Linear Equations in One Variable

Learn and Remember

- 1. An algebraic equation is an equality involving variables. It says that the value of the expression on one side of the equality sign is equal to the value of the expression on the other side.
- 2. Linear equations are those equations whose highest power of the variable appearing in the equation is 1. And it contains only one solution.

For example, x + 8 = 0, here, power of x is 1.

- 3. A linear equation may have for its solution as natural number or any rational number.
- 4. A linear equation may have linear expressions on both sides.
- 5. Regarding a number, variables can also be transposed from one side of the equation to the other.
- 6. Occasionally, the expressions forming equations have to be simplified before we can solve them by usual methods.
- 7. Some equations may not even be linear to begin with, but these equations can be brought to a linear form by multiplying both sides of the equation by a suitable expression.
- 8. The utility of linear equations is in their diverse applications; different problems on numbers, ages, perimeters, combination of currency notes, and so on can be solved using linear equations.
- 9. The values of the expression on the L.H.S. and R.H.S. are equal in an equation. This happens to be true only for certain values of the variable. These values are known as the **solution** of the equation.

TEXTBOOK QUESTIONS SOLVED

EXERCISE 2.1 (Page -23-24)

Solve	the	following	equations.	
-------	-----	-----------	------------	--

1. $x - 2 = 7$	2. $y + 3 = 10$	3. $6 = z + 2$
4. $\frac{3}{7} + x = \frac{17}{7}$	5. $6x = 12$	6. $\frac{t}{5} = 10$

16

MATHEMATICS-VIII

LINEAR EQUATIONS IN ONE VARIABLE

7. $\frac{2x}{3} = 18$ 8. $1.6 = \frac{y}{1.5}$ 9. 7x - 9 = 1610. 14y - 8 = 13 11. 17 + 6p = 9 12. $\frac{x}{3} + 1 = \frac{7}{15}$ **Sol.** 1. x - 2 = 7 \Rightarrow x = 7 + 2 = 9 (Transposing 2 to R.H.S.) Hence, x = 9 is the required solution. 2. y + 3 = 10 $\Rightarrow \qquad y = 10 - 3 = 7 \quad (\text{Transposing 3 to R.H.S.})$ Hence, y = 7 is the required solution. 3. 6 = z + 26 = z + 2-z = 2 - 6 (Transposing 6 to R.H.S. and z $\Rightarrow -z = -4$ or z = 4Hence z = 4Hence, z = 4 is the required solution. 4. $\frac{3}{7} + x = \frac{17}{7}$ $\Rightarrow \qquad x = \frac{17}{7} - \frac{3}{7} \quad \left[\text{Transposing } \frac{3}{7} \text{ to R.H.S.} \right]$ $\Rightarrow \qquad x = \frac{17-3}{7} \qquad \text{or} \quad x = \frac{14}{7} = 2.$ Hence, x = 2 is the required solution. 5. 6x = 12 $\Rightarrow \qquad \frac{6x}{6} = \frac{12}{6} \qquad (\text{Dividing both sides by 6.})$ Hence, x = 2 is the required solution. $\frac{da}{6}$ $\frac{da}{da} = \frac{10}{10}$ $\frac{1}{5} = 10$ $\frac{\iota}{5} \times 5 = 10 \times 5$ (Multiplying both sides by 5.) or t = 5Hence, t = 50 is the required solution.

 $\frac{2x}{2} = 18$ 7. $\frac{2x}{3} \times 3 = 18 \times 3$ (Multiplying both sides by 3.) EHROTIS $2x = 18 \times 3$ \Rightarrow $\frac{2x}{2} = \frac{18 \times 3}{2}$ (Dividing both sides by 2.) \Rightarrow $x = 9 \times 3 = 27$ Hence, x = 27 is the required solution. 8. $\frac{1.6}{1} = \frac{y}{1.5}$ $\Rightarrow \qquad \frac{y}{1.5} = \frac{1.6}{1}$ $\frac{1.5y}{1.5}$ = 1.6 × 1.5 (Multiplying both sides by 1.5.) y = 2.40Hence, y = 2.4 is the required solution. 9. 7x - 9 = 16(Transposing 9 to R.H.S.) 7x = 16 + 9 \Rightarrow 7x = 25. \Rightarrow $\frac{7x}{7} = \frac{25}{7}$ (Dividing both sides by 7.) \Rightarrow $x = \frac{-1}{7}$ or Hence, $x = \frac{25}{7}$ is the required solution. 10. 14y - 8 = 13 \Rightarrow 14y = 13 + 8 (Transposing 8 to R.H.S.) 14y = 21 $\Rightarrow \qquad \frac{14y}{14} = \frac{21}{14}$ (Dividing both sides by 14.) $\Rightarrow \qquad y = \frac{21}{14} = \frac{3}{2}$

LINEAR EQUATIONS IN ONE VARIABLE

Hence,
$$y = \frac{3}{2}$$
 is the required solution.
11. $17 + 6p = 9$
 $\Rightarrow 6p = 9 - 17$
 $\Rightarrow 6p = -8$
 $\Rightarrow \frac{6p}{6} = -\frac{3}{6}$ (Dividing both sides by 6.)
 $\Rightarrow p = -\frac{6}{8} = -\frac{4}{3}$
Hence, $p = -\frac{4}{3}$ is the required solution.
12. $\frac{x}{3} + 1 = \frac{7}{15}$
 $\Rightarrow \frac{x}{3} = \frac{7}{15} - \frac{1}{1}$ (Transposing 1 to R.H.S.)
 $\Rightarrow \frac{x}{3} = \frac{7}{15} - \frac{1}{15}$ (Transposing 1 to R.H.S.)
 $\Rightarrow \frac{x}{3} = \frac{7}{15} - \frac{1}{3}$ (Transposing 1 to R.H.S.)
 $\Rightarrow \frac{x}{3} = \frac{7}{15} - \frac{1}{3}$ (Transposing 1 to R.H.S.)
 $\Rightarrow \frac{x}{3} = \frac{7}{15} - \frac{1}{3}$ (Transposing 1 to R.H.S.)
 $\Rightarrow \frac{x}{3} = \frac{7}{15} + 3$ (Multiplying both sides by 3.)
 $\Rightarrow \frac{3xx}{3} = -\frac{3}{5}$
 $\Rightarrow \frac{3xx}{3} = -\frac{8}{5}$ is the required solution.
EXERCISE 2.2 (Page - 28)
Q1. If you subtract $\frac{1}{2}$ from a number and multiply the
result by $\frac{1}{2}$, you get $\frac{1}{3}$. What is the number?
Sol. Let the number be x .
According to the conditions,
 $\frac{1}{2}(x-\frac{1}{2}) = \frac{1}{8}$
 $x^2 = (x-\frac{1}{2}) = \frac{1$

UATIONS IN ONE VARIABLE

20		MATHEMATICS-VIII	LINEAR EC
(moltresiligiting	$4\frac{2}{15} = \frac{4}{3} + x$		LINEARE
		5 F 8-30	202.00
	$\frac{62}{15} - \frac{4}{3} = 2x$	(Transposing $\frac{4}{3}$ to L.H.S.)	
(And ⇒birth	$\frac{62-20}{15} = 2x$		b bon i
⇒	$\frac{42}{15} = \frac{2x}{1}$		Q6.
⇒ ⇒	30x = 42	(By cross multiplication)	Sol.
rijou⊂a 164	30	(Dividing both sides by 30.)	
or	$x = \frac{7}{5} = 1$	$\frac{2}{5} \operatorname{cm}^{3} \operatorname{cm}^{3} \operatorname{diama} $	RRAD
		sosceles triangle is $1\frac{2}{5}$ cm.	
Q4. Sum of	two numbers is 95. the numbers.	If one exceeds the other by	CB of the second
Sol. Given, su Let the fi	im of two numbers = irst number be x , then g to the condition	95 a the second number be $x + 15$.	
amidiena ante p	x + x + 15 = 95		.e 6
	2x + 15 = 95 2x = 95 - 15 2x = 80	(Transposing 15 to R.H.S.)	Q7.
⇒	$x = \frac{80}{2}$	(Dividing both sides by 2.)	Sol.

x = 40

Let two numbers be 5x and 3x respectively.

and the second number = x + 15 = 40 + 15 = 55.

Q5. Two numbers are in the ratio 5:3. If they differ by 18,

Hence, the first number = 40

Sol. Given, difference of the numbers = 18

5x - 3x = 18

2x = 18

what are the numbers?

According to the conditions,

or

=

(Dividing both sides by 2.) x =x = 9Hence, first number = $5x = 5 \times 9 = 45$ and second number = $3x = 3 \times 9 = 27$. Three consecutive integers add up to 51. What are these ntegers? Given, sum of three consecutive integers = 51. Let three consecutive integers be x, x + 1 and x + 2. According to the conditions, (x) + (x + 1) + (x + 2) = 513x + 3 = 513x = 51 - 3 (Transposing 3 to R.H.S.) 3x = 48 $\frac{48}{3}$ (Dividing both sides by 3.) x = 16or Hence, first integer = 16, second integer = 16 + 1 = 17and third integer = 16 + 2 = 18Therefore, the consecutive integers are 16, 17 and 18. The sum of three consecutive multiples of 8 is 888. Find the multiples. Given, the sum of three consecutive multiples of 8 = 888. Let the three consecutive multiples of 8 be x, x + 8 and x + 16. According to the conditions, (x) + (x + 8) + (x + 16) = 8883x + 24 = 8883x = 888 - 24 (Transposing 24 to R.H.S.) 3x = 864(Dividing both sides by 24.) x = 288or Hence, first multiple of 8 = x = 288, second multiple of 8 = x + 8 = 288 + 8 = 296,

LINEAR E	EQUATIONS	IN ONE	٧	ARIABLE
----------	-----------	--------	---	---------

and third multiple of 8 = x + 16 = 288 + 16 = 304. Therefore, the three consecutive multiples of 8 are 288, 296 and 304. Q8. Three consecutive integers are such that when they are taken in increasing order and multiplied by 2, 3 and 4 respectively, they add up to 74. Find these numbers. **Sol.** Let, three consecutive integers x, x + 1 and x + 2 and given sum of these numbers is 74. According to the conditions, 2x + 3(x + 1) + 4(x + 2) = 74 $\Rightarrow 2x + 3x + 3 + 4x + 8 = 74$ 9x + 11 = 74 \Rightarrow \Rightarrow 9x = 74-11 (Transposing 11 to R.H.S.) 9x = 63 \Rightarrow $\Rightarrow \qquad x = \frac{63}{9} = 7 \qquad \text{(Dividing both sides by 9.)}$ or x = 7Hence, first integer = x = 7, second integer = (x + 1) = (7 + 1) = 8, and third integer = (x + 2) = (7 + 2) = 9. Therefore, the three consecutive integers are 7, 8 and 9. Q9. The ages of Rahul and Haroon are in the ratio 5:7. Four years later the sum of their ages will be 56 years. What are their present ages? Sol. Let the present ages of Rahul and Haroon be 5x years and 7x years respectively. After four years, the age of Rahul = (5x + 4) years and the age of Haroon = (7x + 4) years According to the conditions, 5x + 4 + 7x + 4 = 5612x + 8 = 5612x = 56 - 8 \Rightarrow (Transposing 8 to R.H.S.) 12x = 4848 = (Dividing both sides by 12.)

x = 4or Hence, present age of Rahul = $5x = 5 \times 4 = 20$ years and present age of Haroon = $7x = 7 \times 4 = 28$ years. Q10. The number of boys and girls in a class are in the ratio 7:5. The number of boys is 8 more than the number of girls. What is the total class strength? Sol. Let the number of girls be x. Then, the number of boys = x + 8According to the conditions, 8+xthe state of the s $5 \times (8 + x) = 7 \times x$ (By cross multiplication) 40 + 5x = 7x= (Transposing 7x to L.H.S. $\Rightarrow 5x - 7x = -40$ and 40 to R.H.S.) -2x = -40 $x = \frac{-40}{-2}$ (Dividing both sides by -2.) or x = 20The number of girls = x = 20and the number of boys = x + 8 = 20 + 8 = 28. Hence, the strength of the class = 28 + 20 = 48 students. Q11. Baichung's father is 26 years younger than Baichung's grandfather and 29 years older than Baichung. The sum of the ages of all the three is 135 years. What is the age of each one of them? Sol. Let Baichung's age be x years. Then, Baichung's father's age = (x + 29) years and Baichung's grandfather's age = (x + 29 + 26) years =(x + 55) years According to the conditions, x + x + 29 + x + 55 = 1353x + 84 = 135(nata billion) (Transposing 84 tr ? H.S.) 3x = 135 - 843x = 51

LINEAR EQUATIONS IN ONE VARIABLE

or

 $\Rightarrow \qquad x = \frac{51}{3} \qquad (\text{Dividing both sides by 3.})$ or x = 17 and x = 17Hence, Baichung's age = 17 years, Baichung's father's age = x + 29 = 17 + 29 = 46 years and Baichung's grandfather's age = x + 55 = 17 + 55 = 72years. Q12. Fifteen years from now Ravi's age will be four times his present age. What is Ravi's present age? Sol. Let Ravi's present age be x years. After fifteen years, Ravi's age = 4x years Fifteen years from now Ravi's age = (x + 15) years According to the conditions, 4x = x + 154x - x = 15 (Transposing x to L.H.S.) \Rightarrow 3x = 15 $x = \frac{15}{3}$ (Dividing both sides by 3.) or x = 5Hence, Ravi's present age is 5 years. Q13. A rational number is such that when you multiply it by $\frac{5}{2}$ and add $\frac{2}{3}$ to the product, you get $\frac{-7}{12}$. What is the number? **Sol.** Let the rational number be *x*. According to the conditions, $\frac{5}{2} \times x + \frac{2}{3} = \frac{-7}{12}$ $\frac{5x}{2} = \frac{-7}{12} - \frac{2}{3}$ (Transposing $\frac{2}{3}$ to R.H.S.) -7-8 and a southing boy 5x(L.C.M. of 3 and 12 is 12.) 2 $= \frac{-15}{12} = 10 + x + 92 + x + x$ $5x \times 12 = -15 \times 2$ (By cross multiplication.) 60x = -30

(Dividing both sides by 60.)

Hence, the rational number is $\frac{-1}{2}$.

x =

 $x = \frac{-1}{2}$

Q14. Lakshmi is a cashier in a bank. She has currency notes of denominations ₹ 100, ₹ 50 and ₹ 10 respectively. The ratio of the number of these notes is 2 : 3 : 5. The total cash with Lakshmi is ₹ 4,00,000. How many notes of each denomination does she have?

Sol. Let number of notes be 2x, 3x and 5x.

According to the conditions,

 $5184001100 \times 2x + 50 \times 3x + 10 \times 5x = 4,00,000$

 $\Rightarrow 200x + 150x + 50x = 4,00,000$

400x = 4,00,000

 $\Rightarrow \qquad x = \frac{4,00,000}{2}$

x = 400or x = 1000

Hence, number of denominations of ₹ 100 notes = 2 × 1000

= 2,000

Number of denominations of ₹ 50 notes = $3 \times 1000 = 3,000$ Number of denominations of ₹ 10 notes = $5 \times 1000 = 5,000$ Therefore, required denominations of notes of ₹ 100, ₹ 50 and ₹ 10 are 2,000, 3,000 and 5,000 respectively.

- Q15. I have a total of ₹ 300 in coins of denomination ₹ 1, ₹ 2 and ₹ 5. The number of ₹ 2 coins is 3 times the number of ₹ 5 coins. The total number of coins is 160. How many coins of each denomination are with me?
- Sol. Given, total sum of money = ₹ 300 Let the number of ₹ 5 coins be x. Then, number of ₹ 2 coins = 3xand number of ₹ 1 coins = 160 - (x + 3x) = 160 - 4x. According to the conditions, $5 \times x + 2 \times (3x) + 1 \times (160 - 4x) = 300$ 5x + 6x + 160 - 4x = 300

26

MATHEMATICS-VIII

	7x + 160 =	300
\Rightarrow	7x =	300 - 160 (Transposing 160 to R.H.S.)
⇒	7x =	140
⇒	<i>x</i> =	140 (Dividing beth it has

iding both sides by 7.)

or composed of x = 20 and relations and lands to 1.0 Hence, number of coins of $\overline{\mathbf{x}}$ 5 denomination = 20 Number of coins of $\overline{\mathbf{x}}$ 2 denomination = $3x = 3 \times 20 = 60$ Number of coins of ₹ 1 denomination = 160 - 4x

 $= 160 - 4 \times 20$ = 160 - 80 = 80.

Therefore, the number of $\overline{\mathbf{x}} \ 1 \ \text{coins}, \overline{\mathbf{x}} \ 2 \ \text{coins} \ \text{and} \ \overline{\mathbf{x}} \ 5 \ \text{coins} \ \text{are}$ 80, 60 and 20 respectively.

Q16. The organisers of an essay competition decide that a winner in the competition gets a prize of ₹ 100 and a participant who does not win, gets a prize of ₹ 25. The total prize money distributed is ₹ 3,000. Find the number of winners, if the total number of participants is 63. store DOT The spontaturgough is and more sport

Sol. Total sum of money = ₹ 3000

Let the number of winners of $\overline{\mathbf{x}}$ 100 be xand those who are not winners = 63 - x. According to the conditions,

 $100 \times x + 25 \times (63 - x) = 3000$

 $\Rightarrow \quad 100x + 1575 - 25x = 3000$ \Rightarrow 75x = 3000 - 1575

100 a. 10-1001 + 18+ 18

(Transposing 1575 to R.H.S.) dia was not and the with dent inanty coins o 75x = 14251425

$$x = \frac{1425}{75}$$
 (Dividing both sides by 75
$$x = 19$$

Hence, the number of winners = 19. According to the conditions,

 \Rightarrow

 \Rightarrow

LINEAR EQUATIONS IN ONE VARIABLE

EXERCISE 2.3 (Page -30)

Solve the following equations and check your results.

1. 3x = 2x + 182. 5t - 3 = 3t - 53. 5x + 9 = 5 + 3x4. 4z + 3 = 6 + 2z6. 8x + 4 = 3(x - 1) + 75. 2x - 1 = 14 - x4 $\frac{2x}{3} + 1 = \frac{7x}{15}$ 7. $x = \frac{1}{5}(x+10)$ 9. $2y + \frac{5}{3} = \frac{26}{3} - y$ 10. 3m = 5m -5 Sol. 1. The given linear equation is 3x = 2x + 18(Transposing 2x to L.H.S.) 3x - 2x = 18x = 18-To check: On putting x = 18 in L.H.S. and R.H.S. of the given equation, $L.H.S. = 3x = 3 \times 18 = 54$ R.H.S. = $2x + 18 = 2 \times 18 + 18$ = 36 + 18 = 54L.H.S. = R.H.S.Hence, x = 18 is the required solution. 2. The given linear equation is 5t - 3 = 3t - 55t - 3t = -5 + 3(Transposing 3t to L.H.S. and 3 to R.H.S.) 2t = -2(Dividing both sides by 2.) 2 - 2 To check: On putting t = -1, in L.H.S. and R.H.S. of the given equation, L.H.S. = $5t - 3 = 5 \times (-1) - 3 = -5 - 3 = -8$ R.H.S. = $3t - 5 = 3 \times (-1) - 5 = -3 - 5 = -8$

L.H.S. = R.H.S.

 \Rightarrow

Hence, t = -1 is the required solution.

28 Mathematics-VIII	LINEAR EQUATIONS IN ONE VARIABLE 29
3. The given linear equation is $5r + 9 = 5 + 2r$	$\Rightarrow 2x + x = 14 + 1$ (Transposing x to L.H.S. and 1 to R.H.S.)
$\Rightarrow 5x - 3x = 5 - 9 \qquad (\text{Transposing } 3x \text{ to } \text{L.H.S.} \\ \text{and } 9 \text{ to } \text{R.H.S.})$ $\Rightarrow 2x = -4$ $\Rightarrow \frac{2x}{2} = \frac{-4}{2} \qquad (\text{Dividing both sides by } 2.)$ or $x = -2$ To check: On putting $x = -2$ in L.H.S. and R.H.S. of the given equation, L.H.S. $= 5x + 9 = 5 \times (-2) + 9 = -10 + 9 = -1$ R.H.S. $= 5 + 3x = 5 + 3 \times (-2) = 5 - 6 = -1$ $\Rightarrow \text{L.H.S.} = \text{R.H.S.}$ Hence, $x = -2$ is the required solution.	$\Rightarrow \qquad 3x = 15$ $\Rightarrow \qquad \frac{3x}{3} = \frac{15}{3} \qquad \text{(Dividing both sides by 3.)}$ or $x = 5$ To check: On putting $x = 5$ in L.H.S. and R.H.S. of the given equation, $L.H.S. = 2x - 1 = 2 \times 5 - 1 = 10 - 1 = 9$ R.H.S. = 14 - x = 14 - 5 = 9 $\Rightarrow \qquad L.H.S. = R.H.S.$ Hence, $x = 5$, is the required solution. 6. The given linear equation is 8x + 4 = 3(x - 1) + 7 $\Rightarrow \qquad 8x + 4 = 3x - 3 + 7$ (Transposing 3r to
4. The given linear equation is 4z + 3 = 6 + 2z $\Rightarrow 4z - 2z = 6 - 3$ (Transposing 2z to L.H.S. and 3 to R.H.S.) $\Rightarrow 2z = 3$ (Dividing both sides by 2.) $\Rightarrow \frac{2z}{2} = \frac{3}{2}$ (Dividing both sides by 2.)	$\Rightarrow 8x - 3x = -3 + 7 - 4$ (Transposing 3x to L.H.S. and 4 to R.H.S.) $\Rightarrow 5x = 4 - 4$ $\Rightarrow 5x = 0$ or $x = \frac{0}{5} = 0$ (Dividing both sides by 5.)
or $z = \frac{3}{2}$ To check: On putting $z = \frac{3}{2}$ in L.H.S. and R.H.S. of the given equation, L.H.S. $= 4z + 3 = 4 \times \frac{3}{2} + 3 = 2 \times 3 + 3 = 6 + 3 = 9$	To check: On putting $x = 0$ in L.H.S. and R.H.S. of the given equation, L.H.S. = $8x + 4 = 8 \times 0 + 4 = 0 + 4 = 4$ R.H.S. = $3(x - 1) + 7 = 3(0 - 1) + 7 = -3 + 7 = 4$ \Rightarrow L.H.S. = R.H.S. Hence, $x = 0$ is the required solution. 7. The given linear equation is
R.H.S. = $6 + 2z = 6 + 2 \times \frac{3}{2} = 6 + 3 = 9$ \Rightarrow L.H.S. = R.H.S. Hence, $z = \frac{3}{2}$ is the required solution. 5. The given linear equation is 2x - 1 = 14 - x	$x = \frac{4}{5} (x + 10)$ $\Rightarrow 5x = 5 \times \frac{4}{5} (x + 10) \qquad \text{(Multiplying both sides by 5.)}$ $\Rightarrow 5x = 4 (x + 10)$ $\Rightarrow 5x = 4x + 40$

LINEAR EQUATIONS IN ONE VARIABLE

	Linter
$\Rightarrow 5x - 4x = 40$ (Transposing 4x to L.H.S.) or $x = 40$ To check:	$\Rightarrow \qquad 2y + y = \frac{26}{3} - \frac{5}{3} \qquad \text{(Transposing y to L.H.S.)}$
On putting $x = 40$ in L.H.S. and R.H.S. of the given equation,	and $\frac{5}{3}$ to R.H.S.)
L.H.S. = $x = 40$	26 5
PHS 4 (1110) 4 (10 10) 4	$\Rightarrow \qquad 3y = \frac{20-3}{3}$
R.H.S. = $\frac{4}{5}(x+10) = \frac{4}{5}(40+10) = \frac{4}{5} \times 50 = 40$	Land Hand and a 21 where a man 2 H H
$\Rightarrow L.H.S. = R.H.S.$ Hence, $x = 40$ is the required solution.	$\Rightarrow \qquad 3y = \frac{21}{3}$
8. The given linear equation is	$\Rightarrow \qquad \frac{3y}{3} = \frac{21}{3 \times 3} \qquad (\text{Dividing both sides by 3.})$
2x $7x$	
$\frac{2x}{3} + 1 = \frac{7x}{15} + 3$	or $y = \frac{1}{3}$
$\Rightarrow \qquad \frac{2x}{3} - \frac{7x}{15} = 3 - 1$	To check:
	On putting $y = \frac{7}{3}$ in L.H.S. and R.H.S. of the given equation,
$\left(\frac{\text{Transposing } \frac{7x}{15} \text{ to L.H.S. and 1 to R.H.S.}}{10 - 7} \right)$	L.H.S. = $2y + \frac{5}{3} = 2 \times \frac{7}{3} + \frac{5}{3} = \frac{14}{3} + \frac{5}{3} = \frac{14+5}{3} = \frac{19}{3}$
$\Rightarrow \qquad \frac{10x - 7x}{15} = 2$	
$\Rightarrow \qquad 3x = 30 \qquad (Multiplying both sides by 15.)$	R.H.S. = $\frac{26}{3} - y = \frac{26}{3} - \frac{7}{3} = \frac{26 - 7}{3} = \frac{19}{3}$
30	$\Rightarrow \qquad \text{L.H.S.} = \text{R.H.S.}$
	According to the conditions mine
or $x = 10$ To check:	Hence, $y = \frac{7}{3}$ is the required solution.
On putting $x = 10$ in L.H.S. and R.H.S. of the given equation,	10. The given linear equation is
L.H.S. = $\frac{2x}{3} + 1 = \frac{2 \times 10}{3} + 1 = \frac{20}{3} + 1 = \frac{20 + 3}{3} = \frac{23}{3}$	$3m = 5m - \frac{8}{5}$
R.H.S. = $\frac{7x}{15} + 3 = \frac{7 \times 10}{15} + 3 = \frac{7 \times 2}{3} + 3 = \frac{14}{3} + 3$	$\Rightarrow \qquad 3m - 5m = \frac{-8}{5} \qquad (\text{Transposing } 5m \text{ to L.H.S.})$
$=\frac{14+9}{3}=\frac{23}{3}$	$-2m = \frac{-8}{5}$
	$\Rightarrow -2m = \frac{-2m}{5}$ $\Rightarrow \frac{-2m}{5} = \frac{-8}{5}$ (Dividing both sides by 2.)
$\Rightarrow L.H.S. = R.H.S.$ Hence, $x = 10$ is the required solution.	$\Rightarrow \qquad \frac{-2m}{2} = \frac{-3}{5 \times 2} \qquad \text{(Dividing both sides by 2.)}$
9. The given linear equation is	Let when when a model $-m = \frac{-4}{\pi}$
	$\Rightarrow -m = \frac{1}{5}$
$2y + \frac{5}{3} = \frac{26}{3} - y$	or $m = \frac{4}{5}$
	0

To check:

On putting
$$m = \frac{4}{5}$$
 in L.H.S. and R.H.S. of given equation,

L.H.S. =
$$3m = 3 \times \frac{4}{5} = \frac{12}{5}$$

R.H.S. = $5m - \frac{8}{5} = 5 \times \frac{4}{5} - \frac{8}{5} = \frac{4}{1} - \frac{8}{5} = \frac{20 - 8}{5} = \frac{12}{5}$ \Rightarrow L.H.S. = R.H.S.

Hence, $m = \frac{4}{5}$ is the required solution.

EXERCISE 2.4 (Page -31-32)

- Q1. Amina thinks of a number and subtracts $\frac{5}{2}$ from it. She multiplies the result by 8. The result now obtained is 3 times the same number she thought of. What is the number?
- **Sol.** Let Amina think a number, x

 \Rightarrow

-

 \Rightarrow

or

After subtracting $\frac{5}{2}$ from it we have = x -

According to the conditions given,

$$8\left(x-\frac{5}{2}\right) = 3x$$
$$8x - \frac{8 \times 5}{2} = 3x$$
$$8x - 4 \times 5 = 3x$$

8x - 20 = 3r

8x - 3x = 20

(Transposing 3x to L.H.S. and 20 to R.H.S.)

2

(Dividing both sides by 5.)

Hence, the required number is 4.

x = 4

5x = 20

LINEAR EQUATIONS IN ONE VARIABLE

Q2. A positive number is 5 times another number. If 21 is added to both the numbers, then one of the new numbers becomes twice the other new number. What are the numbers? Sol. Let another number be x. Then, positive number = 5xAccording to the given conditions, (5x+21) = 2(x+21)5x + 21 = 2x + 425x - 2x = 42 - 21 (Transposing 2x to L.H.S. and 21 to R.H.S.) 3x = 21 $x = \frac{21}{3}$ (Dividing both sides by 3.) -Then, original number = 10 × 7^{-1} = x or and positive number, $5x = 5 \times 7 = 35$ Hence, required numbers are 7 and 35. Q3. Sum of the digits of a two-digit number is 9. When we interchange the digits, it is found that the resulting new number is greater than the original number by 27. What is the two-digit number? Sol. Given : sum of the digits of a two-digit number = 9 Let the units place digit of a number be x. Then, tens place digit of a number = 9 - x. So, the original number formed by these digits = 10(9 - x) + x(: 2-digit number = 10 times of tens place digit + unit place digit) On interchanging the digits, then new rumber = 10x + (9 - x)According to the conditions, New number = Original number + 27 10x + (9 - x) = 10(9 - x) + x + 2710x + 9 - x = 90 - 10x + x + 27 \Rightarrow 9x + 9 = 90 - 9x + 27 \Rightarrow 9x + 9x = 90 + 27 - 9(Transposing 9x to => L.H.S. and 9 to R.H.S.) 18x = 108 \Rightarrow

35	Mathematics-VIII LIN	4	
2x x + 5 (Interchanging the positions 5 (Transposing x to L.H.S. 5 at age = 5 years present age = $6x = 6 \times 5 = 30$ years. rectangular plot, reserved for a illage. The length and breadth of ratio 11 : 4. At the rate ₹ 100 per village panchayat ₹ 75,000 to fence he dimensions of the plot?	Dividing both sides by 18.) (9-x) + x (9-6) + 6 $\times 3 + 6 = 30 + 6 = 36$. Imber is 36. digit number is three erchange the digits of the resulting number	$\Rightarrow \qquad x = \frac{108}{18} \qquad \text{(Dividing both sides by 18.)}$ or $x = 6$ Hence, the two-digit number $= 10 (9 - x) + x$ $= 10 (9 - 6) + 6$ $= 10 \times 3 + 6 = 30 + 6 = 36.$ Therefore, the required two-digit number is 36. Q4. One of the two digits of a two-digit number is three times the other digit. If you interchange the digits of this two-digit number and add the resulting number to the original number, you get 88. What is the original number?	
breadth of the plot be 11 x and 4 x $= \frac{\text{Total cost}}{\text{Cost of 1 metre}}$ $= \frac{75000}{100} = 750 \text{ m}$ $+ \text{ breadth})$ $11x$ $2(11x + 4x) = 2 \times (15x)$ $30x$ $750 \qquad (Interchanging the positions.)$	x = 30x + x new number = $10x + 3x$ widing both sides by 44.)	Sol. Let the units place digit be x and tens place digit = $3x$ Then, original number = $10 \times 3x$ After interchanging the digits, t According to conditions, New number + original number 10x + 3x + 30x + x = 88 $\Rightarrow \qquad 44x = 88$ $\Rightarrow \qquad x = \frac{88}{44}$ or $\qquad x = 2$	
ì	viding both sides by 44.)	$10x + 3x + 30x + x = 88$ $\Rightarrow \qquad 44x = 88$ $\Rightarrow \qquad x = \frac{88}{44}$	

=

(Dividing both sides by 30.)

x = 25or Hence, length = $11x = 11 \times 25 = 275$ m.

and breadth = $4x = 4 \times 25 = 100$ m.

Therefore, the length and breadth of the plot are 275 m and 100 m.

Q7. Hasan buys two kinds of cloth materials for school uniforms, shirt material that costs him ₹ 50 per metre and trouser material that costs him ₹ 90 per metre. For every 2 metres of the trouser material he buys 3 metres of the shirt material. He sells the materials at

times the other digit. If you interchange the d
this two-digit number and add the resulting r
to the original number, you get 88. What is the on
number?
Let the units place digit be x
and tens place digit =
$$3x$$

Then, original number = $10 \times 3x + x = 30x + x$
After interchanging the digits, then new number = 10^{-1}
According to conditions,
New number + original number = 88
 $10x + 3x + 30x + x = 88$
 $\Rightarrow 44x = 88$
 $\Rightarrow 44x = 88$

= 60 + 2 = 62

Hence, required number = 62.

Q5. Shobo's mother's present age is six times Shobo's present age. Shobo's age five years from now will be one third of his mother's present age. What are their present ages?

Sol. Let Shobo's present age be x years and Shobo's mother's present age = 6x years After five years, Shobo's age = (x + 5) years According to the conditions,

$$x+5 = \frac{1}{3} \times 6x$$

750

S

12% and 10% profit respectively. His total sale is *₹ 36,600. How much trouser material did he buy? Sol. Let, ratio between shirt material and trouser material be 3x:2x. The cost of shirt material = $50 \times 3x = 150x$ The selling price at 12% gain = $\frac{100 + 12}{100} \times 150x$ $\because S.P. = \frac{100 + P\%}{100} \times C.P.$ $= \frac{112}{100} \times 150x = \frac{16800x}{100}$ = 168xThe cost of trouser material = $90 \times 2x = 180x$ The selling price at 10% profit = $\frac{100 + 10}{100} \times 180x$ $=\frac{110}{100} \times 180x = 198x$ According to the condition, 168x + 198x = 36,600366x = 36600 $x = \frac{36600}{366}$ (Dividing both sides by 366.) or x = 100Now, trouser material = 2x $= 2 \times 100 = 200$ metres. Hence, Hasan bought 200 metres of the trouser material. Q8. Half of a herd of deer are grazing in the field and three fourths of the remaining are playing nearby. The rest 9 are drinking water from the pond. Find the number of deer in the herd. **Sol.** Let the total number of deer in the herd be *x*. According to the conditions, and the stand when the strength the strength of the

*We take 36,600 in place of 36,660 as given in NCERT.

A				
	⇒	<i>x</i> =	$\frac{x}{2} + \frac{3}{4} \times$	$\left(\frac{2x-x}{2}\right)+9$
	⇒Dā gainoga	<i>x</i> =	$\frac{x}{2} + \frac{3}{4} \times$	$\frac{x}{2} + 9$
H.H.	ol do ben ⇒ od gaiga	<i>x</i> =	$\frac{x}{2} + \frac{3}{8}x +$	$+\frac{9}{1}$
	⇒		$\frac{4x+3x+}{8}$	
	⇒	<i>x</i> =	$\frac{7x+72}{8}$	
	⇒	8x =	7x + 72	(By cross multiplication)
		8x - 7x =	72	(Transposing 7x to L.H.S.)
	or	<i>x</i> =	72	evenera a soloraziva
		number o	f deer in th	he herd is 72.
	granddaug their prese	hter. He i nt ages.	s also 54 y	imes older than his years older than her. Find
ol.	Let present Grandfather			ghter be x years. : years
	According to			
				ghter's age + 54
		10x =	x + 54	Sol. The given linear equi
	⇒	10x - x =	54	(Transposing x to L.H.S.)
	⇒	9x =	54	
	⇒	<i>x</i> =	$\frac{54}{9}$	(Dividing both sides by 9.)
	or	<i>x</i> =	6	
	Hence, his g			
				$0 \times 6 = 60$ years.
210.	Aman's age he was five	e is three times hi	s son's ag	s son's age. Ten years ago e. Find their present ages.
Sol.	Let the pres			
	Aman's age	= 3x year	S	
	Ten years a	go, his sor	n's age = x	- 10
			0	10

Ten years ago, Aman's age = 3x - 10

39

	LINE
According to the condition,	
3x - 10 = 5(x - 10)	or
$\Rightarrow 3x - 10 = 5x - 50$	For
\Rightarrow -10 + 50 = 5x - 3x (Transposing 50 to L.H.S.	a lorge a
and 3r to R H S	Onj
$\Rightarrow 5x - 3x = 50 - 10$ (Interchanging the position.)	(B.H.H.d)
\Rightarrow $2x = 40$	L
$\Rightarrow \qquad x = \frac{40}{2} \qquad (\text{Dividing both sides by 20.})$	
$x = \frac{1}{2}$ (Dividing both sides by 20.) or $x = 20$	R
~ - 20	
Hence, Aman's son's age = 20 years and Aman's age = $2\pi - 2 = 20$	⇒
and Aman's age = $3x = 3 \times 20 = 60$ years.	
EXERCISE 2.5 (Page 33-34)	(Her
Solve the following line of the solution of th	2. The
Solve the following linear equations.	COE gd mb
1. $\frac{x}{2} - \frac{1}{5} = \frac{x}{3} + \frac{1}{4}$ 2. $\frac{n}{2} - \frac{3n}{4} + \frac{5n}{6} = 21$	
3. $x + 7 - \frac{8x}{3} = \frac{17}{6} - \frac{5x}{2}$ 4. $\frac{x-5}{3} = \frac{x-3}{5}$	
3t - 2 $2t + 2$ $3t - 3$	
5. $\frac{3t-2}{4} - \frac{2t+3}{3} = \frac{2}{3} - t$ 6. $m - \frac{m-1}{2} = 1 - \frac{m-2}{3}$	\Rightarrow
Sol. The given linear equation is	\Rightarrow
	-
1. $\frac{x}{2} - \frac{1}{5} = \frac{x}{3} + \frac{1}{4}$	-
	or
$\Rightarrow \qquad \frac{x}{2} - \frac{x}{3} = \frac{1}{4} + \frac{1}{5}$	Fo
	On
$\left(\frac{\text{Transposing } \frac{x}{3} \text{ to L.H.S. and } \frac{1}{5} \text{ to R.H.S.} \right)$	
3x-2x 5+4	
$\Rightarrow \frac{3x^2}{6} = \frac{3+4}{20}$	
- x 9	
$\Rightarrow \qquad \frac{x}{6} = \frac{9}{20}$	
\Rightarrow $x \times 6$ 9×6	He
$\Rightarrow \qquad \frac{x \times 6}{6} = \frac{9 \times 6}{20} \qquad (\text{Multiplying both sides by 6.})$	Laoilevil

 $x = \frac{27}{10}$ checking: putting $x = \frac{27}{10}$ in L.H.S. and R.H.S. of the given equation, L.H.S. $=\frac{x}{2} - \frac{1}{5} = \frac{27}{2 \times 10} - \frac{1}{5} = \frac{27}{20} - \frac{1}{5} = \frac{27 - 4}{20} = \frac{23}{20}$ R.H.S. = $\frac{x}{3} + \frac{1}{4} = \frac{27}{3 \times 10} + \frac{1}{4} = \frac{9}{10} + \frac{1}{4} = \frac{18+5}{20} = \frac{23}{20}$ L.H.S. = R.H.S.ence, the value of $x = \frac{27}{10}$ is the required solution. e given linear equation is $-\frac{3n}{4}+\frac{5n}{6}=21$ $\frac{n}{2}$ $\frac{6n - 9n + 10n}{12} = 21$ (L.C.M. of 2, 4 and 6 is 12.) $\frac{7n}{12} = \frac{21}{1}$ (By cross multiplication) $7n = 21 \times 12$ $\frac{7n}{7} = \frac{21 \times 12}{7}$ (Dividing both sides by 7.) n = 36or checking: n putting n = 36 in L.H.S. of the given equation, L.H.S. = $\frac{n}{2} - \frac{3n}{4} + \frac{5n}{6}$ $= \frac{36}{2} - \frac{3 \times 36}{4} + \frac{5 \times 36}{6}$ $= 18 - 3 \times 9 + 5 \times 6$ = 18 - 27 + 30 = 21 = R.H.S.

Hence, the value of n = 36 is the required solution.

3. The given linear equation is 5x - 25 = 3x - 9 \Rightarrow $x + 7 - \frac{8x}{3} = \frac{17}{6} - \frac{5x}{2}$ 5x - 3x = -9 + 25 (Transposing 3x to L.H.S. = and 25 to R.H.S.) $\Rightarrow \quad \frac{x}{1} - \frac{8x}{3} + \frac{5x}{2} = \frac{17}{6} - \frac{7}{1} \quad \text{(Transposing } \frac{5x}{2} \text{ to L.H.S.}$ 2x = 16 \Rightarrow $x = \frac{16}{2}$ (Dividing by 2 on both sides.) \Rightarrow and 7 to R.H.S.) $\Rightarrow \frac{6x - 16x + 15x}{6} = \frac{17 - 42}{6}$ or For checking: $\Rightarrow \qquad \left(\frac{21x - 16x}{6}\right) = \frac{-25}{6}$ On putting x = 8 in L.H.S. and R.H.S. of the given equation, L.H.S. = $\frac{x-5}{3} = \frac{8-5}{3} = \frac{3}{3} = 1$ R.H.S. = $\frac{x-3}{5} = \frac{8-3}{5} = \frac{5}{5} = 1$ $\Rightarrow \qquad \frac{5x}{6} = \frac{-25}{6}$ $\Rightarrow \qquad 5x \times 6 = 6 \times -25 \qquad (By cross multiplication.)$ \Rightarrow 30x = -150 \Rightarrow L.H.S. = R.H.S. $\Rightarrow \qquad x = \frac{-150}{30} \quad \text{(Dividing both sides by 30.)}$ Hence, the value of x = 8 is the required solution. 5. The given linear equation is $\frac{3t-2}{4} - \frac{2t+3}{3} = \frac{2}{3} - t$ or x = -5For checking: On putting, x = -5 in L.H.S. and R.H.S. of the given equation, $\Rightarrow \quad \frac{3(3t-2)-4(2t+3)}{12} = \frac{2-3t}{3} \text{ (L.C.M. of 4 and 3 is 12.)}$ L.H.S. = $x + 7 - \frac{8x}{3} = -5 + 7 - \frac{8 \times (-5)}{3}$ $\Rightarrow \frac{9t-6-8t-12}{12} = \frac{2-3t}{3}$ $= 2 + \frac{40}{3} = \frac{6+40}{3} = \frac{46}{3}$ $\Rightarrow \qquad \frac{t-18}{12} = \frac{2-3t}{3}$ R.H.S. = $\frac{17}{6} - \frac{5x}{2} = \frac{17}{6} - \frac{5 \times (-5)}{2}$ $\Rightarrow \qquad t-18 = 12 \times \frac{(2-3t)}{3} = 4(2-3t)$ $=\frac{17}{6}+\frac{25}{2}=\frac{17+75}{6}=\frac{92}{6}$ (Multiplying both sides by 12.) $=\frac{46}{2}$ = L.H.S. \Rightarrow t-18 = 8-12t \Rightarrow t + 12t = 8 + 18 (Transposing 12t to L.H.S. = R.H.S. \Rightarrow L.H.S. and 18 to R.H.S.) Hence, the value of x = -5 is the required solution. \Rightarrow 13t = 26 4. The given linear equation is \Rightarrow $t = \frac{26}{13}$ (Dividing both sides by 13.) x-5 x-3 $\frac{1}{3} = \frac{1}{5} = 1$ or $\frac{1-1}{2} = \frac{1-1}{2} = \frac{1}{2} \frac{t}{2} = \frac{2}{2} \frac{t}{2} \frac{t}{2} = \frac{2}{2} \frac{t}{2} \frac{t}{$ $5 \times (x-5) = 3 \times (x-3)$ (By cross multiplication.) =>

LINEAR EQUATIONS IN ONE VARIABLE

S

m-2

For checking; On putting t = 2 in L.H.S. and R.H.S. of the given equation, L.H.S. = $\frac{3t-2}{4} - \frac{2t+3}{3} = \frac{3 \times 2 - 2}{4} - \frac{2 \times 2 + 3}{3}$ $= \frac{6-2}{4} - \frac{4+3}{3} = \frac{4}{4} - \frac{7}{3} = 1 - \frac{7}{3} = \frac{3-7}{3} = \frac{-4}{3}$ R.H.S. = $\frac{2}{3} - t = \frac{2}{3} - \frac{2}{1} = \frac{2-6}{3} = \frac{-4}{3}$ L.H.S. = R.H.S. hildiven equation, Hence, the value of t = 2 is the required solution. 6. The given linear equation is $m - \frac{m-1}{2} = 1 - \frac{m-2}{3}$ $\Rightarrow \quad \frac{m}{1} - \frac{m-1}{2} + \frac{m-2}{3} = 1 \text{ (Transposing } \frac{m-2}{3} \text{ to R.H.S.)}$ $\Rightarrow \frac{6m - 3(m-1) + 2(m-2)}{6} = 1 \quad (\text{L.C.M. of } 1, 2 \text{ and } 3 \text{ is } 6.)$ $\Rightarrow \frac{6m - 3m + 3 + 2m - 4}{6} = 1$ $\frac{5m-1}{6} = 1$ \Rightarrow 5m - 1 = 6(Multiplying both sides by 6.) \Rightarrow 5m = 6 + 1(Transposing 1 to R.H.S.) \Rightarrow 5m = 7 \Rightarrow $m = \frac{7}{5}$ (Dividing both sides by 5.) \Rightarrow For checking: On putting $m = \frac{7}{5}$ in L.H.S. and R.H.S. of the given equation, 2 H M to 81 brue . 8:37 . 1 L.H.S. $= m - \frac{m-1}{2} = \frac{7}{5} - \frac{\frac{7}{5}-1}{2} = \frac{7}{5} - \frac{\frac{7}{5}-\frac{1}{1}}{2} = \frac{7}{5} - \frac{\frac{7-5}{5}}{\frac{5}{2}}$ 2 ting both sides by 13.1 $=\frac{7}{5}-\frac{\overline{5}}{2}=\frac{7}{5}-\frac{2}{5\times 2}=\frac{7}{5}-\frac{1}{5}=\frac{7-1}{5}=\frac{6}{5}$

R.H.S. =
$$1 - \frac{3}{3} = 1 - \frac{3}{3} = 1 - \frac{3}{3} = 1 - \frac{3}{3} = 1 - \frac{3}{3}$$

= $1 + \frac{3}{5\times3} = 1 + \frac{1}{5} = \frac{5+1}{5} = \frac{6}{5}$
 \Rightarrow L.H.S. = R.H.S.
Hence, the value of $m = \frac{7}{5}$ is the required solution.
implify and solve the following linear equations.
7. $3(t-3) = 5(2t+1)$
8. $15(y-4) - 2(y-9) + 5(y+6) = 0$
9. $3(5z-7) - 2(9z-11) = 4(8z-13) - 17$
10. $0.25(4f-3) = 0.05(10f-9)$
Sol. 7. The given linear equation is
 $3(t-3) = 5(2t+1)$
 \Rightarrow $3t-9 = 10t+5$
 \Rightarrow $3t-10t = 9+5$ (Transposing 9 to R.H.S. and
 $10t$ to L.H.S.)
 \Rightarrow $-7t = 14$
 \Rightarrow $t = \frac{14}{-7}$ (Dividing both sides by -7 .)
or $t = -2$
For checking:
L.H.S. = $3(t-3) = 3(-2-3) = 3(-5) = -15$
R.H.S. = $5(2t+1) = 5[2\times(-2)+1] = 5[-4+1] = 5(-3) = -15$
 \Rightarrow L.H.S. = R.H.S.
Hence, $t = -2$ is the required solution.
8. $15(y-4)-2(y-9)+5(y+6) = 0$
 \Rightarrow $15y-60-2y+18+5y+30 = 0$
 \Rightarrow $15y+5y-2y-60+30+18 = 0$
 \Rightarrow $18y-12 = 0$
 \Rightarrow $18y = 12$
(Transposing 12 to R.H.S.)
 \Rightarrow $y = \frac{12}{18}$
(Dividing both sides by 18.)

7 2

7 - 10

42

-3

R.H.S. = 4(8z - 13) - 17or $y = \frac{2}{3}$ $= 4(8 \times 2 - 13) - 17$ For checking: = 4(16-13)-17 $= 4 \times 3 - 17$ On putting $y = \frac{2}{3}$ in L.H.S. of the given equation, = 12 - 17 = -5L.H.S. = 15(y-4) - 2(y-9) + 5(y+6)L.H.S. = R.H.S.Hence, z = 2 is the required solution. $= 15\left(\frac{2}{3}-4\right) - 2\left(\frac{2}{3}-9\right) + 5\left(\frac{2}{3}+6\right)$ 10. The given equation is 0.25(4f-3) = 0.05(10f-9) $= 15\left(\frac{2-12}{3}\right) - 2\left(\frac{2-27}{3}\right) + 5\left(\frac{2+18}{3}\right)$ 1.00f - 0.75 = 0.50f - 0.45= (Transposing 0.50f to 1.00f - 0.50f = -0.45 + 0.75 \Rightarrow $= 15 \times \left(\frac{-10}{3}\right) - 2 \times \left(\frac{-25}{3}\right) + 5 \times \left(\frac{20}{3}\right)$ L.H.S. and 0.75 to R.H.S.) 0.50f = 0.3 $= \frac{(-150)}{3} + \frac{50}{3} + \frac{100}{3} = \frac{-150 + 50 + 100}{3}$ $f = \frac{0.3}{0.50}$ (Dividing both sides by 0.50.) $= \frac{-150 + 150}{3} = \frac{0}{3} = 0 = \text{R.H.S.}$ f = 0.6For checking: Hence, $y = \frac{2}{3}$ is the required solution. On putting f = 0.6 in L.H.S. and R.H.S. of the given equation, L.H.S. = $0.25 (4f - 3) = 0.25 (4 \times 0.6 - 3)$ 9. The given linear equation is $= 0.25(2.4 - 3) = 0.25 \times (-0.6) = -0.150$ 3(5z-7) - 2(9z-11) = 4(8z-13) - 17R.H.S. = $0.05(10f - 9) = 0.05(10 \times 0.6 - 9)$ $\Rightarrow 15z - 21 - 18z + 22 = 32z - 52 - 17$ $= 0.05 \times (6.0 - 9) = 0.05 \times -3 = -0.15$ -3z + 1 = 32z - 69= L.H.S. = R.H.S. \Rightarrow -3z - 32z = -69 - 1 (Transposing 1 to R.H.S. -Hence, f = 0.6 is the required solution. and 32z to L.H.S.) \Rightarrow -35z = -70EXERCISE 2.6 (Page-35) $z = \frac{-70}{-35}$ (Dividing both sides by - 35.) Solve the following equations. 1. $\frac{8x-3}{3x} = 2$ 2. $\frac{9x}{7-6x} = 15$ 3. $\frac{z}{z+15} = -$ 0 = (z = 2 + (1 - y)) = (1 - y)or For checking: On putting z = 2 in L.H.S. and R.H.S. of the given equation, 4. $\frac{3y+4}{2-6y} = \frac{-2}{5}$ 5. $\frac{7y+4}{y+2} = \frac{-4}{3}$ L.H.S. = 3(5z - 7) - 2(9z - 11) $= 3(5 \times 2 - 7) - 2(9 \times 2 - 11)$ **Sol.** 1. The given equation is $\frac{8x-3}{3x} = 2$ = 3(10-7) - 2(18-11) $= 3 \times 3 - 2 \times 7$

 $\frac{(8x-3)}{3x} \times 3x = 2 \times 3x$ (Multiplying both sides by 3x.)

44

LBL of arbitration and provide the 9-14=-5

MATHEMATICS-VIII

LINEAR EQUATIONS IN ONE VARIABLE

I INEAR EQUATIONS IN ONE VARIABLE

 \Rightarrow

or

 \Rightarrow

 \Rightarrow

or

8x - 3 = 6x \Rightarrow 8x - 6x = 3 (Transposing 6x to L.H.S. and 3 to R.H.S.) 2x = 3 $\frac{2x}{2} = \frac{3}{2}$ (Dividing both sides by 2.) $x = \frac{3}{2}$ \Rightarrow Hence, $x = \frac{3}{2}$ is the required solution. 2. The given equation is $\frac{9x}{7-6x} = 15$ $\Rightarrow \quad \frac{9x \times (7-6x)}{(7-6x)} = 15 \times (7-6x) \qquad \text{(Multiplying both)}$ sides by (7 - 6x).) $\Rightarrow 9x = 15 \times (7 - 6x)$ \Rightarrow 9x = 105 - 90x9x + 90x = 105 \Rightarrow (Transposing 90x to L.H.S.) 99x = 105105 $\Rightarrow \qquad x = \frac{100}{99} \qquad (\text{Dividing both sides by 99.})$ or $x = \frac{35}{33}$ Hence, $x = \frac{35}{33}$ is the required solution. 3. The given equation is $\frac{z}{z+15} = \frac{4}{9}$ $\Rightarrow \quad \frac{z}{(z+15)} \times (z+15) = \frac{4}{9} \times (z+15)$ (Multiplying both sides by (z + 15).) $\Rightarrow \qquad z = \frac{4}{9} \times (z+15)$ $9 \times z = 9 \times \frac{4}{9} (z + 15)$ (Multiplying both sides by 9.) $\Rightarrow \qquad 9z = 4(z+15)$

9z = 4z + 60(Transposing 4z to L.H.S.) \Rightarrow 9z - 4z = 605z = 60 $\frac{5z}{5} = \frac{60}{5}$ (Dividing both sides by 5.) z = 12Hence, z = 12 is the required solution. 4. The given equation is $\frac{3y+4}{2-6y} = \frac{-2}{5}$ $\Rightarrow \frac{(3y+4)}{(2-6y)} \times (2-6y) = \frac{-2}{5} \times (2-6y)$ (Multiplying both sides by (2-6y).) $\Rightarrow \qquad (3y+4) = \frac{-2}{5} \times (2-6y)$ $(3y+4) \times 5 = \frac{-2}{5} (2-6y) \times 5$ (Multiplying both sides by 5.) $(3y + 4) \times 5 = -2(2 - 6y)$ 15y + 20 = -4 + 12y15y - 12y = -4 - 20(Transposing 12y to L.H.S. and 20 to R.H.S.) 3y = -24Ka + → vol emble 2 $y = \frac{-24}{3}$ (Dividing both sides by 3.) Hence, the required value of y is -8. 5. The given equation is $\frac{7y+4}{y+2} = \frac{-4}{3}$ $\Rightarrow \frac{7y+4}{(y+2)} \times (y+2) = \frac{-4}{3} \times (y+2)$ (Multiplying both sides by (y + 2).) $7y + 4 = \frac{-4}{3}(y + 2)$ $3 \times (7y+4) = 3 \times \frac{-4}{3} (y+2)$ (Multiplying both sides

ts numerator by S. If the numer

by 3.)

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

48 MATHEMATICS-VIII 21y + 12 = -4y - 8 \Rightarrow 21y + 4y = -8 - 12 (Transposing 4y to L.H.S. and 12 to R.H.S.) \Rightarrow 25y = -20 $y = \frac{-20}{25}$ (Dividing both sides by 25.) => times a = 12 is the required solut or y = -Hence, $y = \frac{-4}{\kappa}$ is the required solution. Q6. The ages of Hari and Harry are in the ratio 5:7. Four years from now the ratio of their ages will be 3:4. Find their present ages. **Sol.** Let the ages of Hari and Harry be 5x years and 7x years. After four years, the age of Hari = (5x + 4) years

and, the age of Harry = (7x + 4) years According to the conditions,

5x + 4 $\frac{3x+1}{7x+4} = \frac{3}{4}$ $\Rightarrow \frac{(5x+4)}{(7x+4)} \times (7x+4) = \frac{3}{4} \times (7x+4)$ (Multiplying both sides by (7x + 4) $(5x+4) = \frac{3}{4} \times (7x+4)$ $\Rightarrow \qquad 4 \times (5x+4) = 4 \times \frac{3}{4} \times (7x+4)$ (Multiplying both sides by 4) 20x + 16 = 21x + 1220x - 21x = 12 - 16(Transposing 21x to L.H.S. and 16 to R.H.S.) \Rightarrow d solar direction -x = -4or x = 4Hence, the age of Hari = $5x = 5 \times 4 = 20$ years

Age of Harry = $7x = 7 \times 4 = 28$ years. Q7. The denominator of a rational number is greater than its numerator by 8. If the numerator is increased by 17

and the denominator is decreased by 1, the number obtained is $\frac{3}{2}$. Find the rational number. Sol. Let the numerator of a rational number be x, the denominator is x + 8. Learn and Remamber $\frac{x}{8+x}$ Rational number = According to the conditions, x+17 and 3 alterated to mining own satisfied $= \frac{1}{2}$ month is full the bas length and the state of the state o x + 8 - 1x + 17 $\frac{x+17}{x+7} = \frac{3}{2}$ $\frac{(x+17)}{(x+7)} \times (x+7) = \frac{3}{2} \times (x+7)$ ing both sides by (x + 7).) $\Rightarrow \qquad x+17 = \frac{3}{2} (x+7)$ $2 \times (x + 17) = 2 \times \frac{3}{2} (x + 7)$ (Multiplying both sides by 2.) 2x + 34 = 3x + 212x - 3x = 21 - 34(Transposing 3x to L.H.S. and 34 to R.H.S.) -x = -13x = 13in lasting lange to the 13 Hence, the required rational number $\frac{x}{x+8} = \frac{13+8}{13+8}$ 13 21 A rectanglish wine all four spices