02 = 0.0214	(viii) 10.05 × 1.05 = 10.5525
(ir) 101 01 × 0.01 = 1.0101	(x) $100.01 \times 1.1 = 110.011$
() 101.01 × 0.01 = 1.0101	And pression of the second

48	MATHEMATICS-V
Exercise 2.7 (Page No. 55)	
Q1. Find:	
(<i>i</i>) $0.4 \div 2$ (<i>ii</i>) $0.35 \div 4$	5 (<i>iii</i>) $2.48 \div 4$
(iv) 65.4 ÷ 6 (v) 651.2 ÷	-4 (vi) 14.49÷7
(vii) 3.96 ÷ 4 (viii) 0.80 ÷ 1	5. There is a note in the second s
Sol. (i) $0.4 \div 2 = \frac{4}{10} \times \frac{1}{2} = \frac{2}{10}$	(<i>ii</i>) $0.35 \div 5 = \frac{035}{100} \times \frac{1}{5}$
= 0.2.	$=\frac{7}{100}=0.07.$
(<i>iii</i>) $2.48 \div 4 = \frac{248}{100} \times \frac{1}{4} = \frac{62}{100}$	(<i>iv</i>) $65.4 \div 6 = \frac{654}{10} \times \frac{1}{6}$
= 0.62.	$=\frac{109}{10}=10.9.$
(v) $651.2 \div 4 = \frac{6512}{10} \times \frac{1}{4} = \frac{16}{10}$	$\frac{328}{10} (vi) 14.49 \div 7 = \frac{1449}{100} \times \frac{1}{7}$
= 162.8.	$=\frac{207}{100}=2.07.$
$(vii) \ 3.96 + 4 = \frac{396}{100} \times \frac{1}{4} = \frac{99}{100}$	(<i>viii</i>) $0.80 \div 5 = \frac{80}{100} \times \frac{1}{5}$
= 0.99.	$=\frac{16}{100}=0.16.$
Q2. Find:	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 (<i>iii</i>) 0.7 ÷ 10 ÷ 10 (<i>vi</i>) 0.56 ÷ 10
Sol. (<i>i</i>) $4.8 \div 10 = \frac{48}{10} \times \frac{1}{10} = \frac{48}{100}$	(<i>ii</i>) $52.5 \div 10 = \frac{525}{10} \times \frac{1}{10}$
= 0.48.	$=\frac{525}{100}=5.25.$
(<i>iii</i>) $0.7 \div 10 = \frac{7}{10} \times \frac{1}{10} = \frac{7}{100}$	$(iv) \ 33.1 \div 10 = \frac{331}{10} \times \frac{1}{10}$
= 0.07.	$=\frac{331}{100}=3.31.$
(v) $272.23 \div 10 = \frac{27223}{100} \times \frac{1}{10}$	$(vi) \ 0.56 \div 10 = \frac{56}{100} \times \frac{1}{10}$
$=\frac{27223}{1000}=27.223.$	$=\frac{56}{1000}=0.056.$

FRACTIONS AND DECIMALS	49
(<i>vii</i>) $3.97 \div 10 = \frac{397}{100} \times \frac{1}{10} = \frac{397}{1000}$ = 0.397	
Q3. Find:	
(i) $2.7 \div 100$ (ii) $0.3 \div 100$ (iii) 0	$0.78 \div 100$
(<i>iv</i>) $432.6 \div 100$ (<i>v</i>) $23.6 \div 100$ (<i>vi</i>) 9	$8.53 \div 100.$
Sol. (<i>i</i>) $2.7 \div 100 = \frac{27}{10} \times \frac{1}{100}$ (<i>ii</i>) $0.3 \div 100 = \frac{3}{100}$	$\frac{1}{0} \times \frac{1}{100}$
$=\frac{27}{1000}=0.027.\qquad \qquad =\frac{3}{1000}$	$\overline{0} = 0.003.$
(<i>iii</i>) $0.78 \div 100 = \frac{78}{100} \times \frac{1}{100}$ (<i>iv</i>) $432.6 \div 100 = -100$	$\frac{4326}{10} \times \frac{1}{100}$
$= \frac{78}{10000} = 0.0078. \qquad \qquad = \frac{4326}{1000} = 4.326$	6.
(v) $23.6 \div 100 = \frac{236}{10} \times \frac{1}{100}$ (vi) $98.53 \div 100 = \frac{9}{100}$	$\frac{1853}{100} \times \frac{1}{100}$
$=\frac{236}{1000}=0.236,\qquad =\frac{9853}{10000}=0.9$	1853.
Q4. Find:	
$(i) 7.9 \div 1000 \qquad (ii) 26.3 \div 1000 \qquad (iii) 33$	$8.53 \div 1000$
$(iv) 128.9 \div 1000 \qquad (v) 0.5 \div 1000.$	
ol. (<i>i</i>) $7.9 \div 1000 = \frac{79}{10} \times \frac{1}{1000} = \frac{79}{10000} = 0.0079.$	
$(ii) \ \ 26.3 + 1000 = \frac{263}{10} \times \frac{1}{1000} = \frac{263}{10000} = 0.0263.$	
(<i>iii</i>) $38.53 \div 1000 = \frac{3853}{100} \times \frac{1}{1000} = \frac{3853}{100000} = 0.03$	853.
(<i>iv</i>) $128.9 \div 1000 = \frac{1289}{10} \times \frac{1}{1000} = \frac{1289}{10000} = 0.128$	9.
(v) $0.5 \div 1000 = \frac{5}{10} \times \frac{1}{1000} = \frac{5}{10000} = 0.0005.$	
25. Find:	
(i) $7 \div 3.5$ (ii) $36 \div 0.2$ (iii) 3.	$25 \div 0.5$
(iv) $30.94 \div 0.7$ (v) $0.5 \div 0.25$ (vi) 7.	75 ÷ 0.25
(vii) $76.5 \div 0.15$ (viii) $37.8 \div 1.4$ (ix) 2.	73 ÷ 1.3.

MATHEMATICS-VII

bol. (<i>i</i>)	$7 \div 3.5 = 7 \times \frac{1}{3.5} = 7 \times \frac{10}{35} = \frac{10}{5} = 2.$
(ii)	$36 \div 0.2 = 36 \times \frac{1}{0.2} = 36 \times \frac{10}{2} = 180.$
(iii)	$3.25 \div 0.5 = \frac{325}{100} \times \frac{1}{0.5} = \frac{325}{100} \times \frac{10}{5} = \frac{65}{10} = 6.5.$
(<i>iv</i>)	$30.94 \div 0.7 = \frac{3094}{100} \times \frac{1}{0.7} = \frac{3094}{100} \times \frac{10}{7} = \frac{442}{10} = 44.2.$
(v)	$0.5 \div 0.25 = \frac{5}{10} \times \frac{1}{0.25} = \frac{5}{10} \times \frac{100}{25} = \frac{10}{5} = 2.$
(vi)	$7.75 \div 0.25 = \frac{775}{100} \times \frac{1}{0.25} = \frac{775}{100} \times \frac{100}{25} = 31.$
(vii)	$76.5 \div 0.15 = \frac{765}{10} \times \frac{1}{0.15} = \frac{765}{10} \times \frac{100}{15} = 51 \times 10 = 510.$
(viii)	$37.8 \div 1.4 = \frac{378}{10} \times \frac{1}{1.4} = \frac{378}{10} \times \frac{10}{14} = 27.$
(<i>ix</i>)	$2.73 \div 1.3 = \frac{273}{100} \times \frac{1}{1.3} = \frac{273}{100} \times \frac{10}{13} = \frac{21}{10} = 2.1.$
0.0 4	111 111 11001 1001

- Q6. A vehicle covers a distance of 43.2 km in 2.4 litres of petrol. How much distance will it cover in one litre petrol?
- **Sol.** In 2.4 litres of petrol, distance covered by the vehicle = 43.2 km. Now, in 1 litre of petrol, distance covered by the vehicle = 43.2 + 2.4

$$= \left(\frac{432}{10} \times \frac{1}{2.4}\right) \operatorname{km} = \left(\frac{432}{10} \times \frac{10}{24}\right) \operatorname{km}$$
$$= 18 \operatorname{km}$$

Thus, it covered 18 km distance in one litre of petrol..

50