CONTENTS

1.	Rational Numbers	5
2.	Linear Equations in One Variable	15
3.	Understanding Quadrilaterals	50
4.	Practical Geometry	72
5.	Data Handling	84
6.	Squares and Square Roots	97
7.	Cubes and Cube Roots	130
8.	Comparing Quantities	142
9.	Algebraic Expressions and Identities	162
10.	Visualising Solid Shapes	189
11.	Mensuration	200
12.	Exponents and Powers	223
13.	Direct and Inverse Proportions	232
14.	Factorisation	247
15.	Introduction to Graphs	270
16.	Playing with Numbers	284

net (() 등 · (- 등) 원

Rational Numbers

Learn and Remember

1. A rational number can be written in the form $\frac{p}{a}$, where p

and q are integers and $q \neq 0$. For example, $-\frac{4}{7}$, $\frac{3}{8}$, $\frac{-11}{7}$ are all rational numbers.

- 2. Rational numbers and integers are *closed* under the operations of addition, subtraction and multiplication, but not closed under division.
- 3. Whole numbers are *closed* under addition and multiplication, but not *closed* for subtraction and division.
- 4. Rational numbers are *commutative* and *associative* for addition and multiplication, but not for subtraction and division.
 - If a, b and c are any three rational numbers, then
 - (a) a + b = b + a (Commutative for addition) (b) (a + b) + c = a + (b + c) (Associative for addition)
 - (c) $a \times b = b \times a$ (Commutative for multiplication)
 - (d) $(a \times b) \times c = a \times (b \times c)$ (Associative for multiplication)
- 5. Distributivity of rational numbers over addition and subtraction for all rational numbers a, b and c is a(b + c) = ab + ac and a(b c) = ab ac.
- 6. Rational number zero (0) is the **additive identity** and 1 is the **multiplicative identity** for rational numbers, integers and whole numbers.
- 7. The additive inverse of the rational number $\frac{a}{b}$ is $-\frac{a}{b}$ and

vice-versa *i.e.*, $\frac{a}{b} + \left(-\frac{a}{b}\right) = 0$.

MATHEMATICS-VIII

8. The reciprocal or multiplicative inverse of the rational number $a_{in} c_{in} c_{in} a_{in} c_{in} c_{$

 $\frac{a}{b}$ is $\frac{c}{d}$, if $\frac{a}{b} \times \frac{c}{d} = 1$.

- 9. Rational numbers can be represented on a number line.
- 10. Between any two given rational numbers, there are countless rational numbers. The idea of mean helps us to find rational numbers between two rational numbers.

If *a* and *b* are two rational numbers, then $\frac{a+b}{2}$ is a rational

number between a and b such that $a < \frac{a+b}{2} < b$.

- 11. Zero (0) is also a rational number, but zero (0) has no reciprocal rational number.
- 12. Having equal denominators by taking L.C.M. and making the numbers in larger forms of both rational numbers, you can get countless rational numbers.

TEXTBOOK QUESTIONS SOLVED

EXERCISE 1.1 (Page -14-15)

Q1. Using appropriate properties find.

 $(i) - \frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6} (ii) \frac{2}{5} \times \left(\frac{3}{-7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$ Sol. $(i) - \frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$ $= \frac{-2}{3} \times \frac{3}{5} - \frac{3}{5} \times \frac{1}{6} + \frac{5}{2}$ $= \frac{3}{5} \left(\frac{-2}{3} - \frac{1}{6}\right) + \frac{5}{2}$ (By distributivity property) $= \frac{3}{5} \left(\frac{-4-1}{6}\right) + \frac{5}{2}$ RATIONAL NUMBERS $=\frac{3}{5}\times\frac{-5}{6}+\frac{5}{2}$ $= -\frac{1}{2} + \frac{5}{2} = \frac{-1+5}{2} = \frac{4}{2} = 2$ (*ii*) $\frac{2}{5} \times \left(\frac{3}{-7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$ $=\frac{2}{5} \times \left(\frac{-3}{7}\right) + \frac{1}{14} \times \frac{2}{5} - \frac{1}{6} \times \frac{3}{2}$ (By associativity property) $=\frac{2}{5} \times \left(\frac{-3}{7} + \frac{1}{14}\right) - \frac{1}{4}$ (By distributivity property) $=\frac{2}{5} \times \left(\frac{-6+1}{14}\right) - \frac{1}{4}$ $=\frac{2}{5}\times\frac{-5}{14}-\frac{1}{4}=-\frac{1}{7}-\frac{1}{4}$ $=\frac{-4-7}{28}=\frac{-11}{28}$. Q2. Write the additive inverse of each of the following. (i) $\frac{2}{8}$ (ii) $\frac{-5}{9}$ (iii) $\frac{-6}{-5}$ (iv) $\frac{2}{-9}$ (v) $\frac{19}{-6}$. Sol. We know that additive inverse of a rational number $\frac{a}{b}$ is $\left(\frac{-a}{b}\right)$, such that $\frac{a}{b} + \frac{(-a)}{b} = 0$. 2 8 (*i*) $\frac{-2}{8} \text{ is the additive inverse of } \frac{2}{8}.$ $\left[\because \frac{2}{8} + \left(-\frac{2}{8}\right) = \frac{2-2}{8} = \frac{0}{8} = 0\right]$

(ii) $\frac{-5}{9}$. The second second

 $\begin{bmatrix} \because & \frac{-5}{9} + \frac{5}{9} = \frac{-5+5}{9} + \frac{0}{9} = 0 \end{bmatrix}$

 $\frac{5}{9}$ is the additive inverse of $\frac{-5}{9}$.

6

(iii)
$$-\frac{6}{-5}$$

 $-\frac{6}{5}$ is the additive inverse of $-\frac{6}{-5}$.
 $\left[\because -\frac{6}{-5} + \left\{-\left(-\frac{6}{-5}\right)\right\} = \frac{6}{5} - \frac{6}{5} = \frac{0}{5} = 0\right]$
(iv) $\frac{2}{-9}$
 $\frac{2}{9}$ is the additive inverse of $\frac{2}{-9}$.
 $\left[\because \frac{2}{-9} + \left\{-\left(\frac{2}{-9}\right)\right\} = \frac{2}{-9} + \frac{2}{9} = -\frac{2+2}{9} + \frac{0}{9} = 0\right]$
(v) $\frac{19}{-6}$
 $\frac{19}{-6}$
 $\frac{19}{-6} + \left\{-\left(-\frac{19}{-6}\right)\right\} = -\frac{19}{-6} + \frac{19}{-6} = -\frac{19+19}{-6} = \frac{0}{-6} = 0\right]$
(23. Verify that $-(-x) = x$ for.
(i) $x = \frac{11}{15}$
(ii) $x = -\frac{13}{17}$
ol. According to the given equation,
 $-(-x) = x$...(i)
(i) On putting $x = \frac{11}{15}$, in given equation (i)
L.H.S. $= -\left(-\frac{11}{15}\right) = \frac{11}{15} = R.H.S.$
 \Rightarrow L.H.S. = R.H.S.
Hence, verified.
(ii) On putting $x = -\frac{13}{17}$, in given equation (i)
L.H.S. $= -\left\{-\left(-\frac{13}{17}\right)\right\} = -\frac{13}{17} = R.H.S.$
 \Rightarrow L.H.S. = R.H.S.
Hence, verified.

Q4. Find the multiplicative inverse of the following. (*ii*) $\frac{-13}{19}$ (*i*) – 13 (*iii*) $\frac{1}{5}$ (*iv*) $\frac{-5}{8} \times \frac{-3}{7}$ $(v) - 1 \times \frac{-2}{5}$ (vi) – 1 Sol. We know that multiplicative inverse of a rational number a is $\frac{1}{a}$, such that $a \times \frac{1}{a} = 1$. (i) - 13 $\frac{-13}{13}$ is multiplicative inverse of -13. $\left[\because -13 \times \frac{1}{-13} = 1\right]$ (*ii*) $\frac{-13}{19}$ $\frac{-19}{13}$ is multiplicative inverse of $\frac{-13}{19}$. $\therefore \frac{-13}{19} \times \frac{19}{-13} = 1$ (iii) = 5 is multiplicative inverse of $\frac{1}{5}$. $\because \frac{1}{5} \times 5 = 1$ $(iv) \ \frac{-5}{8} \times \frac{-3}{7} = \frac{15}{56}$ $\frac{56}{15}$ is multiplicative inverse of $\frac{15}{56}$. $\left[\because \frac{15}{56} \times \frac{56}{15} = 1\right]$ $(v) - 1 \times \frac{-2}{5} = \frac{+2}{5}$ $\frac{5}{2}$ is multiplicative inverse of $\frac{2}{5}$. $\therefore \quad \frac{2}{5} \times \frac{5}{2} = 1$ (vi) - 1 $\frac{1}{-1}$ is multiplicative inverse of (-1). $\frac{1}{1}$ the second standard standard $\frac{1}{1}$ is $(-1) \times \left(\frac{1}{-1}\right) = 1$

MATHEMATICS-VIII

RATIONAL NUMBERS

Q5. Name the property under multiplication used in each of the following.
(i) $\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = -\frac{4}{5}$ (ii) $-\frac{13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$
(<i>iii</i>) $\frac{-19}{29} \times \frac{29}{-19} = 1.$
 Sol. (i) 1 is the multiplicative identity. (ii) Commutativity. (iii) Multiplicative inverse.
Q6. Multiply $\frac{6}{13}$ by the reciprocal of $\frac{-7}{16}$.
Sol. The reciprocal of $\frac{-7}{16}$ is $\frac{-16}{7}$.
According to the condition, $\frac{6}{13} \times \left(\frac{-16}{7}\right) = \frac{-96}{91}$.
Q7. Tell what property allows you to compute $\frac{1}{3} \times \left(6 \times \frac{4}{3}\right)$ as
$\left(\frac{1}{3}\times 6\right)\times\frac{4}{3}.$
Sol. By associativity property of multiplication as we know that
$a \times (b \times c) = (a \times b) \times c$.
Q8. Is $\frac{8}{9}$ the multiplicative inverse of $-1\frac{1}{8}$? Why or why not?
Sol. We have, $\frac{8}{9} \times \left(-1\frac{1}{8}\right) = \frac{8}{9} \times \frac{-9}{8} = -1$
Its product must be positive 1.
So, $\frac{8}{9}$ is not multiplicative inverse of $-1\frac{1}{8}$.
Q9. Is 0.3 the multiplicative inverse of $3\frac{1}{3}$? Why or why not?
Sol. We have, $0.3 \times 3\frac{1}{3} = \frac{3}{10} \times \frac{10}{3} = 1$
Yes, its product is 1, so 0.3 is the multiplicative inverse of $3\frac{1}{2}$.

Q10. Write (i) The rational number that does not have a reciprocal. (ii) The rational numbers that are equal to their reciprocals. (iii) The rational number that is equal to its negative. **Sol.** (i) 0 (ii) 1 and -1 (iii) 0. Q11. Fill in the blanks. (i) Zero has _____ reciprocal. (ii) The numbers _____ and _____ _ are their own reciprocals. (iii) The reciprocal of - 5 is _____. (iv) Reciprocal of $\frac{1}{x}$, where $x \neq 0$ is _____. (v) The product of two rational numbers is always a _____. (vi) The reciprocal of a positive rational number 193. Write five rational minibers which are isi (*iii*) $\frac{-1}{5}$ Sol. (i) No (ii) 1, -1 (v) Rational number (vi) Positive. (iv) xEXERCISE 1.2 (Page -20) Q1. Represent these numbers on the number line. Sol. (i) P = 1 - =

20 1 20 1 20 1 20 - 26

11

12 MATHEMATICS-VIII $a = (ii) \frac{-5}{6}$ $\frac{-8}{6} \frac{-7}{6} \frac{-6}{6} \frac{-5}{6} \frac{-4}{6} \frac{-3}{6} \frac{-2}{6} \frac{-1}{6} 0$ $M = \frac{-5}{6}.$ Q2. Represent $\frac{-2}{11}$, $\frac{-5}{11}$, $\frac{-9}{11}$ on the number line. **Sol.** We draw a number line to represent, $\frac{-2}{11}$, $\frac{-5}{11}$ and $\frac{-9}{11}$. < -1 D C B A < $\frac{-11}{11} \frac{-10}{11} \frac{-9}{11} \frac{-8}{11} \frac{-7}{11} \frac{-6}{11} \frac{-5}{11} \frac{-4}{11} \frac{-3}{11} \frac{-2}{11} \frac{-1}{11} 0$ $B = \frac{-2}{11}, C = \frac{-5}{11}, D = \frac{-9}{11}.$ *Q3. Write five rational numbers which are smaller than 2. Sol. $\frac{1}{3}, \frac{1}{4}, \frac{1}{2}, \frac{-1}{2}, \frac{-1}{5}$ and so on or 1, $\frac{1}{2}, 0, -1, \frac{-1}{2}$. Q4. Find ten rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}$. **Sol.** $\frac{-2}{5}$ and $\frac{1}{2}$ L.C.M. of 5 and 2 is 10. Now, $\frac{-2 \times 2}{5 \times 2} = \frac{-4}{10}$ and $\frac{1}{2} \times \frac{5}{5} = \frac{5}{10}$ (Converting with same denominators) Changing numerators and denominators in larger numbers. $\frac{-4 \times 2}{10 \times 2} = \frac{-8}{20}$ and $\frac{5 \times 2}{10 \times 2} = \frac{10}{20}$ Ten rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}$ are $\frac{-7}{20}, \frac{-6}{20}, \frac{-5}{20}, \frac{-4}{20}, \frac{-3}{20}, \frac{-2}{20}, \frac{-1}{20}, 0, \frac{1}{20}, \frac{2}{20}.$

*Answer may be different.

RATIONAL NUMBERS

*Q5. Find five rational numbers between (i) $\frac{2}{2}$ and $\frac{4}{5}$ (ii) $\frac{-3}{2}$ and $\frac{5}{3}$ (iii) $\frac{1}{4}$ and $\frac{1}{2}$ **Sol.** (*i*) $\frac{2}{3}$ and $\frac{4}{5}$ L.C.M. of 3 and 5 is 15, Now, $\frac{2 \times 5}{3 \times 5} = \frac{10}{15}$ and $\frac{4 \times 3}{5 \times 3} = \frac{12}{15}$ Changing numerators and denominators in larger numbers. $\frac{10 \times 4}{15 \times 4} = \frac{40}{60}$ and $\frac{12 \times 4}{15 \times 4} = \frac{48}{60}$ Hence, five rational numbers between $\frac{2}{3}$ and $\frac{4}{5}$ are 41 42 43 44 45 $\frac{1}{60}$, $\frac{1}$ (ii) $\frac{-3}{2}$ and $\frac{5}{3}$ L.C.M. of 2 and 3 is 6. Now, $\frac{-3\times3}{2\times3} = \frac{-9}{6}$ and $\frac{5\times2}{3\times2} = \frac{10}{6}$ (Converting into same denominator.) Hence, five rational numbers between $\frac{-3}{2}$ and $\frac{5}{3}$ are $\frac{-8}{6}, \frac{-7}{6}, 0, \frac{1}{6}, \frac{2}{6}.$ (iii) $\frac{1}{4}$ and $\frac{1}{2}$ L.C.M. of 4 and 2 is 4. Now, $\frac{1 \times 1}{4 \times 1} = \frac{1}{4}$ and $\frac{1 \times 2}{2 \times 2} = \frac{2}{4}$ (Converting into same denominator.) Changing numerators and denominators in larger numbers,

*Answer may be different.

MATHEMATICS-VIII

 $\frac{1 \times 8}{4 \times 8} = \frac{8}{32}$ and $\frac{2 \times 8}{4 \times 8} = \frac{16}{32}$ Hence, five rational numbers between $\frac{1}{4}$ and $\frac{1}{2}$ are $\frac{9}{32}, \frac{10}{32}, \frac{11}{32}, \frac{12}{32}, \frac{13}{32}.$ Q6. Write five rational numbers greater than - 2. **Sol.** Five rational numbers greater than -2 are $\frac{-3}{2}$, -1, $\frac{-1}{2}$, 0, $\frac{1}{2}$. (Other numbers may also be possible.) Q7. Find ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$. Sol. L.C.M. of 5 and 4 is 20. $\frac{3 \times 4}{5 \times 4} = \frac{12}{20}$ and $\frac{3 \times 5}{4 \times 5} = \frac{15}{20}$ (Converting into same denominator.) Changing numerators and denominators in larger numbers, $\frac{12 \times 8}{20 \times 8} = \frac{96}{160}$ and $\frac{15 \times 8}{20 \times 8} = \frac{120}{160}$ Hence, rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$ are 97 98 99 100 101 102 103 104 105 106 160 ' 160 ' 160 ' 160 ' 160 ' 160 ' 160 ' 160 ' 160 ' 160 ' 160 ' 160 '

14