6 Squares and Square Roots

Learn and Remember

- 1. If a natural number is *m*. It can be expressed as n^2 , where *n* is also a natural number, then *m* is a square number *i.e.*, $25 = 5^2$, where m = 25 and $n^2 = 5^2$.
- 2. Squares of all natural or integer ends with 0, 1, 4, 5, 6 and 9 at unit's place.
- 3. Squares of even numbers are even numbers ending with 0, 4 and 6 at unit's place.
- 4. Square numbers can only have even number of zeros at the end.
- 5. Square root is the inverse operation of square.
- 6. Square of odd numbers can have odd numbers ending with 1, 5 and 9 at unit's place.
- 7. If sum of digits of a squared number is even, then it is square of having unit's digit 3 like 13², 23², 33², 43², and if sum of digits of a squared number is odd, then it is square of having unit's digit 7 like 7², 17², 27², 37², 47², leaving numbers 27², 57² and 97².
- 8. There are two integral square roots of a perfect square number. Positive square root of a number is denoted by the symbol $\sqrt{-}$.

For example, $3^2 = 9$ gives $\sqrt{9} = 3$ and $(-3)^2 = 9$ gives $\sqrt{9} = -3$ square and square roots. So, there are two values of a square root number.

- 9. The square root of a number can be got by prime factorisation method, division method and by repeated subtraction of odd numbers starting from 1.
- 10. For knowing Pythagoras triplets, there are three numbers 2m, (m-1) and (m + 1), where m is a natural number.
- 11. If p is a prime factor of n, then $p \times p$ is a factor of n^2 .

12. If p and q are perfect squres $(q \neq 0)$, then $\sqrt{p \times q} = \sqrt{p}$

 $\times \sqrt{q}$ and $\sqrt{\frac{p}{q}} = \frac{\sqrt{p}}{\sqrt{q}}$.

13. If n is not a perfect square, then \sqrt{n} is not a rational number. Consider the following numbers, and their squares are given below.

Number	Square
	1 × 1 = 1
4	2 × 2 = 4
The 3 stars read	3 × 3 = 9
4	4 × 4 = 16
5	$5 \times 5 = 25$
6	6 × 6 = 36
7	7 × 7 = 49
8	8 × 8 = 64
9	9 × 9 = 81
10	10 × 10 = 100
11	11 × 11 = 121
12	12 × 12 = 144

Now we have 1, 4, 9, 16, are known as square numbers of natural numbers. These numbers (1, 4, 9, 16, 25,) are called perfect square numbers.

We have perfect squares of even natural numbers *i.e.*, 4, 16, 36, 64, 100 etc. and units place of these numbers contain 4, 6,0 and perfect squares of odd numbers are 1, 9, 25, 49, 81, And their unit's digit is 1, 5, 9. Therefore, there are only six digits (0, 1, 4, 5, 6, 9) which occupy their positions at unit place in perfect square numbers.

TEXTBOOK QUESTIONS SOLVED

EXERCISE 6.1 (Page -96)

Q1. What will be the unit digit of the squares of the following numbers?

(<i>i</i>)	81	(ii)	272	(iii)	799
(<i>iv</i>)	3853	(v)	1234	(vi)	26387

SQUARES AND SQUARE ROOTS

(vii) 52698

	(x)	55555
Sol.	(i)	The number 81 contains its unit's place digit 1. So, square of 1 is 1.
		Hence, unit's digit of square of 81 is 1.
18 / W	(ii)	Digit of unit's place of given number 272 is 2. So, square of 2 is 4. Therefore, unit's digit of the square of the given number is 4.
	(iii)	It contains 9 as unit's place digit. Square of 9 is 81. Unit's digit of the square of the given number 799 is 1.
kerfeel	(iv)	This number 3853 contains its unit digit 3. So, square of 3 is 9. Therefore, unit's digit of the square of the given number 3853 is 9.
		You have seen here, one's place digit of the number 1234 is 4. Square of 4 is 16.
	t in a	Therefore, unit's digit of the square of the given number is 6.
		The given number contains unit's digit 7. Square of 7 is 49. So, unit's digit of the square of the given number 26387 is 9.
	(vii)	Unit's place digit of given number 52698 is 8 and square of 8 is 64. Therefore, this contains 4 as its unit digit.
loid a		As the given number 99880, has unit's place digit 0. Square of zero is zero. So, unit digit of the square of the given number is zero.
	(<i>ix</i>)	One's place digit of the given number 12796 is 6. Square of 6 is 36. Therefore, unit's digit of the square of the given number is 6.
	(x)	One's place digit is 5
		Square of 5 is 25 and a second shall shall be and
		Unit's place digit of the square of the given number 55555 is 5
Q2.	The squa	following numbers are obviously not perfect res. Give reason.
270 0		1057 (ii) 23453 (iii) 7928 (iv) 222222 64000 (vi) 89722 (vii) 222000 (viii) 505050.
Sol.		1057 is not a perfect square because its unit's place digit is 7. Since, perfect square numbers contain their unit's place digit 0, 1, 4, 5, 6 and 9.

(viii) 99880 (ix) 12796

(ii) The given number 23453 has its unit's digit 3. So, it is not a perfect square number because perfect square numbers have unit's digits 0, 1, 4, 5, 6 and 9.

Note. If sum of their digits is even, then it is square of having unit's digit 3, e.g., 13^2 , 23^2 , 33^2 , 43^2 , and if sum of their digits is odd then it is square of having unit digit 7 like 7^2 , 17^2 , 27^2 , 37^2 leaving number 27^2 , 57^2 and 97^2 .

- (iii) Since, perfect square numbers contain their unit digits 0, 1, 4, 5, 6 and 9. But, unit's digit of the given number is 8. So, it is not a perfect square number.
- (iv) We observe the square of natural numbers that perfect square, numbers contain at their unit's digits 0, 1, 4, 5, 6 and 9. But, unit's digit of the given number is 2. So, it is not a perfect square number.
- (v) Since, perfect square numbers contain zeros in pair or pairs, 64000 does not have zeros in pairs. So, it is not a perfect square number.
- (vi) Since, all natural numbers containing their unit's digits
 0, 1, 4, 5, 6 and 9, are perfect square numbers. But, unit's digit of the given number is 2. So, it is not a perfect square number.
- (vii) Since this number is also have three zeros which are not in pairs. So, it is not a perfect square number.
- (viii) Since this number contains one zero at unit's place which is not in pair. So, it is not a perfect square number.
- Q3. The squares of which of the following would be odd number?
 - (i) 431 (ii) 2826 (iii) 7779 (iv) 82004
- Sol. (i) Unit's digit of given number is 1. Since, square of 1 is 1, unit's digit of square of odd numbers contains 1, 5, 9. So, square of 431 would be an odd number.
 - (ii) Unit's digit of given number is 6. Square of 6 is 36. Therefore, unit's digit of the square of the given number is 6. So, the square of this number will be an even number or would not be an odd number.
 - (iii) Unit's place of given number is 9. Square of 9 is 81. Therefore, unit's digit of square of the given number is

SOUARES AND SQUARE ROOTS

Sol.

Sol

Q6

1. So, square of the given number is an odd number.

(*iv*). Given number has its unit's digit 4 and square of 4 is 16.

> Unit's digit of the square of the given number is 6. Therefore, it is an even number.

Hence, square of (i) 431 and (iii) 7779 would be an odd number.

Q4. Observe the following pattern and find the missing digits.

11 ²	=	121
		10201
1001 ²	=	1002001
100001 ²		
10000001 ²		
11 ²	=	121
11 ⁻ 101 ²	=	10201
1001 ²	=	1002001
100001^2	=	10000200001
1000001^2	=	1000002000001

Q5. Observe the following pattern and supply the missing numbers.

11 ²		121
101 ²	=	10201
10101 ²	-	102030201
1010101 ²	=	
······································	=	10203040504030201
L 11 ²	=	121
101 ²	=	10201
10101 ²	=	102030201
1010101 ²	=	1020304030201
101010101 ²	=	10203040504030201
. Using the given pattern, fi		
$1^2 + 2^2 + 2^2$	-	3 ² weiter han the in de
$2^2 + 3^2 + 6^2$	-	7 ² and the second second
$3^2 + 4^2 + 12^2$	-	13 ²
$4^2 + 5^2 + 2^2$	-	21 ²

102	MATHEMATICS-VIII	SQUARES AND SQUARE ROOTS 103
	$5^2 + _2^2 + 30^2 = 31^2$	$(n+1)^2$ are $2n = 2 \times 12 = 24$.
Sol.	$6^{2} + 7^{2} + _^{2} = _^{2}$ $1^{2} + 2^{2} + 2^{2} = 3^{2}$	(<i>ii</i>) 25 and 26, we know that non perfect square numbers between n^2 and $(n + 1)^2$ are $2n$.
	$2^2 + 3^2 + 6^2 = 7^2$	Here, $n = 25$ and $n + 1 = 26$.
	$3^{2} + 4^{2} + 12^{2} = 13^{2}$ $4^{2} + 5^{2} + 20^{2} = 21^{2}$	Therefore, non perfect square numbers between n^2 and $(n + 1)^2$ are $2n = 2 \times 25 = 50$.
	$5^2 + 6^2 + 30^2 = 31^2$	(<i>iii</i>) 99 and 100, we know that non perfect square numbers between n^2 and $(n + 1)^2$ are $2n$.
Sinte	$6^2 + 7^2 + 42^2 = 43^2$	Here, $n = 99$ and $n + 1 = 100$.
Q7.	Without adding, find the sum. (<i>i</i>) 1 + 3 + 5 + 7 + 9	Therefore, non perfect square numbers between n^2 and $(n + 1)^2$ are $2n = 2 \times 99 = 198$.
	(ii) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19	(1) Put group complex did. Then its unit digit 8. So, it is not a
	(iii) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23	EXERCISE 6.2 (Page -98)
Sol.	(<i>i</i>) $1 + 3 + 5 + 7 + 9 = 5^2 = 25$	Q1. Find the square of the following numbers.
	Here, there are five odd numbers. So, square of 5 is 25.	(<i>i</i>) 32 (<i>ii</i>) 35 (<i>iii</i>) 86
	Hence, sum of these numbers is 25.	(<i>iv</i>) 93 (<i>v</i>) 71 (<i>vi</i>) 46
	(<i>ii</i>) $1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = 10^2 = 100$	Sol. (i) $32^2 = (30+2)^2 = (30+2)(30+2) = 30(30+2) + 2(30+2)$
	Here, there are ten odd numbers. So, square of 10 is	$= 30^2 + 30 \times 2 + 2 \times 30 + 2^2$
	100.	= 900 + 60 + 60 + 4 = 1024.
	Sum of these numbers is 100.	(<i>ii</i>) $35^2 = (30+5)^2 = (30+5)(30+5) = 30(30+5) + 5(30+5)$
	(<i>iii</i>) $1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 = 12^2$	$= 30^2 + 30 \times 5 + 5 \times 30 + 5^2$
	there = 144. The base are then the ball of a strength of the second of t	= 900 + 150 + 150 + 25 = 1225.
	Here, there are twelve odd numbers. So, square of 12 is 144.	(<i>iii</i>) $86^2 = (80+6)^2 = (80+6)(80+6) = 80(80+6) + 6(80+6)$
	Hence, sum of all these numbers is 144.	$= 80^2 + 80 \times 6 + 6 \times 80 + 6^2$
08	(i) Express 49 as the sum of 7 odd numbers.	= 6400 + 480 + 480 + 36 = 7386.
do.	(<i>ii</i>) Express 121 as the sum of 11 odd numbers.	$(iv) 93^2 = (90+3)^2 = (90+3)(90+3) = 90(90+3) + 3(90+3)$
Sol.	(<i>i</i>) The given number is 49. So, $49 = 1 + 3 + 5 + 7 + 9 + 11 + 13$	$= 90^2 + 90 \times 3 + 3 \times 90 + 3^2$
	(<i>ii</i>) The given number is 121. Since, it is sum of 11 odd	= 8100 + 270 + 270 + 9 = 8649 mm brown?
	numbers. 10.01 = 101	(v) $71^2 = (70+1)^2 = (70+1)(70+1) = 70(70+1) + 1(70+1)$
	So, 121 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21.	$= 70^2 + 70 \times 1 + 1 \times 70 + 1^2$
Q9.	How many numbers lie between squares of the	= 4900 + 70 + 70 + 1 = 5041.
	following numbers?	(vi) $46^2 = (40+6)^2 = (40+6)(40+6) = 40(40+6) + 6(40+6)$
	(i) 12 and 13 (ii) 25 and 26 (iii) 99 and 100	$= 40^2 + 40 \times 6 + 6 \times 40 + 6^2$
Sol.	(i) 12 and 13, we know that non perfect square numbers between n^2 and $(n + 1)^2$ are $2n$.	$= 40^{\circ} + 40^{\circ} \times 0 + 6^{\circ} \times 40^{\circ} + 6^{\circ}$ = 1600 + 240 + 240 + 36 = 2116. Q2. Write a Pythagorean triplet whose one member is.
	Here, $n = 12$ and $n + 1 = 13$.	(1) 6 (11) 14
	Therefore, non perfect square numbers between n^2 and	(<i>iii</i>) 16 (<i>iv</i>) 18

- (i) In a Pythagorean triplet, there are three numbers Sol. which are 2m, $m^2 - 1$ and $m^2 + 1$ and first number, 2m = 6

 \Rightarrow $m = \frac{6}{2} = 3$ Second number $m^2 - 1 = 3^2 - 1 = 9 - 1 = 8$ Third number $m^2 + 1 = 3^2 + 1 = 9 + 1 = 10$ Hence, Pythagorean triplet is (6, 8, 10).

- (ii) Pythagorean triplet contains 2m, $m^2 1$ and $m^2 + 1$ Here, first number, 2m = 14

 $\Rightarrow \qquad m = \frac{14}{2} = 7$ Second number $= m^2 - 1 = 7^2 - 1 = 49 - 1 = 48$ Third number $= m^2 + 1 = 7^2 + 1 = 49 + 1 = 50$ Hence, Pythagorean triplet is (14, 48, 50)

- (iii) Pythagorean triplet contains 2m, $m^2 1$ and $m^2 + 1$ First number, 2m = 16
 - $\Rightarrow \qquad m = \frac{16}{2} = 8$

Second number, $m^2 - 1 = 8^2 - 1 = 64 - 1 = 63$ Third number = $m^2 + 1 = 8^2 + 1 = 64 + 1 = 65$ Hence, Pythagorean triplet is (16, 63, 65).

- (iv) Pythagorean triplets contains 2m, $m^2 1$ and $m^2 + 1$ First number 2m = 18

 $\Rightarrow \qquad m = \frac{18}{2} = 9$

Second number $= m^2 - 1 = 9^2 - 1 = 81 - 1 = 80$ Third number $= m^2 + 1 = 9^2 + 1 = 81 + 1 = 82$ Hence, Pythagorean triplet is (18, 80, 82).

EXERCISE 6.3 (Page -102-103)

What could be the post root of each of the follo	sible 'one's' digits of the square owing numbers?
(<i>i</i>) 9801	(<i>ii</i>) 99856

(iii) 998001 (*iv*) 657666025 Sol. (i) As we do square of any natural numbers, we get unit's digit of square of numbers 0, 1, 4, 5, 6 and 9. As we also know that square root is the inverse operation of the square of the numbers.

> So, unit's digit of the following numbers are (i) 1 (ii) 6(iii) 1 (iv) 5.

Q2. Without doing any calculation, find the numbers which are surely not perfect squares.

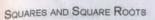
(i) 153 (ii) 257 (iv) 441 (*iii*) 408

- Sol. As we know that all perfect square numbers contain their unit's place digits 0, 1, 4, 5, 6, 9.
 - (i) But given number 153 has its unit digit 3. So, it is not a perfect square number.
 - (ii) Here, 257 contains its unit's digit 7 so, it is also not a perfect square number.
 - (iii) Since, given number has its unit digit 8. It is not a perfect square.
 - (iv) Given number 441 contains 1 as unit's digit. So, it is a perfect square number.
- Q3. Find the square roots of 100 and 169 by the method of repeated subtraction.
- Sol. By successively subtracting odd natural numbers from 100

75 - 11 = 64	99 - 3 = 96
96 - 5 = 91	51 - 15 = 36
36 - 17 = 19	84 - 9 = 75
	96 - 5 = 91

We subtracted successive odd natural numbers starting from 1 to 19 and obtained 0 at 10th step.

Therefore, $\sqrt{100} = 10$.


Hence, the square root of 100 is 10.

By successively subtracting odd natural numbers from 169

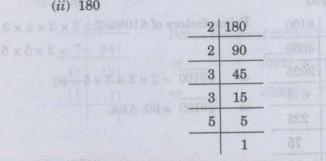
169 - 1 = 168	120 - 15 = 105	168 - 3 = 165
105 - 17 = 88	165 - 5 = 160	88 - 19 = 69
160 - 7 = 153	69 - 21 = 48	153 - 9 = 144
48 - 23 = 25	144 - 11 = 133	25 - 25 = 0
133 - 13 = 120		

We subtracted successive odd natural numbers starting from 1 to 25 and obtained 0 (zero) at 13th step.

Therefore, $\sqrt{169} = 13$. Hence, the square root of 169 is 13.

VIII	SUCARED THE CALIFIC	
by	(<i>iv</i>) 40	096 0203 (35)
6	2 40	096
6	2 20	048
	2 10	Prime factors of $4096 = 2 \times 2 \times 2 \times 2 \times 2$
	2 5	512 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2
	2 2	$256 \qquad \Rightarrow \qquad \sqrt{4096} = 2 \times 2 \times 2 \times 2 \times 2 \times 2$
	2 1	128 = 64. Ans.
	2	64
3	2	32 9130 (hu)
	2	16 8199 9
	2	2 4608 Prime factors of 9120 = 2
	2	2 2304
	2	2
	-BR = Brights in	12 Les Ren M128 and the Alway and the agoins
	(v) 7744	800.2
5	2 77	744
	2 38	872
s.	2 19	936
	2 9	$\frac{968}{968}$ Prime factors of 7744 = 2 × 2 × 2 × 2 × 2
	2 4	$\frac{484}{2 \times 2 \times 11 \times 11}$
	2 2	242
	11 1	$121 \Rightarrow \sqrt{7744} = 2 \times 2 \times 2 \times 11$
	11	11 $\sqrt{7744} = 88$. Ans.
		1 (12) 529
	(vi) 9604	
7		<u>304</u>
7		209
s.		Prime factors of $9604 = 2 \times 2 \times 7 \times 7 \times 7 \times 7$
		$\overline{343} \Rightarrow \sqrt{9604} = 2 \times 7 \times 7$
		$49 \Rightarrow \sqrt{9604} = 98. \text{ Ans.}$
	7	7
	35.0	100 =1 +3 ×7 = 42

Q4. Find the P	th	e squa ne Fac	tori	roots disation	of the me	ne foi thod.	llowing	numb	ers by
ent lo (i) '									4096
(v)		14	(vi)	9604		(vii)	5929	(viii)	
(ix) (529	erodau	(x)	8100					
	729								
	3	729							
120 441	3	243						0 153	
tinte their	3	81	Pri	me fact	ors o	of 729	= 3 × 3	× 3 × 3	× 3 × 3
a ton sidi	3	27					< 3 × 3		
	3	9		_	Ine lon				
s son miles	3	3	⇒				ns.		
Lonitor a till	1	1							
(<i>ii</i>) 4									
n ai ti .oB y	2	400							
to bottom	2	200	Pri	ime fac	tors	of 400	$=2 \times 2$	$\times 2 \times 2$	$\times 5 \times 5$
	2	100	=>			$\sqrt{400}$	$=2 \times 2$	× 5 = 2	0. Ans.
91 mm 100	2	50							Sol. 8
88 = 84	5	25							
92 ¹ 2)6	5	5							
		- 1							
(iii) 1	176	4							
	2	1764							
ten inter	2	882					u de festeral		
EB = 165	3	441	Pri				$4 = 2 \times 2$		×7×7
v chiling	3	147		10 = 19			. ARL		
0 = 61	7	49	⇒				$=2 \times 3$	$\times 7 = 4$	z. Ans.
tachine (7	7							
	51	1 (19							


108		MATHEMATICS-VIII	SQUARES AND SQ	UARE RC	OTS	109
(vii) 59	29	ment wools of the follogably househors by	(x) 81	100		
7	5929	2 Althe Acting million	2	8100	Prin	me factors of $8100 = 2 \times 2 \times 3 \times 3 \times 3$
7	847	Prime factors of $5929 = 7 \times 7 \times 11 \times 11$	2	4050	a loat be	× 3 × 5 × 5
11	121	$\Rightarrow \qquad \sqrt{5929} = 7 \times 11 = 77$	3	2025	⇒	$\sqrt{8100} = 2 \times 3 \times 3 \times 5 = 90$
11	11	$\Rightarrow \sqrt{5929} = 77. $ Ans.	3	675		$\sqrt{8100} = 90.$ Ans.
XXXXXX	1	- 2 206 = 2	3	225	— → 0	$\sqrt{8100} = 90.$ Ans.
	810 713	2 128	3	75	1	
(<i>viii</i>) 92	216	Prints for Long of 7 for a log 2 and x 3 x 3 x 3	5	25	× 8 × 8 ×	Prime factors 52200 -22
2	9216	TIN - 3 - 36.2 2	and the second second			
2	4608	State of the state				
2	2304	Prime factors of $9126 = 2 \times 2 \times 2 \times 2 \times 2$				wing numbers, find the smallest
2	1152	$\times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$	whole	numb	er by wh	nich it should be multiplied so as
2	576	$\Rightarrow \sqrt{9216} = 2 \times 2 \times 2 \times 2 \times 2 \times 3 = 96$				are number. Also find the square unber so obtained.
2		$\Rightarrow \sqrt{9216} = 96.$ Ans.	(i) 25			<i>i</i>) 180 (<i>iii</i>) 1008
2		Prime forture of an AMERIZA DESAT	(iv) 20			v) 1458 (vi) 768
2		100 A 100	Sol. (i) 25	52		
2		4603				2 252
	-	2 908 Printy factors of 7744				2 126
3		2 484				3 63
		2 242			100 .	3 21
	1					7 7
(<i>ix</i>) 55		The second s			126	
23	Lanner	Prime factors of $529 = 23 \times 23$	Pr	ime fa	ctors of 2	$52 = 2 \times 2 \times 3 \times 3 \times 7$
23		And				r 7 has no pair. So, we must multiply
		$-\sqrt{529} = 23$				o make it a perfect square number.
	1 1	$\Rightarrow \sqrt{529} = 23.$ Ans.				$2 \times 2 \times 3 \times 3 \times 7 \times 7$
		7 843 = 23				actor has a pair.
					and the second se	7 = 1764 is a perfect square number. iple number is 7.
			Tł	nus, $\sqrt{1}$	1764 = 2 x	$\times 3 \times 7 = 42.$

-

MATHEMATICS-VIII

SQUARES AND SQUARE ROOTS

Prime factors of $180 = 2 \times 2 \times 3 \times 3 \times 5$

Prime factor 5 does not occur in pair. So, the number is not a perfect square. If 5 gets a pair then number will be perfect square, so we multiply the number by 5 to get a perfect square number,

 $180 \times 5 = 2 \times 2 \times 3 \times 3 \times 5 \times 5$

Now, each prime factor has a pair. Therefore, $180 \times 5 =$ 900 is a perfect square number.

Thus, required the smallest number is 5

$\sqrt{900}$	$= \sqrt{2 \times 2 \times 3 \times 3 \times 5 \times 5}$
√900	$= 2 \times 3 \times 5 = 30.$

(iii) 1008

2	1008	
2	504	
2	252	
2	126	
3	63	
3	21	inter our
7	7	odama Mind
2 30	1	J. Ans.

Prime factors of $1008 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7$.

Prime factor 7 does not occur in a pair, so the given number is not a perfect square number. If 7 gets a pair, then the number will be a perfect square.

The smallest numb 1008 × 1			multiply, $2 \times 3 \times 3 \times 7 \times 7$
The square root of			
(<i>iv</i>) 2028		i waltun	olqitlum
	2	2028	
$\overline{2016}$, = $3 \times 3 \times 3 \times 3 = 54$.	2	1014	
Prime factors of 27	3	507	
Hern, Giener 287	13	169	
To make it a part	13	13	
We get 268_SEL	1	1	

Prime factors of $2028 = 2 \times 2 \times 3 \times 13 \times 13$

Here, prime factor 3 does not occur in pair. So, the number is not a perfect square. If 3 has a pair, then the number will be a perfect square. So, we multiply,

$2028 \times 3 = 2 \times 2 \times 3 \times 3 \times 13 \times 13$

Now, each factor has a pair. Therefore, $2028 \times 3 = 6084$ is a perfect square and the required smallest number is 3.

 $\sqrt{6084} = \sqrt{2 \times 2 \times 3 \times 3 \times 13 \times 13} = 2 \times 3 \times 13 = 78.$

(v) 1458

2	1458	
3	729	
3	243	-sace
3	81	E B x
3	27	100
3	9	niup
3	3	dist.
di ilo	dw 1d	ande

the first the semane root of the Prime factors of $1458 = 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$. Here, factor 2 does not occur in pair, so, 1458 is not a perfect square number.

and a method summer

SQUARES AND SQUARE ROOTS

(i) 252

Sol.

MATHEMATICS-VIII

If 2 gets its pair, then it will be a perfect square number, We multiply the number by 2

$1458 \times 2 = 2916$

So, 2916 is a perfect square number and the smallest multiple number is 2.

Prime factors of $2916 = 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$

 $\sqrt{2916} = 2 \times 3 \times 3 \times 3 = 54.$

(vi) 768

(01) 768			
(<i>vi</i>) 768	2	768	
	2	384	
		192	
		96	
		48	
	2	24	
	2	12	
	2	6	
	3	n partier a sin a sin a	
			. 0

Prime factors of 768 = $2 \times 2 \times 3$ Here, prime factor 3 does not occur in pair, so it is not a perfect square number.

To be a perfect square number, 3 must be multiplied to the number.

 $768 \times 3 = 2304 = 2 \times 3 \times 3$

 $\sqrt{2304} = 2 \times 2 \times 2 \times 2 \times 3 = 48.$

The required smallest number is 3 and square root of 2304 is 48.

Q6. For each of the following numbers, find the smallest whole number by which it should be divided so as to get a perfect square. Also find the square root of the square number so obtained.

1.2	252	(ii)	2925	(iii)	396
	2645	(v)	2800	(vi)	1620

2	252
2	126
3	63
3	21
7	7

Prime factors of $252 = 2 \times 2 \times 3 \times 3 \times 7$

Here, factor 7 does not occur in pair. So, it is not a perfect square number.

To make it a perfect square, it must be divided by 7. We get $252 \div 7 = 36 = 2 \times 2 \times 3 \times 3$

$$\sqrt{36} = \sqrt{2 \times 2 \times 3 \times 3} = 2 \times 3 = 6.$$

(*ii*) 2925

3	2925	
3	975	
5	325	
5	65	
13	13	
5-7	135 1.187	

Prime factors of $2925 = 3 \times 3 \times 5 \times 5 \times 13$

Here, factor 13 does not occur in pair. So, it is not a perfect square number. It must be divided by 13 to make the perfect square number.

So, 2925 + 13 = 225

$$225 = 3 \times 3 \times 5 \times 5$$

Hence, $\sqrt{225} = \sqrt{3 \times 3 \times 5 \times 5} = 5 \times 3 = 15$.

The smallest number is 13 and the square root is 15.

SOUARES AND SQUARE ROOTS

(iii) 396

2	396
2	198
3	99
3	33
11	11
	1

MATHEMATICS-VIII

Prime factors of $396 = 2 \times 2 \times 3 \times 3 \times 11$

Here, factor 11 does not occur in pair. So, it is not a perfect square number. It must be divided by 11 to get a perfect square.

Therefore, $396 \div 11 = 36$

 $36 = 2 \times 2 \times 3 \times 3$ $\sqrt{36} = \sqrt{2 \times 2 \times 3 \times 3} = 2 \times 3 = 6$

The smallest number is 11 and the square root of the number is 6.

(iv) 2645

5	2645	
23	529	
23	23	
5.0	1	

Prime factors of $2645 = 5 \times 23 \times 23$

Here, 5 is not in pair. So, it is not a perfect square number.

2645 must be divided by 5 to get a perfect square number.

 $2645 \div 5 = 529 = 23 \times 23$

$$\sqrt{529} = \sqrt{23 \times 23} = 23$$

 $\sqrt{529} = 23$ and the smallest number is 5.

(v) 2800

2	2800	
2	1400	
2	700	
2	350	
5	175	
5	35	
7	7	
	1	

Prime factors of $2800 = 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 7$

Here, prime factor 7 does not occur in a pair. So, it is not a perfect square number.

So, 2800 must be divided by 7 to get a perfect square number

 $2800 \div 7 = 400 = 2 \times 2 \times 2 \times 2 \times 5 \times 5$

$$\sqrt{400} = \sqrt{2 \times 2 \times 2 \times 2 \times 5 \times 5} = 2 \times 2 \times 5 = 20$$

Hence, the smallest number is 7 and the square root of the number is 20.

(vi) 1620

2	1620	d. Number of plants
2	810	
3	405	and each row con
3	105	Total mumber of p According to the
3	and the second se	- 282
3		= 2 × 2.
5	5	Taking square rol
8×15	Booldy	= XXX

Prime factors of $1620 = 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 5$ Here, factor 5 does not occur in pair. So, it is not a perfect square number.

So, 1620 must be divided by 5 to get a perfect square number.

 $1620 \div 5 = 324 = 2 \times 2 \times 3 \times 3 \times 3 \times 3$ $\sqrt{324} = \sqrt{2 \times 2 \times 3 \times 3 \times 3 \times 3} = 2 \times 3 \times 3 = 18.$

- Q7. The students of Class VIII of a school donated ₹ 2401 in all, for Prime Minister's National Relief Fund. Each student donated as many rupees as the number of students in the class. Find the number of students in the class.
- Sol. Given, donated money = ₹ 2401

Let the number of students be x

Also, donated same amounts to be equal to the number of students = $\overline{\mathbf{x}}$

		MATHEMATICS	-VIII
btal donated money = $x \times x$	7	2401	
ccording to the condition, Donated money = 2401	7	343	
$x \times x = 2401$		49	
$x \times x = 7 \times 7 \times 7 \times 7$	7	196 07	
aking square roots both sides.	DOX 002	12 m 2	

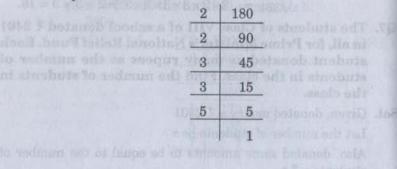
Taking square roots both sides,

$$\sqrt{x \times x} = \sqrt{7 \times 7 \times 7 \times 7}$$
$$x = 7 \times 7 = 49$$

Hence, the number of students is 49.

Q8. 2025 plants are to be planted in a garden in such a way that each row contains as many plants as the number of rows. Find the number of rows and the number of plants in each row.

Sol. Number of plants = 2025


Let the number of rows of planted plants be x

and each row contains number of plants = x

Total number of plants = $x \times x$	3	2025
According to the given condition,	3	675
$x \times x = 2025$	3	225
$x \times x = 3 \times 3 \times 3 \times 3 \times 5 \times 5$		440
Taking square roots on both sides,	3	75
$\sqrt{x \times x} = \sqrt{3 \times 3 \times 3 \times 3 \times 5 \times 5}$	5	25
$x = 3 \times 3 \times 5 = 45$	5	5
Therefore, number of rows = 45	Sastr.	1

Each row contains number of plants is 45.

- Q9. Find the smallest square number that is divisible by each of the numbers 4, 9 and 10.
- Sol. L.C.M. of 4, 9 and 10 is 180
 - Now prime factorisation of 180

SQUARES AND SQUARE ROOTS

Prime factors of $180 = 2 \times 2 \times 3 \times 3 \times 5$

Here, we see that factors 2 and 3 are in pairs and 5 is lone factor.

So, it is not a perfect square number.

It must be multiplied by 5 to make a perfect square number. So, $180 \times 5 = 900$.

Hence, the smallest square number which is divisible by 4, 9 and 10 is 900.

Q10. Find the smallest square number that is divisible by each of the numbers 8, 15 and 20.

Sol. L.C.M. of 8, 15 and 20 = 120

Now, prime factorisation of 120

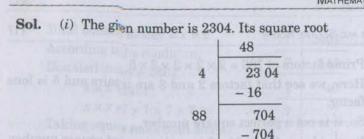
2	120
2	60
2	30
3	15
5	5
18 14	1

So, prime factors of $120 = 2 \times 2 \times 2 \times 3 \times 5$

Here, we find that factors 2, 3 and 5 are not in pairs. It is not a perfect square number.

Therefore, the number must be multiplied by $2 \times 3 \times 5$, we get

 $120 \times (2 \times 3 \times 5) = 3600$

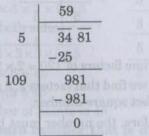

Hence, the smallest square number is $120 \times 2 \times 3 \times 5 = 3600$, which is divisible by 8, 15 and 20.

EXERCISE 6.4 (Page -107-108)

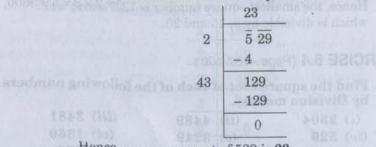
Q1. Find the square root of each of the following numbers by Division method.

<i>(i)</i>	2304	(<i>ii</i>)	4489	(iii)	3481
(iv)	529	(v)	3249	(vi)	1369
(vii)	5776	(viii)	7921	(<i>ix</i>)	576
(x)	1024	(<i>xi</i>)	3136	(xii)	900

MATHEMATICS-VIII

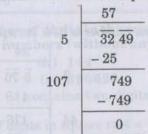


Hence, the square root of 2304 is 48. (*ii*) The given number is 4489. Its square root


0.3284	67	
6	$\overline{44}$ $\overline{89}$ -36	
107 No. 1		
127	889	
100	- 889	
	0	

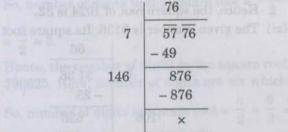
000

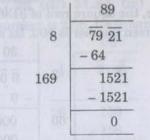
Hence, the square root of 4489 is 67. (*iii*) The given number is 3481. Its square root


Hence, the square root of 3481 is **59**. (*iv*) The given number is 529. Its square root

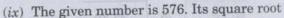
Hence the square root of 529 is 23.

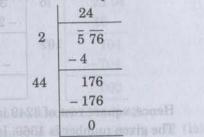
SQUARES AND SQUARE ROOTS


(v) The given number is 3249. Its square root

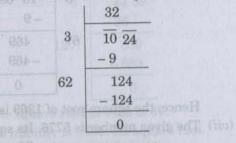

Hence, square root of 3249 is 57. (vi) The given number is 1369. Its square root

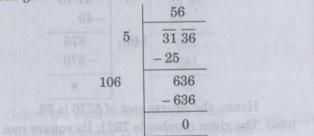
10.1011	37
3	$\overline{13}$ $\overline{69}$
dittes	- 9
67	469
1	-469
1 28	0
and the start of	


Hence, the square root of 1369 is **37**. (vii) The given number is 5776. Its square root



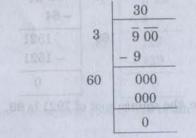
Hence, the square root of 5776 is **76**. (*viii*) The given number is 7921. Its square root


Hence, the square root of 7921 is 89.



Hence, the square root of 576 is 24.

(x) The given number is 1024. Its square root



Hence, the square root of 1024 is **32**. (xi) The given number is 3136. Its square root

Hence, the square root of 3136 is 56.

(xii) The given number is 900. Its square root

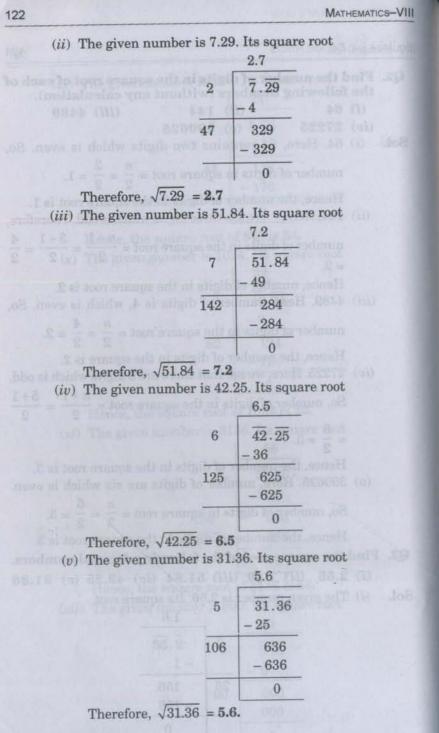
Hence, the square root of 900 is 30.

SQUARES AND SQUARE ROOTS

Q

So

Q


Se

1233-8-35	A ALASSA	
2.	Find	l the number of digits in the square root of each of following numbers (without any calculation).
	(<i>i</i>)	
		27225 (v) 390625
ol.	(<i>i</i>)	64. Here, 64 contains two digits which is even. So,
		number of digits in square root = $\frac{n}{2} = \frac{2}{2} = 1$.
	<i>(ii)</i>	Hence, the number of digits in the square root is 1. 144. Here, were are three digits which is odd. Therefore,
		number of digits in the square root = $\frac{n+1}{2} = \frac{3+1}{2} = \frac{4}{2}$ = 2.
		Hence, number of digits in the square root is 2.
	(iii)	4489. Here, number of digits is 4, which is even. So,
		number of digits in the square root = $\frac{n}{2} = \frac{4}{2} = 2$.
	(iv)	Hence, the number of digits in the square is 2. 27225. Here, we see that there are 5 digits which is odd.
		So, number of digits in the square root = $\frac{n+1}{2} = \frac{5+1}{2}$
		$=\frac{6}{2}=3.$
	(v)	Hence, the number of digits in the square root is 3. 390625. Here, number of digits are six which is even.
		So, number of digits in square root = $\frac{n}{2} = \frac{6}{2} = 3$.
		Hence, the number of digits in the square root is 3.
3.	Fin	d the square root of the following decimal numbers.
		2.56 (ii) 7.29 (iii) 51.84 (iv) 42.25 (v) 31.36
ol.		The given number is 2.56. Its square root
	1.4.2	1.6
		1 2 20
		1 2.56
		- 1-
		26 156
		- 156

0

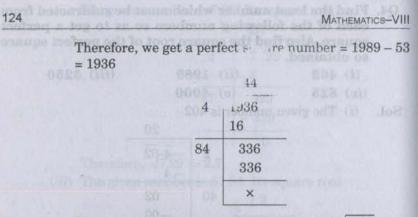
Therefore, $\sqrt{2.56} = 1.6$.

Telefolden en formell raile 121

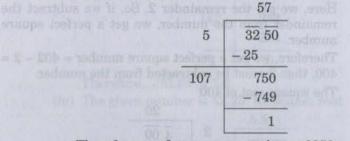
SQUARES AND SQUARE ROOTS Q4. Find the least number which must be subtracted from each of the following numbers so as to get a perfect square. Also find the square root of the perfect square so obtained. (iii) 3250 (i) 402 (*ii*) 1989 (v) 4000 (iv) 825 (i) The given number is 402 Sol. 20 4 02 2 -4 40 02 -00# 1928 And 1928 And /1926 = 44 2 Here, we get the remainder 2. So, if we subtract the remainder from the number, we get a perfect square number.

Therefore, we get a perfect square number = 402 - 2 =400, then 2 must be subtracted from the number. The square root of 400

mit was birnet the

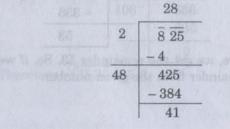

	20
2	4 00
40	000
1	0
	111 221

Then, perfect square number is 400. And $\sqrt{400} = 20$. (ii) The given number is 1989


	44
4	19 89
	- 16
84	389
	- 336
2	53

Here, we get the remainder 53. So, if we subtract the remainder from the given number.

SQUARES AND SQUARE ROOTS


Hence, perfect square number is 1936. And $\sqrt{1936} = 44$. (*iii*) The given number is 3250

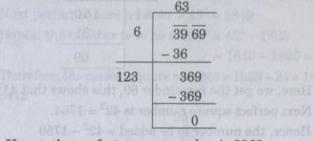
Therefore, perfect square number = 3250 - 1 = 3249, then 1 must be subtracted from the number.

	57	
5	32 49	
Time in	- 25	
107	749	
	- 749	
	×	

Hence, perfect square number is 3249. And $\sqrt{3249} = 57$. (*iv*) The given number is 825

Here, we get the remainder 41. So, if we subtract the remainder from number.

Therefore, we get a perfect square number = 825 - 41 = 784, then, 41 must be subtracted from the number.


	28
2	7 84 - 4
48	384
	- 384
	0

Hence, the perfect square number is 784. And $\sqrt{784} = 28$. (v) The given number is 4000

	63	
6	$\overline{40}\ \overline{00}$	
	- 36	
123	400	
	- 369	
	31	

Here, we get the remainder 31. So, if we subtract the remainder from the number.

We get perfect square number = 4000 - 31 = 3969.

Hence, the perfect square number is 3969.

And $\sqrt{3969} = 63$.

Q5. Find the least number which must be added to each of the following numbers so as to get a perfect square. Also, find the square root of the perfect square so obtained.

(<i>iv</i>)	1825	(v)	17	12	(<i>iii</i>) 252
Sol. (<i>i</i>)	The given 1	number	is 52	5 22	
			2	5 25	
				-4	
			42	125	

Here, we get the remainder 41, this shows that $22^2 < 525$ Next perfect square number is $23^2 = 529$ Hence, the number to be added is $23^2 - 525 = 529 - 525 = 4$ Therefore, 4 must be added to make a perfect square number. So, perfect square number = 525 + 4 = 529.

41 41

So, $\sqrt{529} = 23$.

(ii) The given number is 1750

	41
4	17 50
	- 16
81	150
	- 81
	69

Here, we get the remainder 69, this shows that $41^2 < 1750$. Next perfect square number is $42^2 = 1764$. Hence, the number to be added = $42^2 - 1750$ = 1764 - 1750 = 14

Hence, 14 must be added to the number to make it a perfect square number. Therefore, perfect square number = 1750 + 14

= 1764. and $\sqrt{1764} = 42$.

SQUARES AND SQUARE ROOTS

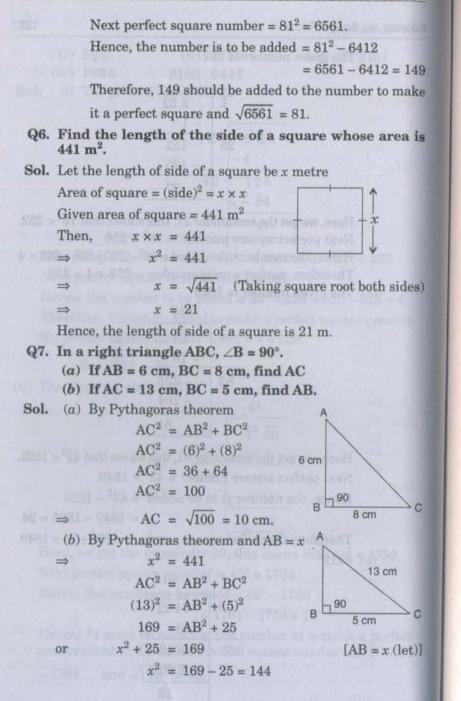
011 = 3110 - 1887

o - rood -	15
I to high to the number 1 to the high to the number at the second termination of termina	$\overline{2} \overline{52}$ - 1
25	152 - 125
	27

Here, we get the remainder 27, this shows that $15^2 < 252$. Next perfect square number is $16^2 = 256$ Hence, the number to be added = $16^2 - 252 = 256 - 252 = 4$ Therefore, perfect square number = 252 + 4 = 256. (iv) The given number is 1825

	42
4	18 25
a	- 16
82	225
	- 164
	61

Here, we get the remainder 61, this shows that $42^2 < 1825$. Next perfect square number = $43^2 = 1849$. Hence, the number is to be added $= 43^2 - 1825$

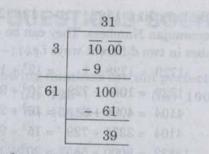

= 1849 - 1825 = 24

Therefore, the perfect square number = 1825 + 24 = 1849. (v) 6412

80

	00
8	$\overline{64}$ $\overline{12}$ - 64
160	0012
	- 0000
	12

Here, we get the remainder 12, this shows that $80^2 < 6412$



SQUARES AND SQUARE ROOTS

Sol.

 $x^{2} = 144$ $x = \sqrt{144} = 12 \text{ cm}$ AB = 12 cm. (5 has 1000 plants. Here

Q8. A gardners has 1000 plants. He wants to plant these in such a way that the number of rows and number of columns remain same. Find the minimum number of plants he needs more for this.

Here, $31^2 < 1000 < 32^2$

Hence, required minimum number of plants = $32^2 - 1000$

= 1024 - 1000

= 24.

So, the gardener requires 24 more plants.

Q9. There are 500 children in a school. For a P.T. drill they have to stand in such a manner that the number of rows is equal to number of columns. How many children would be left out in this arrangement.

Sol. By getting the square root of this number, we know that

	22
2	$\overline{5}$ $\overline{00}$
0	-4
42	100
1910	- 84
	16

In each row, the number of children is 22. And the left out children are 16.

128