16
 Playing with Numbers

Learn and Remember

1. Numbers can be written in general form. Thus, a two digit number $a b$ will be written as

$$
a b=10 a+b
$$

And three digit number $a b c$ can be written as $a b c=100 a+$ $10 b+c$.
2. The general forms of numbers are helpful in solving puzzles or number games.
3. The reasons for the divisibility of numbers by $10,5,2,9$ or 3 can be given when numbers are written in general form.
4. All these numbers $10,2,4,6,8$ whose place digits or ones place digits are $0,2,4,6,8$ is divisible by 2 . These numbers are also called even numbers.
5. If the sum of digits of a two digit number and its reversing order of digits is always divisible by 11 .
6. Difference of a two digit number and the number obtained by its reversing the order of digits is always divisible by 9 .
7. Difference of a three digit number and the number obtained by its reversing the order of digits is always divisible by 99.
8. If the sum of the digits of a number and the number obtained by reversing the order of digits in cyclic form is always divisible by 37 .
9. If the difference of the sum of digits in odd place and the sum of digits in even places from L.H.S. is obtained as $0,11,22$, then the number is divisible by 11.
10. If the sum of digits of a number is divisible by 9 , then that number is divisible by 9 .

TEXTBOOK QUESTIONS SOLVED

EXERCISE 16.1 (Page-255-256)

Find the values of the letters in each of the following and give reasons for the steps involved.
1.

3 A
$+\quad 25$
B 2

Sol. On putting $\mathrm{A}=1,2,3,4,5,6$ that is
$1+5=6<12$
$2+5=7<12,3+5=8<12$
and so on $7+5=12$ which is equal to 12 .
then, $\quad \mathrm{A}=7$
Put 2 and carry over 1
$1+3+2=6=B$
Hence, $\mathrm{A}=7$ and $\mathrm{B}=6$.
2.

4 A
$+\quad 98$
$\mathrm{C} B 3$

Sol. On putting $A=5$, we get $8+5=13$.
Put 3 at ones place and carry over 1 .
Now, $1+4+9=14$, that means $\mathrm{B}=4$ and $\mathrm{C}=1$
Hence, $\mathrm{A}=5, \mathrm{~B}=4$ and $\mathrm{C}=1$.
3. 1 A

$\times \mathrm{A}$
9 A

Sol. Here value of A on these three places would be same.
If $A=1$, we are not getting nine at tens place.
So, on putting $\mathrm{A}=6$.
We are getting 96 .
Hence, $\mathrm{A}=6$.
4.

A B
$+\quad 37$
6 A

Sol. Here, we observe that $\mathrm{B}=5$ so that $7+5=12$. Put 2 at ones place and carry over 1 or $\mathrm{A}=2$.
Now, $\quad 2+3+1=6$.
Hence, $\mathrm{A}=2$ and $\mathrm{B}=5$.
5.

$$
\begin{array}{r}
\mathrm{A} \text { B } \\
\times \quad 3 \\
\hline \mathrm{C} \mathrm{AB} \\
\hline
\end{array}
$$

Sol. Here, on putting $B=0$, we get $0 \times 3=0$.
$A=5$, then $5 \times 3=15$, means $A=5, C=1$
Hence $\mathrm{A}=5, \mathrm{~B}=0$ and $\mathrm{C}=1$
6.

$$
\begin{array}{r}
\mathrm{A} \text { B } \\
\times \quad 5 \\
\hline \mathrm{C} \mathrm{AB} \\
\hline
\end{array}
$$

Sol. On putting $B=0$, we get $0 \times 5=0$ and $A=5$, then $5 \times 5=25$ means $\mathrm{A}=5, \mathrm{C}=2$.
Hence, $\mathrm{A}=5, \mathrm{~B}=0$ and $\mathrm{C}=2$.
7.

$$
\begin{array}{r}
\mathrm{A} B \\
\times \quad 6 \\
\hline \mathrm{~B} \mathrm{~B} \mathrm{~B} \\
\hline
\end{array}
$$

Sol. Here, product of B and 6 must be same as ones place digit as B.

$$
6 \times 1=6,6 \times 2=12,6 \times 3=18,6 \times 4=24
$$

On putting $B=4$ we get the ones digit 4 and remaining two B 's value must be 44 .
For $6 \times 7=42+2=44$.
Hence, $\mathrm{A}=7$ and $\mathrm{B}=4$.
8.

$$
\begin{array}{r}
A 1 \\
+\quad 10 \\
\hline B 0 \\
\hline
\end{array}
$$

Sol. On putting $B=9,9+1=10$.
Put 0 at ones place and carry over 1 .

For $\mathrm{A}=7$. Now, $\mathrm{A}=7+1+1=9$.
Hence, $\mathrm{A}=7$ and $\mathrm{B}=9$.
9.

$$
\begin{array}{r}
2 \mathrm{~A} B \\
+\mathrm{A} \quad \mathrm{~B} \\
\hline \mathrm{~B} 188 \\
\hline
\end{array}
$$

Sol. On putting $B=7$, that means $7+1=8$ and
Now $A=4$, then $A=4+7=11$.
Put 1 at tens place and carry over 1 .
Now, $2+4+1=7$.
Hence, $\mathrm{A}=4$ and $\mathrm{B}=7$.
10. 12 A

$$
+\begin{array}{lll}
6 & \mathrm{~A} & \mathrm{~B} \\
\hline \mathrm{~A} 0 & 0
\end{array}
$$

Sol. Here, $\mathrm{A}=8$ and $\mathrm{B}=1$.
Now, $\quad 8+1=9$
Now again when we add $2+8=10$.
Tens place digit is ' 0 ' and carry over 1 .
Now, $\quad 1+6+1=8=\mathrm{A}$
Hence, $\mathrm{A}=8$ and $\mathrm{B}=1$.

EXERCISE 16.2 (Page -260)

Q1. If $21 y 5$ is a multiple of 9 , where y is a digit, what is the value of y ?
Sol. Since, $21 y 5$ is a multiple of 9 .
Its sum of digits $2+1+y+5=8+y$ is a multiple of 9 . $\mathrm{So}, 8+$ y is either 0 or 9 or 18 or 27 \qquad
This is possible when $8+y=9$ or 18 or 27 \qquad
If $\quad 8+y=9$
$\Rightarrow \quad y=9-8=1$
Q2. If $31 z 5$ is a multiple of 9 , where z is a digit, what is the value of z ? You will find that there are two answers from the last problem. Why is this so?

Sol. Since, $31 z 5$ is a multiple of 9 .
Sum of digits $3+1+z+5=9+z$ is a multiple of 9 . So, $9+z$ is either 0 or 9 or 18 or 27 since z is a digit.
This is possible when $9+z=9$ or 18 or $27, \ldots \ldots$.

$$
\begin{aligned}
\Rightarrow & z & =9-9 \\
\Rightarrow & z & =0 \\
\text { If } & 9+z & =18 \\
& z & =18-9=9
\end{aligned}
$$

Hence, 0 and 9 are two possible answers.
Q3. If $24 x$ is a multiple of 3 , where x is a digit, what is the value of x ?
Sol. (Since $24 x$ is a multiple of 3 , its sum of digits $6+x$ is a multiple of 3 ; so $6+x$ is one of these numbers: $0,3,6,9,12$, $15,18, \ldots \ldots$. . But since, x is a digit. Therefore, it can only be that $6+x=6$ or 9 or 12 or 15 , therefore $x=0$ or 3 or 6 or 9 or 12 or 15 . Therefore, $x=0$ or 3 or 6 or 9 . Thus, x can have any of four different values.
Q4. If $31 z 5$ is a multiple of 3 , where z is a digit, what might be the values of z ?
Sol. It is given that $31 z 5$ is a multiple of 3 .
Sum of its digits is $3+1+z+5=9+z$ is multiple of 3 , so $9+$ z is one of these numbers $9,12,15$, so on.
This is possible when $9+z=9,12,15,18, \ldots .$.
If

$$
9+z=9
$$

$$
\text { or If } \quad 9+z=12
$$

$$
\Rightarrow \quad z=9-9
$$

$$
\Rightarrow \quad z=12-9
$$

$$
\Rightarrow \quad z=0
$$

$$
\Rightarrow \quad z=3
$$

Possible values of z are 0 or 3 .

If	$9+z=15$	or If	$9+z=18$
\Rightarrow	$z=15-9$	\Rightarrow	$z=18-9$
\Rightarrow	$z=6$	\Rightarrow	$z=9$

Hence, four possible values of z are $0,3,6$ and 9 .

