The Triangle and its Properties

Learn and Remember

1. Triangles. A triangle is a closed, three sided figure obtained by three non-collinear points in a plane and symbol used to denote a triangle is Δ.
2. Three angles and three sides are the six elements of a triangle.
3. Median of a triangle is a line-segment joining a vertex to the mid-point of its opposite side. A triangle has three medians.
4. Altitude of a triangle is a perpendicular line-segment from a vertex to its opposite side.
Types of triangles:

5. According to interior angles

Types of triangles	Property/Definition
Acute-angled	Each of the angle of a triangle is less than 90° i.e., $a<90^{\circ}, b<90^{\circ}$ and $c<90^{\circ}$.
Right-angled	One of the angle is equal to 90°, then it is called as right- angled triangle. Rest two angles are complementary to each other.
Obtuse-angled	One of the angle is obtuse $(i . e .$, greater than $\left.90^{\circ}\right)$ then it is ealled as obtuse- angled triangle.

13. Let a, b and c be the three sides of $\triangle \mathrm{ABC}$ and c is the largest side then
$>$ if $c^{2}<a^{2}+b^{2}$, the triangle is acute-angled triangle.

- if $c^{2}=a^{2}+b^{2}$, the triangle is right-angled triangle.

$>$ if $c^{2}>a^{2}+b^{2}$, the triangle is obtuse-angled triangle.

14. A triangle has atleast two acute angles.

15. Pythagoras property:

In a right-angled triangle, the square of the hypotenuse equals to the sum of the square of its sides.
i.e., $(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Altitude })^{2}$
16. Hypotenuse is the longest side in a right-angled triangle.

TEXTBOOK QUESTIONS SOLVED

Exercise 6.1 (Page No. 116)

Q1. In $\triangle P Q R, D$ is the mid-point of $\overline{\mathrm{QR}}$. $\overline{\mathrm{PM}}$ is \qquad
PD is \qquad is $\mathbf{Q M}=\mathbf{M R}$?

Sol. Given, QD = DR. So, $\overline{\mathrm{PM}}$ is altitude.
 The measure of any exterior angle of a triangle is eq
the sum of the measure of its interior opposite angles.
9. The angle sum property of a triangle:

The total measure of the three angles of a triangle is 180°.
10. Sum of any two sides is always greater than the third side.
11. The difference of any two sides is always less than the third side
12. Greater angle has a greater side opposite to it and smaller angle has a smaller side opposite to it i.e., if two sides of a triangle are not congruent then the angle opposite to the greater side is greater.

Sol. (a) Draw BE is a median in $\triangle \mathrm{ABC}$,

(b) Draw $P Q$ and $P R$ are the altitudes of the $\triangle P Q R$,

(c) YL is an altitude in the exterior of the $\triangle \mathrm{XYZ}$,

Q3. Verify by drawing a diagram if the median and altitude of a isosceles triangle can be same.
Sol. Isosceles triangle means any two sides are same. Take $\triangle A B C$ and draw the median when $A B=A C$.
AL is the median and altitude of the given triangle.

Exercise 6.2 (Page No. 118-119)

Q1. Find the value of the unknown exterior angle x in the following diagrams:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Sol. We know that sum of interior opposite angles = exterior angle From Fig. (i), $50^{\circ}+70^{\circ}=x \quad$ From Fig. (ii), $65^{\circ}+45^{\circ}=x$

$$
\Rightarrow \quad x=120^{\circ} \Rightarrow \quad x=110^{\circ}
$$

$$
\text { From Fig. (iii), } 30^{\circ}+40^{\circ}=x \quad \text { From Fig. (iv), } 60^{\circ}+60^{\circ}=x
$$

$$
\Rightarrow \quad x=70^{\circ} \Rightarrow \quad x=120^{\circ}
$$

$$
\text { From Fig. (v), } 50^{\circ}+50^{\circ}=x \quad \text { From Fig. (vi) }, 60^{\circ}+30^{\circ}=x
$$

$$
\Rightarrow \quad x=100^{\circ} \Rightarrow \quad x=90^{\circ} \text {. }
$$

Q2. Find the value of the unknown interior angle x in the following figures:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Sol. As we know that sum of interior opposite angles = Exterior angle
From Fig. (i), $x+50^{\circ}=115^{\circ} \quad$ From Fig. (ii), $70^{\circ}+x=100^{\circ}$

$$
\begin{array}{llll}
\Rightarrow & x=115^{\circ}-50^{\circ} & \Rightarrow & x=100^{\circ}-70^{\circ} \\
\text { or } & x=65^{\circ} & \text { or } & x=30^{\circ}
\end{array}
$$

From Fig. (iii), $x+90^{\circ}=125^{\circ}$ From Fig. (iv), $60^{\circ}+x=120^{\circ}$
\Rightarrow

$$
\begin{aligned}
& x=125^{\circ}-90^{\circ} \\
& x=35^{\circ}
\end{aligned}
$$

\Rightarrow

$$
x=120^{\circ}-60^{\circ}
$$

or
or

$$
x=60^{\circ}
$$

From Fig. (v), $30^{\circ}+x=80^{\circ}$
From Fig. (vi), $x+35^{\circ}=75^{\circ}$
$\Rightarrow \quad x=80^{\circ}-30^{\circ}$
or

$$
x=50^{\circ}
$$

$$
x=75^{\circ}-35^{\circ}
$$

$$
\text { or } \quad x=40^{\circ} \text {. }
$$

Exercise 6.3 (Page No. 121-122)
Q1. Find the value of the unknown x in the following
diagrams:

(i)

(iv)

(ii)

(v)

(iii)

(vi)

Sol. From Fig. (i), in $\triangle A B C$,

$$
\begin{array}{cc}
\angle \mathrm{BAC}+\angle \mathrm{ACB}+\angle \mathrm{ABC}=180^{\circ} \\
& \text { (By angle sum property of a triangle.) } \\
\Rightarrow & x+50^{\circ}+60^{\circ}=180^{\circ} \\
\Rightarrow & x+110^{\circ}=180^{\circ} \\
\text { or } & x=180^{\circ}-110^{\circ}=70^{\circ} .
\end{array}
$$

From Fig. (ii), in $\triangle \mathrm{PQR}$,
$\angle \mathrm{RPQ}+\angle \mathrm{PQR}+\angle \mathrm{RPQ}=180^{\circ}$
(By angle sum property of a triangle.)

$$
\begin{array}{rrrl}
\Rightarrow & 90^{\circ}+30^{\circ}+x & =180^{\circ} \\
\Rightarrow & 120^{\circ}+x & =180^{\circ} \\
\text { or } & x & =180^{\circ}-120^{\circ}=60^{\circ} .
\end{array}
$$

From Fig. (iii), in $\triangle \mathrm{XYZ}$,

$$
\angle \mathrm{XYZ}+\angle \mathrm{XYZ}+\angle \mathrm{YZX}=180^{\circ}
$$

(By angle sum property of a triangle.)
$\Rightarrow \quad 30^{\circ}+110^{\circ}+x=180^{\circ}$
$\Rightarrow \quad 140^{\circ}+x=180^{\circ}$
or $\quad x=180^{\circ}-140^{\circ}=40^{\circ}$.
From Fig. (iv), in given isosceles triangle,

$$
\begin{array}{cc}
& \begin{aligned}
& x+x+50^{\circ}= 180^{\circ} \\
& \text { (By angle sum property of a triangle.) } \\
& \Rightarrow 2 x+50^{\circ}=180^{\circ}
\end{aligned} \\
\Rightarrow & 2 x=180^{\circ}-50^{\circ} \\
\Rightarrow & 2 x=130^{\circ} \\
\text { or } & x=\frac{130^{\circ}}{2}=65^{\circ} .
\end{array}
$$

From Fig. (v), in given equilateral triangle,

$$
x+x+x=180^{\circ}
$$

(By angle sum property of a triangle.)

$$
\begin{array}{ll}
\Rightarrow & 3 x=180^{\circ} \\
\text { or } & x=\frac{180^{\circ}}{3}=60^{\circ} .
\end{array}
$$

From Fig.(vi), in given right-angled triangle,

$$
\begin{array}{cc}
& x+2 x+90^{\circ}=180^{\circ} \\
\Rightarrow & 3 x+90^{\circ}=180^{\circ} \\
\Rightarrow & 3 x=180^{\circ}-90^{\circ} \\
\Rightarrow & 3 x=90^{\circ} \\
\text { or angle sum property of a triangle.) } \\
& x
\end{array}
$$

Q2. Find the values of the unknowns x and y in the following diagrams:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Sol. From Fig. (i),

$$
\begin{align*}
& 50^{\circ}+x & =120^{\circ} \quad \text { (Exterior angle property of a triangle.) } \\
\Rightarrow & x & =120^{\circ}-50^{\circ} \\
\text { or } & x & =70^{\circ} \tag{i}
\end{align*}
$$

Now, $50^{\circ}+x+y=180^{\circ} \quad$ (By angle sum property of a triangle)
[From equation (i)]
$\Rightarrow \quad 120^{\circ}+y=180^{\circ}$
$\Rightarrow \quad y=180^{\circ}-120^{\circ}$
or

$$
y=60^{\circ}
$$

Thus, $x=70^{\circ}$ and $y=60^{\circ}$.
From Fig. (ii),

$$
y=80^{\circ}
$$

...(i) (Vertically opposite angles)
Now, $50^{\circ}+y+x=180^{\circ}$ (By angle sum property of a triangle.)
$\Rightarrow 50^{\circ}+80^{\circ}+x=180^{\circ}$
[From equation (i)]
$\Rightarrow \quad 130^{\circ}+x=180^{\circ}$
$\Rightarrow \quad x=180^{\circ}-130^{\circ}$
or $\quad x=50^{\circ}$
Thus, $x=50^{\circ}$ and $y=80^{\circ}$.
From Fig. (iii),

$$
50^{\circ}+60^{\circ}=x \quad \text { (Exterior angle property of a triangle.) }
$$

$$
\text { or } \quad x=110^{\circ}
$$

Now, $50^{\circ}+60^{\circ}+y=180^{\circ}$ (By angle sum property of a triangle.)
$\Rightarrow \quad 110^{\circ}+y=180^{\circ}$
$\Rightarrow \quad y=180^{\circ}-110^{\circ}$
or $\quad y=70^{\circ}$
Thus, $x=110^{\circ}$ and $y=70^{\circ}$.
From Fig. (iv),

$$
x=60^{\circ}
$$

(Vertically opposite angles) ...(i)
Now, $30^{\circ}+y+x=180^{\circ}$ (By angle sum property of a triangle.) $\Rightarrow 30^{\circ}+y+60^{\circ}=180^{\circ}$
[From equation (i)]
$\Rightarrow \quad y+90^{\circ}=180^{\circ}$
$\Rightarrow \quad y=180^{\circ}-90^{\circ}$
or $\quad y=90^{\circ}$
Thus, $x=60^{\circ}$ and $y=90^{\circ}$.
From Fig. (v),

$$
y=90^{\circ}
$$

(Vertically opposite angles) ...(i)
Now, $y+x+x=180^{\circ} \quad$ (By angle sum property of a triangle.)
$\Rightarrow \quad 90^{\circ}+2 x=180^{\circ}$
[From equation (i)]
$\Rightarrow \quad 2 x=180^{\circ}-90^{\circ}$
$\Rightarrow \quad 2 x=90^{\circ}$
or

$$
x=\frac{90^{\circ}}{2}=45^{\circ}
$$

Thus, $x=45^{\circ}$ and $y=90^{\circ}$.
From Fig. (vi),
(Vertically opposite angles) ...(i)
Now, $x+x+y=180^{\circ} \quad$ (By angle sum property of a triangle.)
$\Rightarrow \quad 2 x+x=180^{\circ}$
[From equation (i)]
$\Rightarrow \quad 3 x=180^{\circ}$
or

$$
x=\frac{180^{\circ}}{3}=60^{\circ}
$$

or

$$
y=60^{\circ}
$$

[From equation (i)]
Thus, $x=60^{\circ}$ and $y=60^{\circ}$.

Exercise 6.4 (Page No. 126-127)

Q1. Is it possible to have a triangle with the following sides?
(i) $2 \mathrm{~cm}, 3 \mathrm{~cm}, 5 \mathrm{~cm}$
(ii) $\mathbf{3 \mathrm { cm } , 6 \mathrm { cm } , 7 \mathrm { cm }}$
(iii) $6 \mathrm{~cm}, 3 \mathrm{~cm}, 2 \mathrm{~cm}$.

Sol. Suppose such triangles are possible whose the sum of the lengths of any two sides would be greater than the length of third side.
Let us check this:
(i) $2 \mathrm{~cm}, 3 \mathrm{~cm}, 5 \mathrm{~cm}$
(ii) $3 \mathrm{~cm}, 6 \mathrm{~cm}, 7 \mathrm{~cm}$
Is $2+3>5$? No, it is equal.
Is $3+6>7$? Yes.
Is $2+5>3$? Yes.
Is $6+7>3$? Yes.
Is $3+5>2$? Yes.
Is $3+7>6$? Yes.

But this triangle is not possible.
Thus, this triangle is possible.
(iii) $6 \mathrm{~cm}, 3 \mathrm{~cm}, 2 \mathrm{~cm}$

Is $6+3>2$? Yes.
Is $6+2>3$? Yes.
Is $2+3>6$? No. It is less than 6 .
So, this triangle is not possible.
Q2. Take any point O in the interior of a triangle PQR . Is
(i) $\mathrm{OP}+\mathrm{OQ}>\mathrm{PQ}$?
(ii) $\mathrm{OQ}+\mathrm{OR}>\mathrm{QR}$?
(iii) $\mathrm{OR}+\mathrm{OP}>\mathbf{R P}$?

Since sum of two sides is greater than third side.
Sol. Join the OR, OQ and OP.
(i) Is $\mathrm{OP}+\mathrm{OQ}>\mathrm{PQ}$? Yes, POQ form the triangle.
(ii) $\mathrm{Is} \mathrm{OQ}+\mathrm{OR}>\mathrm{QR}$?

Yes, ROQ form the triangle.
(iii) $\mathrm{Is} \mathrm{OR}+\mathrm{OP}>\mathrm{RP}$?

Yes, ROP form the triangle.
Q3. AM is a median of a triangle ABC . Is $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>2 \mathrm{AM}$? (Consider the sides of triangles $\triangle A B M$ and $\triangle A M C$.)

Sol. We know, the sum of length of any two sides in a triangle would be greater than the length of third side.
In $\triangle A B M$,

$$
\begin{align*}
& \mathrm{AB}+\mathrm{BM}>\mathrm{AM} \tag{i}\\
& \mathrm{AC}+\mathrm{MC}>\mathrm{AM} \tag{ii}
\end{align*}
$$

In $\triangle \mathrm{AMC}$,
Adding equations (i) and (ii),

$$
\mathrm{AB}+\mathrm{BM}+\mathrm{AC}+\mathrm{MC}>\mathrm{AM}+\mathrm{AM}
$$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{AB}+\mathrm{AC}+(\mathrm{BM}+\mathrm{MC})>2 \mathrm{AM} \\
\Rightarrow & \mathrm{AB}+\mathrm{AC}+\mathrm{BC}>2 \mathrm{AM}
\end{array}
$$

Thus, it is true.

Q4. ABCD is a quadrilateral. Is $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AC}+\mathrm{BD}$?

Sol. We know that sum of length of any two sides in a triangle would be greater than the length of third side.
In $\quad \triangle A B C, A B+B C>A C$
and $\quad \triangle A D C, A D+D C>A C$
In $\quad \triangle \mathrm{DCB}, \mathrm{DC}+\mathrm{CB}>\mathrm{DB}$
and $\quad \triangle \mathrm{ADB}, \mathrm{AD}+\mathrm{AB}>\mathrm{DB}$
Adding equations (i), (ii), (iii) and (iv),

$$
\begin{array}{ll}
& \mathrm{AB}+\mathrm{BC}+\mathrm{AD}+\mathrm{DC}+\mathrm{DC}+\mathrm{CB}+\mathrm{AD}+\mathrm{AB}>(\mathrm{AC}+\mathrm{AC})+(\mathrm{DB}+\mathrm{DB}) \tag{iv}\\
\Rightarrow \quad & (\mathrm{AB}+\mathrm{AB})+(\mathrm{BC}+\mathrm{BC})+(\mathrm{AD}+\mathrm{AD})+(\mathrm{DC}+\mathrm{DC})> \\
& 2(\mathrm{AC}+\mathrm{DB}) \\
\Rightarrow \quad & 2(\mathrm{AB}+\mathrm{BC}+\mathrm{AD}+\mathrm{DC})>2(\mathrm{AC}+\mathrm{DB}) \\
\Rightarrow & \mathrm{AB}+\mathrm{BC}+\mathrm{AD}+\mathrm{DC}>\mathrm{AC}+\mathrm{DB} \\
\text { or } & \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AC}+\mathrm{BD} . \text { Yes. }
\end{array}
$$

Q5. ABCD is quadrilateral. Is $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<\mathbf{2}(\mathrm{AC}+\mathrm{BD})$?
Sol. We draw a quadrilateral ABCD and AC, DB intersect at point O .

We know that sum of length of any two sides in a triangle would be greater than the length of third side.

In $\triangle A O B$,
In $\triangle \mathrm{BOC}$,
In $\triangle \mathrm{COD}$,
In $\triangle \mathrm{AOD}$,

$$
\begin{align*}
& \mathrm{AB}<\mathrm{OA}+\mathrm{OB} \tag{i}\\
& \mathrm{BC}<\mathrm{OB}+\mathrm{OC} \tag{ii}\\
& \mathrm{CD}<\mathrm{OC}+\mathrm{OD} \tag{iii}\\
& \mathrm{DA}<\mathrm{OD}+\mathrm{OA} \tag{iv}
\end{align*}
$$

Adding equations (i), (ii), (iii) and (iv),

$$
\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<\mathrm{OA}+\mathrm{OB}+\mathrm{OB}+\mathrm{OC}+\mathrm{OC}+\mathrm{OD}+\mathrm{OD}+\mathrm{OA}
$$

$$
\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2 \mathrm{OA}+2 \mathrm{OB}+2 \mathrm{OC}+2 \mathrm{OD}
$$

$$
\begin{aligned}
& \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2[(\mathrm{AO}+\mathrm{OC})+(\mathrm{DO}+\mathrm{OB})] \\
& \text { Thus, } \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2(\mathrm{AC}+\mathrm{BD}) \text {. Proved. }
\end{aligned}
$$

Q6. The lengths of two sides of a triangle are 12 cm and 15 cm . Between what two measures should the length of the third side fall?
Sol. We know that the sum of two sides of a triangle is always greater than the third side.
Given, two sides of triangle are 12 cm and 15 cm .
Therefore, the third side is less than $12+15=27 \mathrm{~cm}$.
And the third side cannot be less than the difference of the two sides.
Thus, the third side has to be more than $15-12=3 \mathrm{~cm}$.
The length of the third side could be any length greater than 3 cm but less than 27 cm .

Exercise 6.5 (Page No. 130)

Q1. $P Q R$ is a triangle, right-angled at P. If $P Q=10 \mathrm{~cm}$ and $\mathbf{P R}=\mathbf{2 4} \mathbf{~ c m}$, find QR .
Sol. Given, $\mathrm{PQ}=10 \mathrm{~cm}, \mathrm{PR}=24 \mathrm{~cm}$
Let QR be $x \mathrm{~cm}$.
In right-angled $\triangle Q P R$,
$(\text { hypotenuse })^{2}=(\text { base })^{2}+(\text { altitude })^{2}$

$\Rightarrow \quad(\mathrm{QR})^{2}=(\mathrm{PQ})^{2}+(\mathrm{PR})^{2}$
$\Rightarrow \quad x^{2}=(10)^{2}+(24)^{2}$
(Given)

$$
\begin{array}{ll}
\Rightarrow & x^{2}=100+576=676 \\
\text { or } & x=\sqrt{676}=26
\end{array}
$$

Thus, the length of QR is 26 cm .
Q2. ABC is a triangle, right-angled at C . If $\mathrm{AB}=25 \mathrm{~cm}$ and $A C=7 \mathrm{~cm}$, find $B C$.
Sol. Given, $\mathrm{AB}=25 \mathrm{~cm}$ and $\mathrm{AC}=7 \mathrm{~cm}$
Let BC be $x \mathrm{~cm}$.
In right-angled $\triangle \mathrm{ACB}$,
$(\text { hypotenuse })^{2}=(\text { base })^{2}+(\text { altitude })^{2}$ (By Pythagoras property)

The Triangle and its Properties

| Now, | $(\mathrm{AB})^{2}$ | $=(\mathrm{AC})^{2}+(\mathrm{BC})^{2}$ |
| ---: | :--- | ---: | :--- |
| \Rightarrow | $(25)^{2}$ | $=(7)^{2}+x^{2}$ |
| \Rightarrow | 625 | $=49+x^{2}$ |
| \Rightarrow | $625-49$ | $=x^{2}$ |
| \Rightarrow | x^{2} | $=576$ |
| or | x | $=\sqrt{576}=24 \mathrm{~cm}$ |

Thus, the length of $B C$ is 24 cm .
Q3. A 15 m long ladder reached a window 12 m high from the ground on placing it against a wall at a distance a. Find the distance of the foot of the ladder from the wall.

Sol. Let AC be the ladder and A be the window. Given, $\mathrm{AC}=15 \mathrm{~m}, \mathrm{AB}=12 \mathrm{~m}, \mathrm{CB}=a \mathrm{~m}$ In right-angled $\triangle A B C$,

(hypotenuse $)^{2}=(\text { base })^{2}+(\text { altitude })^{2} \quad$ (By Pythagoras property)

$$
\begin{array}{ll}
\text { Now, } & (\mathrm{AC})^{2}=(\mathrm{CB})^{2}+(\mathrm{AB})^{2} \\
\Rightarrow & (15)^{2}=(a)^{2}+(12)^{2} \\
\Rightarrow & a^{2}=(15)^{2}-(12)^{2} \\
\Rightarrow & a^{2}=225-144 \\
\Rightarrow & a^{2}=81 \\
\text { or } & a=\sqrt{81}=9
\end{array}
$$

Thus, the distance of the foot of the ladder from the wall is 9 m .
Q4. Which of the following can be the sides of a right triangle?
(i) $2.5 \mathrm{~cm}, 6.5 \mathrm{~cm}, 6 \mathrm{~cm}$.
(ii) $2 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$.
(iii) $1.5 \mathrm{~cm}, 2 \mathrm{~cm}, 2.5 \mathrm{~cm}$.

In the case of right-angled triangles, identify the right
angles.
Sol. As we consider, the larger side in the given sides of triangles be the hypotenuse.

And also using Pythagoras property,

$$
(\text { hypotenuse })^{2}=(\text { base })^{2}+(\text { altitude })^{2}
$$

(i) $2.5 \mathrm{~cm}, 6.5 \mathrm{~cm}, 6 \mathrm{~cm}$

In $\triangle \mathrm{ABC},(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{CB})^{2}$
Take L.H.S. $=(6.5)^{2}=42.25$
and

$$
\begin{aligned}
\text { R.H.S. } & =(6)^{2}+(2.5)^{2} \\
& =36+6 \cdot 25=42.25
\end{aligned}
$$

$$
\Rightarrow \quad \text { L.H.S. }=\text { R.H.S. }
$$

Then given sides are the sides of the right-angled triangle. Right angle lies on the opposite side of 6.5 cm in $\triangle \mathrm{ABC}$ right-angled at B .
(ii) $2 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$

$$
\begin{array}{ll}
\Rightarrow & (5)^{2}=2^{2}+2^{2} \\
\text { Take } & \text { L.H.S. }=(5)^{2}=25 \\
\text { and } & \text { R.H.S. }=2^{2}+2^{2}=4+4=8 \\
\Rightarrow & \text { L.H.S. } \neq \text { R.H.S. }
\end{array}
$$

These are not the sides of the right-angled triangle.
(iii) $1.5 \mathrm{~cm}, 2 \mathrm{~cm}, 2.5 \mathrm{~cm}$

In $\triangle \mathrm{PQR}, \quad(\mathrm{PR})^{2}=(\mathrm{PQ})^{2}+(\mathrm{RQ})^{2}$
Take L.H.S. $=(2.5)^{2}=6.25$
and

$$
\text { R.H.S. }=(1.5)^{2}+(2)^{2}
$$

$$
=2.25+4=6.25
$$

\Rightarrow
L.H.S. = R.H.S.

Then given sides are the sides of a right-angled triangle. Right angle lies on the opposite side of 2.5 cm in $\triangle \mathrm{PQR}$ right-angled at Q .
Q5. A tree is broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of the tree.
Sol. Let $A^{\prime} C B$ represent the tree before it broken at the point C and let the top A^{\prime} touch the ground at A after it broke. Then, $\triangle A B C$ is a right-angled triangle at B such that

$$
\mathrm{AB}=12 \text { and } \mathrm{BC}=5
$$

Using Pythagoras property in $\triangle A B C$, we have

$$
\begin{aligned}
(\mathrm{AC})^{2} & =(\mathrm{AB})^{2}+(\mathrm{BC})^{2} \\
& =(12)^{2}+(5)^{2} \\
& =144+25 \\
\mathrm{AC}^{2} & =169
\end{aligned}
$$

$$
\mathrm{AC}=\sqrt{169}=13
$$

Hence, the total height of the tree $=\mathrm{AC}+\mathrm{CB}$

$$
=13+5=18 \mathrm{~m} .
$$

Q6. Angles Q and R of a $\triangle P Q R$ are 25° and 65°. Write which of the following is true:
(i) $\mathbf{P Q}^{2}+\mathbf{Q R}^{2}=\mathbf{R} \mathbf{P}^{2}$
(ii) $\mathbf{P Q}^{2}+\mathbf{R P}^{2}=\mathbf{Q R}^{2}$
(iii) $\mathbf{R} \mathbf{P}^{2}+\mathbf{Q R}^{2}=\mathbf{P Q}^{2}$.

Sol. First we find the third angle of the given triangle PQR .
Now, in $\triangle P Q R$,

$$
\begin{array}{cc}
\Rightarrow & 25^{\circ}+65^{\circ}+\angle \mathrm{QPR}=180^{\circ} \\
\Rightarrow & \text { (By angle sum property of triangle.) } \\
\Rightarrow & 90^{\circ}+\angle \mathrm{QPR}=180^{\circ} \\
\text { or } & \angle \mathrm{QPR}=180^{\circ}-90^{\circ} \\
& \angle \mathrm{QPR}=90^{\circ}
\end{array}
$$

Now the given triangle is right angled at P. So, by the property of Pythagoras,

$$
\begin{aligned}
&{\text { (hypotenuse })^{2}}=(\text { (base })^{2}+(\text { altitude })^{2} \\
&(\mathrm{QR})^{2}=(\mathrm{PR})^{2}+(\mathrm{QP})^{2} .
\end{aligned}
$$

Thus, (ii) option is true.
Q7. Find the perimeter of the rectangle whose length is 40 cm and a diagonal is 41 cm .
Sol. Draw a rough figure of the rectangle

- PQRS

Given, diagonal $=41 \mathrm{~cm}$, side $=40 \mathrm{~cm}$.
Let another side be x,

Now, in right-angled $\triangle P Q R$,
(By Pythagoras property)

$$
(\mathrm{PR})^{2}=(\mathrm{RQ})^{2}+(\mathrm{PQ})^{2}
$$

$$
(41)^{2}=x^{2}+(40)^{2}
$$

$$
\Rightarrow \quad x^{2}=(41)^{2}-(40)^{2}
$$

$$
\Rightarrow \quad x^{2}=1681-1600
$$

$\Rightarrow \quad x^{2}=81$
or $\quad x=\sqrt{81}=9$
Therefore, the another side of the rectangle is 9 cm .
Now, we find the perimeter of the rectangle through given sides.

We know that,

Perimeter of the rectangle $=2$ (length + breadth $)$

$$
\begin{aligned}
& =2(9+40) \\
& =2(49)=98
\end{aligned}
$$

Thus, the perimeter of the rectangle is 98 cm .
Q8. The diagonals of a rhombus measure 16 cm and 30 cm . Find its perimeter.
Sol. As we know that the diagonals of rhombus bisect at right angle to each other.
From the rough diagram of
 rhombus.
Given, AC and DB is 30 cm and 16 cm respectively. For the calculation we have,

$$
\begin{aligned}
& \mathrm{OD}=\frac{\mathrm{DB}}{2}=\frac{16}{2}=8 \mathrm{~cm} \\
& \mathrm{OC}=\frac{\mathrm{AC}}{2}=\frac{30}{2}=15 \mathrm{~cm}
\end{aligned}
$$

In right-angled $\triangle \mathrm{DOC}$,

$$
\begin{aligned}
(\mathrm{DC})^{2} & =(\mathrm{OD})^{2}+(\mathrm{OC})^{2} \quad \text { (By Pythagoras property) } \\
(\mathrm{DC})^{2} & =(8)^{2}+(15)^{2} \\
\mathrm{DC}^{2} & =64+225 \\
\mathrm{DC}^{2} & =289 \\
\mathrm{DC} & =\sqrt{289} \\
\mathrm{DC} & =17
\end{aligned}
$$

Therefore, the side of the rhombus is 17 cm .
We know, the perimeter of rhombus $=4 \times$ side

$$
=4 \times 17=68 .
$$

Thus, the perimeter of the rhombus is 68 cm .

