Practical Geometry

Learn and Remember

1. For constructing unique quadrilateral, the following measurements must be given:
In case of :
(i) When four sides and one diagonal are given.
(ii) When two diagonals and three sides are given.
(iii) When two adjacent sides and three angles are given.
(iv) When three sides and two included angles are given.
(v) Sometimes other properties are given to construct quadrilateral.
(vi) Three measurements are enough to draw a triangle.
(i) When a rhombus is constructed, then draw a diagonal of given length and draw perpendicular bisector of its diagonal base.
(ii) Take half length of the given measurement, draw arcs up and down cutting down perpendicular lines taking centre at bisector point.
(iii) Join up and down cutting arcs to the end point of drawn first diagonal. It will be a required rhombus.
2. Five measurements can determine a quadrilateral unique.
3. Before constructing a quadrilateral, one must draw a rough sketch of given measurements.
4. Trapezium, rhombus and square are different forms of a $\|^{\mathrm{gm}}$.
5. A rhombus can be a parallelogram, but a parallelogram cannot be a rhombus.
6. A square and a rhombus both have equal sides and a square can be a rhombus but a rhombus cannot be a square.

TEXTBOOK QUESTIONS SOLVED

EXERCISE 4.1 (Page-60)

Q1. Construct the following quadrilaterals.
(i) Quadrilateral ABCD.
$\mathrm{AB}=4.5 \mathrm{~cm}, \mathrm{BC}=5.5 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}, \mathrm{AD}=6 \mathrm{~cm}$, $\mathrm{AC}=7 \mathrm{~cm}$
(ii) Quadrilateral JUMP
$J \mathrm{U}=3.5 \mathrm{~cm}, \mathrm{UM}=4 \mathrm{~cm}, \mathrm{MP}=5 \mathrm{~cm}, \mathrm{PJ}=4.5 \mathrm{~cm}$,
$\mathrm{PU}=6.5 \mathrm{~cm}$.
(iii) Parallelogram MORE
$\mathrm{OR}=6 \mathrm{~cm}, \mathrm{RE}=4.5 \mathrm{~cm}, \mathrm{EO}=7.5 \mathrm{~cm}$
(iv) Rhombus BEST
$\mathrm{BE}=4.5 \mathrm{~cm}, \mathrm{ET}=6 \mathrm{~cm}$
Sol. (i) To construct a quadrilateral ABCD , the measurements have been given below
$\mathrm{AB}=4.5 \mathrm{~cm}, \mathrm{BC} 5.5 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}, \mathrm{AD}=6 \mathrm{~cm}$ and $\mathrm{AC}=7 \mathrm{~cm}$
Here is the rough sketch of quadrilateral $A B C D$.

Construction:

Step 1. Draw $\mathrm{AB}=4.5 \mathrm{~cm}$.
Step 2. Draw an arc taking radius 5.5 cm from point B.
Step 3. Taking radius 7 cm , draw an another arc from point A which intersects the first arc at point C , join BC and
 AC.
Step 4. Now draw an arc of radius 6 cm from point A and draw another arc of radius 4 cm from point C which intersect at D . Join AD and CD . It is required quadrilateral $A B C D$.
(ii) Here is the rough sketch of the quadrilateral JUMP

Construction:

Step 1. Draw JU $=3.5 \mathrm{~cm}$.
Step 2. Draw an arc of radius 4.5 cm taking centre J and then draw another arc of radius 6.5 cm taking U as centre, both ares intersect at P.
Step 3. Join PJ and PU.
Step 4. Now draw arc of radius 5 cm and 4 cm taking P and U as centres respectively. Which intersect at M and join MP and MU.
It is a required quadri-
 lateral JUMP.
(iii) Here is the rough sketch of the quadrilateral MORE.

Construction:

Step 1. Draw OR $=6 \mathrm{~cm}$.
Step 2. Draw arcs of radius 7.5 cm and radius 4.5 cm taking O and R as centres, which intersect at E. Join OE and RE.
Step 3. Draw an arc of 6 cm radius taking E as centre.
Step 4. Draw another arc of 4.5 cm radius taking O as centre, which intersect at M.

Join OM and EM. It is required parallelogram MORE.
(iv) Here is the rough sketch of the quadrilateral BEST.

Construction:

Step 1. Draw $\mathrm{TE}=6 \mathrm{~cm}$ and bisect it into two equal parts.
Step 2. Draw up and down perpendiculars to TE.
Step 3. Draw two ares of 4.5 cm taking T and E as centres which intersect at S .
Step 4. Again draw two arcs of 4.5 cm taking E and T as centres, which intersect at B.
Join TS, ES, BT and EB.
It is the required rhombus BEST.

EXERCISE 4.2 (Page-62)

1. Construct the following quadrilaterals.
(i) Quadrilateral LIFT.
$\mathrm{LI}=4 \mathrm{~cm}, \mathrm{IF}=3 \mathrm{~cm}, \mathrm{TL}=2.5 \mathrm{~cm}, \mathrm{LF}=4.5 \mathrm{~cm}$,
IT $=\mathbf{4} \mathbf{c m}$.
Here rough sketch of the quadrilateral LIFT is given along side.

Construction :

Step 1. Draw a line segment $\mathrm{LI}=4 \mathrm{~cm}$.
Step 2. Taking radius 4.5 cm , draw an are taking L as centre.
Step 3. Draw an arc of 3 cm taking I as centre

which intersects the first arc at F and join FI and FL.
Step 4. Now, draw another arc of radius 2.5 cm taking L as centre and 4 cm taking I as centre.

Both ares intersect at T. Join TF, TL and TI.
LIFT is the required quadrilateral.
(ii) Quadrilateral GOLD
$\mathrm{OL}=7.5 \mathrm{~cm}, \mathrm{GL}=6 \mathrm{~cm}, \mathrm{GD}=6 \mathrm{~cm}, \mathrm{LD}=5 \mathrm{~cm}$, $O D=10 \mathrm{~cm}$
Sol. Rough sketch of GOLD

Steps of construction :

Step 1. Draw a line segment $\mathrm{OL}=7.5 \mathrm{~cm}$.
Step 2. Draw an arc of radius 5 cm taking L as centre and another arc of radius 10 cm taking O as centre which intersect the first are point at D and join LD and OD.
Step 3. Now draw an arc of radius 6 cm from D and draw another arc of radius 6 cm taking L as centre.
Step 4. Which intersect at G. And join GL.

Step 5. Join GD and GO.
GOLD is the required quadrilateral.
(iii) Rhombus BEND
$\mathrm{BN}=5.6 \mathrm{~cm}, \mathrm{DE}=6.5 \mathrm{~cm}$

Sol. Rough sketch of BEND is given below :

Steps of construction:
Sol. Step 1. Draw $\mathrm{DE}=6.5 \mathrm{~cm}$.
Step 2. Draw perpendicular bisector of line segment DE.
Step 3. Draw two arcs of radius 2.8 cm from intersection point O , which intersects the line BN at B and N .
Step 4. Join BE, BD as well as ND and NE.

BEND is the required rhombus.

EXERCISE 4.3 (Page - 64)

Q1. Construct the following quadrilaterals.
(i) Quadrilateral MORE
$M O=6 \mathrm{~cm}, \mathrm{OR}=4.5 \mathrm{~cm}, \angle \mathrm{M}=60^{\circ}, \angle \mathrm{O}=105^{\circ}, \angle \mathrm{R}=$ 105°
Sol. Rough sketch of MORE

Steps of construction:
Step 1. Draw a line-segment $\mathrm{MO}=6 \mathrm{~cm}$.

Step 2. Construct $\angle \mathrm{O}=105^{\circ}$ and taking radius 4.5 cm , draw an arc taking O as a centre, which intersects at R.
Step 3. Now, construct angle 105° at R and produce the side RE.
Step 4. Construct another angle 60° at point M and produce its side ME.

Both sides ME and RE intersect at E. MORE is the required quadrilateral.
(ii) Quadrilateral PLAN
$\mathrm{PL}=4 \mathrm{~cm}, \mathrm{LA}=6.5 \mathrm{~cm}, \angle \mathrm{P}=90^{\circ}, \angle \mathrm{A}=110^{\circ}, \angle \mathrm{N}=85^{\circ}$

Sol. Rough sketch of PLAN

$$
P \frac{\overbrace{85^{\circ}} 110^{\circ}]_{4}^{A} 6.5 \mathrm{~cm}}{90^{\circ}}
$$

Before constructing this figure, we must get the value of

$$
\begin{aligned}
\angle \mathrm{L} & =360^{\circ}-\left(90^{\circ}+85^{\circ}+110^{\circ}\right) \\
& =360^{\circ}-285^{\circ}=75^{\circ}
\end{aligned}
$$

Steps of construction:
Step 1. Draw a line segment of $\mathrm{PL}=4 \mathrm{~cm}$.
Step 2. Construct angle 90° at P and produce the side PN.
Step 3. Construct another angle of 75° at L and with L as centre, draw an arc of radius 6 cm , which intersects at A.

Step 4. Construct $\angle \mathrm{A}=110^{\circ}$ at A and produce the side AN which intersects PN at N .
Hence, PLAN is the required quadrilateral.
(iii) Parallelogram HEAR
$\mathrm{HE}=5 \mathrm{~cm}, \mathrm{EA}=6 \mathrm{~cm}, \angle \mathrm{R}=85^{\circ}$

Sol. Rough sketch of HEAR

$\angle \mathrm{H}=180^{\circ}-85^{\circ}=95^{\circ}$ (as sum of adjacent angle is 180°.)
Steps of construction:
Sol. Step 1. Draw a line segment $\mathrm{HE}=5 \mathrm{~cm}$.
Step 2. Construct $\angle \mathrm{H}=95^{\circ}$ and draw an are of radius 6 cm with centre H. It intersects $A R$ at R and join RH.

Step 3. Draw $\angle \mathrm{R}=\angle \mathrm{E}=85^{\circ}$ and draw an arc of radius 6 cm with E as a centre which intersects RA at A .
Step 4. Join RA.
Hence, HEAR is the required parallelogram.

(iv) Rectangle OKAY

$$
\mathrm{OK}=7 \mathrm{~cm}, \mathrm{KA}=5 \mathrm{~cm}
$$

Sol. Rough sketch of OKAY

As we know that each angle of a rectangle is 90°, having opposite sides equal.

Steps of construction:

Step 1. Draw a line segment OK $=7 \mathrm{~cm}$.
Step 2. Construct angles 90° at both points O and K and produce these sides.

Step 3. Draw two arcs of radius 5 cm from points O and K respectively. These arcs intersect at Y and A .
Step 4. Join YA.
OKAY is the required rectangle.

EXERCISE 4.4 (Page - 67)
Q1. Construct the following quadrilaterals.
(i) Quadrilateral DEAR
$\mathrm{DE}=4 \mathrm{~cm}, \mathrm{EA}=5 \mathrm{~cm}, \mathrm{AR}=4.5 \mathrm{~cm}, \angle \mathrm{E}=60^{\circ}, \angle \mathrm{A}=90^{\circ}$
Sol. Rough sketch of DEAR

Steps of construction:

Step 1. Draw a line-segment $\mathrm{DE}=$ 4 cm .
Step 2. At point E, construct an angle of 60°.
Step 3. Taking radius 5 cm , draw an arc from point E which intersects at A.

Step 4. Construct $\angle A=90^{\circ}$, draw an arc of radius 4.5 cm with centre A which intersect at R.
Step 5. Join RD.
Hence, DEAR is the required quadrilateral.
(ii) Quadrilateral TRUE
$\mathrm{TR}=3.5 \mathrm{~cm}, \mathrm{RU}=3 \mathrm{~cm}, \mathrm{UE}=4 \mathrm{~cm}, \angle \mathrm{R}=75^{\circ}, \angle \mathrm{U}=$ 120°.
Sol. Rough sketch of TRUE

Steps of construction:

Step 1. Draw a line segment TR $=3.5 \mathrm{~cm}$.
Step 2. Construct angle 75° at R and, draw an are of

radius 3 cm with R as centre. Which intersect at U .
Step 3. Construct angle 120° at U and produce the side UE.
Step 4. Draw an arc of radius 4 cm with U as centre.
Step 5. Join UE and TE.
Hence, TRUE is the required quadrilateral.
EXERCISE 4.5 (Page-68)
Draw the following.
Q1. The square READ with $\mathbf{R E}=5.1 \mathrm{~cm}$.
Sol. As we know that sides of a square are equal that means $\mathrm{RE}=\mathrm{EA}=\mathrm{AD}=\mathrm{DR}=5.1 \mathrm{~cm}$ and adjacent sides make an angle of 90°.
Rough sketch of READ

Steps of construction:
Step 1. Draw $\mathrm{RE}=5.1 \mathrm{~cm}$.
Step 2. At point E, construct an angle of 90° and draw an arc of radius 5.1 cm . Which intersects at A.

Step 3. At point R, draw an arc of radius 5.1 cm at point A, draw another are of radius 5.1 cm which intersects the first are at D.
Step 4. Join AD and RD.
Therefore, READ is the required square.
2. A rhombus whose diagonals are 5.2 cm and 6.4 cm long.

Sol. Rough sketch

Steps of construction:

Step 1. Draw $\mathrm{AC}=5.2 \mathrm{~cm}$ and draw perpendicular bisectors on AC.
Step 2. Since, diagonals bisect at mid point O so, get half of 6.4 cm that is 3.2 cm .
Step 3. Draw two arcs on both sides of AC of radius 3.2 cm from intersection point O . Which intersects at B and D .

Step 4. Join $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA which is required rhombus. Therefore, ABCD is the required rhombus.
3. A rectangle with adjacent sides of length 5 cm and 4 cm .

Sol. Rough sketch

Steps of construction:
Step 1. Draw a segment $M N=5 \mathrm{~cm}$.
Step 2. At points M and N, draw perpendi-culars of lengths 4 cm and produce them.

Step 3. Taking centres M and N, draw two arcs of 4 cm each, which intersect P and Q respectively.
Step 4. Now, join another side PO.
MNOP is required rectangle.
4. A parallelogram OKAY where $\mathrm{OK}=5.5 \mathrm{~cm}$ and $\mathrm{KA}=$ 4.2 cm .

Sol. For constructing a parallelogram.
There are 5 things essential but here only four things are given.
Since, rectangle is also a parallelogram.
Rough sketch of OKAY

Steps of construction:

Step 1. Draw a line segment $\mathrm{OK}=5.5 \mathrm{~cm}$.
Step 2. Draw an angle of 90° at K and draw an arc of radius $\mathrm{KA}=4.2 \mathrm{~cm}$, which intersects at point A .
Step 3. Now draw another arc of radius $\mathrm{AY}=5.5$ cm and at point O , draw another arc of radius 4.2 cm which intersect at Y.
Step 4. Join AY and OY.

OKAY is the required parallelogram.

