CLASS - XII

SUBJECT - MATHEMATICS

ASSIGNMENT NO. 4

1. A particle moves along the curve $\mathrm{y}=\mathrm{x}^{2}+2 \mathrm{x}$ at what points on the curve are the $\mathrm{x} \& \mathrm{y}$ co-ordinates of the particle changing at the same rate?
2. A balloon in form V at circular cone surmounted by a hemisphere having a diam. Equal to the height of the cone is being inflated. How fact is its vol. Is changing with respect to the total length h , when $\mathrm{h}=9 \mathrm{~cm}$.
3. The radius of cylinder is increasing at the rate $2 \mathrm{~cm} / \mathrm{sec} \&$ its attitude decreasing at the rate of $3 \mathrm{~cm} / \mathrm{sec}$. Find the rate of change volume where radius in $3 \mathrm{~cm} \&$ alt. 5 cm .
4. A particle moves along the curve $\mathrm{y}=\frac{2}{3} x^{3}+1$. Find the points on the move at which the y -co-ordinate is changing twice as fact as co-ordinate.
5. Use differentiate to find the approx. values of (i) $(0.009)^{1 / 3} \quad$ (ii) $(0.007)^{1 / 3} \quad$ (iii) $(255)^{1 / 4}$
6. Find approx. value of $f(5.00)$ if $f(x)=x^{3}-7 x^{2}+15$
7. Find the percentage curves in finagling the surface area of cubical box if an error 1% is made in mercury the length of edges of the cube.
8. Verify Rolle's Theorem for the functions $f(x)=(x-9)^{m}(x-b)^{n}$ on the retrieval $)(a, b)$ where m, n are $+v e$ integers.
9. Verify Rolle's theorem for (i) f() $\mathrm{e}^{\mathrm{x}} / \sin \mathrm{x}-\cos \mathrm{x}$) on $\frac{n}{4}, \frac{5 n}{4}$
10. Verify mean value theorem for (i) $f(x)=2 \sin x+\sin 2 x$ on $(0, \pi)$ (ii) $f(x)=x^{3}-2 x^{2}-x+3$ on (0,1) (iii) $f(x)$ $=10 \mathrm{~g}_{\mathrm{e}}{ }^{\mathrm{x}}$ on $[1,2]$
11. Prove : tangents to the curve $\mathrm{y}=\mathrm{x}^{2}-5 \mathrm{x}+6$ at points (2,) and (3, 0) are at right $\angle s 1$

12. Find the prints on curve $9 y^{2}=x^{3}$ where normal to the curve makes equal intercepts with axes.
13. Find points on the curve $\mathrm{xy}+4=0$ at which tangents to curve are inclined at an angle of 45^{0} with $\mathrm{x}-$ axis
14. Find the equations of tangent \& normal to the curves (i) $\mathrm{a}=\mathrm{a}($ or $\sin \theta) \mathrm{y}=\mathrm{a}(1+\cos \theta)$ at $\theta=\frac{-\pi}{2}$ (ii) $\mathrm{y}=\mathrm{x}^{3}-\mathrm{x}$ at $\mathrm{x}=2$ (iii) $\mathrm{x}^{2}+3 \mathrm{y}+\mathrm{y}^{2}=5$ at $(1,1)$
15. Prove that one $\left(\frac{x}{9}\right)^{n}+\left(\frac{y}{9}\right)^{n}=2$ touchs the st. line $\frac{x}{a}+\frac{y}{b}=2$ for all $\mathrm{n} \square \mathrm{N}$ at (a, b)
16. Show that curves $x y=a^{2}$ and $x^{2}+y^{2}=2 a^{2}$ touch each other.
17. Find interval in which $f(x)$ is (i) increase (ii) decrease (a) $f(x)=2 x^{3}+p x^{2}+12 x+20$ (ii) $f(x)=x^{4}=x^{3} / 3$ (iii) $\mathrm{f}(\mathrm{x}) \mathrm{x}^{3}+\frac{1}{x^{3}}$
18. Separate $\left(0, \frac{\Pi}{2}\right)$ in sub-intervals in which $f(x)=\sin 3 x$ in increasing or decreasing is also $f(x)=\sin ^{4} x$ $+\cos ^{4} \mathrm{x}$.
19. Find the intervals on which $f(x) 2 x^{3}-3 x^{3}-3(x+7)$ is (i) strictly increasing (ii) strictly decreasing.
20. Find local max \& local him. If (i) $f(x)=(\sin x-\cos x)$ where $0<x<\square / 2(i i) f(x)=\sin 4 x+\cos 4 x$ in $(0, \square / 2)$
21. Show that \square of max area inscribed in a given circle in an equivalent D.
22. Show that semi-vertical angle of cone of max vol. K of given slant is tan $-1 \sqrt{2}$
