Mathematics
 Class - XI

Time allowed: 3 hours

General Instructions:

a) All questions are compulsory.
b) The question paper consists of 26 questions divided into three sections A, B and C. Section A comprises of 6 questions of one mark each, Section B comprises of 13 questions of four marks each and Section C comprises of 7 questions of six marks each.
c) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
d) Use of calculators is not permitted.

Section A

1. Solve for $x_{\text {if }}|x|+x=2+i$
2. Write the sum of first n odd numbers
3. Write the $\mathrm{n}^{\text {th }}$ tern if the sum of n terms of an AP is $2 n^{2}+3 n$
4. If $a<b$ write the length of latus rectum of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
5. If $f(x)=5$ for all real numbers of x find $f(x+5)$
6. What is the maximum number of objects you can weigh if you have four distinct weights.

Section B

7. Prove that $f^{\prime}(a+b)=f^{\prime}(a)+f^{\prime}(b)$ when $f(x)=x^{2}$ and when $f(x)=x^{3}$
8. If α, β are the roots of the equation $x^{2}+p x+q=0$ Find $\alpha^{3}+\beta^{3}$.
9. A positive 3 digit number has its units digit zero. Find the probability that the number is divisible by 4.
10. Prove that $\tan (45+x)=\sec 2 x+\tan 2 x$
11. Prove by mathematical induction that $n(n+1)$ is even
12. Find $n[(A \cup B \cup C)]$ if $n(A)=4000 n(B)=2000 n(C)=1000$ and

$$
n(A \cap B)=n(B \cap C)=n(A \cap C)=400, n(A \cap B \cap C)=200
$$

13. Find the latus rectum, eccentricity and coordinates of the foci of the ellipse $x^{2}+3 y^{2}=k^{2}$
14. Find the area of the circle passing through the points $(-8,0),(0,8), 12,0)$
15. If S_{1}, S_{2}, S_{3} are the sums of $n, 2 n, 3 n$ terms respectively of an AP prove that $S_{3}=3\left(S_{2}-S_{1}\right)$
16. Find the least value of $f(x)$ if $f(x)=3 x^{2}-6 x-11$
17. Find $f(x)+f(1-x)$ if $f(x)=\frac{a^{x}}{a^{x}+\sqrt{a}}$
18. Prove that $\frac{\tan 2 x \tan x}{\tan 2 x-\tan x}=\sin 2 x$
19. Find the limit $\lim _{n \rightarrow \infty} \frac{(n+2)!+(n+1)!)}{(n+2)!-(n+1)!}$

Section C

20. Find $\frac{d y}{d x}$ given that $\quad y=\left(\sin ^{n} x \cos n x\right)$
21. If $(5 a),(a-b), b$ are in GP prove that $\log \left(\frac{1}{3}(a+b)\right)=\frac{1}{2}(\log a+\log b)$
22. If the nth term of a series is denoted by $\frac{7^{n-1}}{10^{n}}$. Find the sum to infinity of the series.
23. Calculate the variance and standard deviation of the following data $8,12,13,15,22,14$
24. $f(x)=(1+x)^{\frac{1}{x}}, x \neq 0$. Find $f\left(1+\frac{a}{y}\right)^{b y}$
25. The probability of A hitting a target is $\frac{4}{5}$; the probability of B hitting the target is $\frac{3}{4}$ and the probability of C missing the target is $\frac{1}{3}$. What is the probability of the target being hit at least twice.
26. Find the term independent of x in the expansion $\left(a x^{2}-\frac{b}{x}\right)^{9}$
