PHYSICS ASSIGNMENT NO. 1 Class XI

UNIT - II

KINEMATICS

1 Mark question :-
Q1. What is significance of the slope of x -t graph?
Q2. Give an example of a body possessing zero velocity and still accelerating.
Q3. Why does earth impart same acceleration to all bodies? Q4. Is it possible to have negative value in speed \& displacement?
Q5. Why does a parachute descend slowly?
Q6. Write the values of the following:-
(i) $\hat{j} \cdot \hat{k} \quad$ (ii) $\hat{j} \cdot \hat{k}$
(iii) $\hat{j} . \hat{i}$
(iv) $i . \hat{k}$
(v) $\hat{i} .(\hat{i} x \hat{j})$
(vi) $\hat{k} .(\hat{i} x \hat{k})$

Q7. What will be effect on horizontal range of a projectile when its initial speed is doubled with its angle of projections same?
Q8. Name the physical quantity which remains same in a uniform circular motion.
Q9. When do we call 2 vectors orthogonal?
Q10.What is the path followed by a Javelin projected horizontally by an athlete?
2 mark questions :-
Q1. What are co-initial and collinear vectors?
Q2 At what point of projectile path the speed is minimum (ii) at what point, the speed is maximum.
Q3. Why are the passengers of a car rounding of curve thrown outward?
Q4. Prove that max horizontal range is 4 times max height attained lay projectile which is fired along reqd oblique direction.
Q5. The angle between vector \vec{A} and \vec{B} is 60°. What is the ratio of $\vec{A} \cdot \vec{B}$ and $|\vec{A} \times \vec{B}|$?
3 mark questions :-
Q1. What is meant by centripetal acceleration? Derive the formula for centripetal acceleration.
Q2. From the top of a tower 100 m in height, a ball is dropped and at the same time another ball is projected vertically upwards from the ground with a velocity of $25 \mathrm{~ms}^{-1}$. Find when and where the two balls will meet? $\mathrm{g}=98 \mathrm{~ms}^{-2}$.
Q3. Find an expression for the maximum speed of circular motion of a car in a circular horizontal track of radius ' R '. The coefficient of static friction between the car tyres and the road along the surfaces is Ms.
Q4. The displacement (in metre) of a particle moving along x-axis is given by $x=18 t+5 t^{2}$. Calculate:-
(i) the instantaneous velocity at $\mathrm{t}=2$ seconds. (ii) average velocity between $\mathrm{t}=2 \mathrm{~s} \& \mathrm{t}=3 \mathrm{~s}$. (iii) Instantaneous acceleration.
Q5. A woman starts from her home at $8.00 \mathrm{a} . \mathrm{m}$. walks with speed of $5 \mathrm{~km} / \mathrm{hr}$ on straight road upto her office 5 km . away stays at office upto $4 \mathrm{p} . \mathrm{m}$. \& returns home by auto with speed of $25 \mathrm{~km} / \mathrm{hr}$. Choose suitable scales \& plot $\mathrm{x}-\mathrm{t}$ graph of her motion.
Q6. Derive $\mathrm{S}=\mathrm{Ut}+\frac{1}{2} \mathrm{at}^{2}$ graphically.
Q7. A projectile shot at an angle of 60° above the horizontal ground strikes a vertical wall 30 m away at a point 15 m above the ground. Find the speed with which the projectile was launched and the speed with which it strikes the wall.
Q8. A projectile is fired at an angle O with the horizontal
(a) Show that its trajectory is a parabola. (b) Obtain (i) maximum height (ii) time of its flight.

