Chapter 6

APPLICATION OF DERIVATIVES

<u>1 Mark Questions</u>

Q1	How will you interpret geometrically $\frac{dy}{dx}$ of a function at a point (x_0, y_0)	
Q2	Find the rate of change of area of a circle with respect to its radius 'r'	
Q3	when r = 5 cm. The total cost C(x) in rupees, associated with the production of x units of	
	an item is given by $C(x)=0.005 x^2 - 0.002x + 5000$. Find the marginal cost	
Q4	when only two items are produced. Total revenue in selling x units of a product is given by R(x) =	
	$3x^2 + 36x + 5$. Find the marginal revenue when $x = 5$.	
Q5	Show that function $f(x) = 2x - 1$ is strictly increasing on R .	
Q6	Write the condition for a function f to be strictly increasing. {	
Q7	$f'(x) > 0, \forall x \in D_f$ } Write the condition for a function f to be strictly decreasing. {	
	$f'(x) < 0, \forall x \in D_f \}$	
Q8	Show that function $f(x) = \cos x$ is strictly increasing on $(\pi, 2\pi)$.	
Q9	Show that function $f(x) = \cos x$ is strictly increasing on $(0,\pi)$.	
Q10	Show that function $f(x) = \cos x$ is neither increasing nor decreasing on $(0, 2\pi)$	
Q11	Find the point of inflection for the function $f(x) = x^3$.	
Q12	Find the intervals in which the function $f(x) = x^2 - 2x$ is strictly increasing.	
Q13	Find the intervals in which the function $f(x) = x^2 - 2x$ is strictly	
014	decreasing.	
X	Write the domain of the function $f(x) = \log(1+x) - \frac{2\pi}{1+x}$.	
Q15	Find the slope of the tangent to the curve $y = x^3 - x + 1$ at the point where	
<u>4 Mark</u>	the curve cuts y-axis. <u>A Questions</u>	
Q1	Prove that the curves $x = y^2$ and x . $y = k$ cut each other at right angle if	

- $8.k^2 = 1$.
 - **Q2** Find the points on the curve $x^2 + y^2 2x 3 = 0$ at which tangents are

parallel to x- axis. Find the points on the curve $y = x^3$ at which tangent makes angle of 45[°] Q3 tox-axis

	$\left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}\right); \left(-\frac{1}{\sqrt{3}}, -\frac{1}{3\sqrt{3}}\right) \right\}$		
Q4	Find the points on the curve $y = x^3$ at which slope of the tangent is equal to		
Q5	the ordinate of the point. Find the points on the curve $x^2 + 3y = 3$ where the tangent is		
Q6	perpendicular to the line 4 y + x = -5. Find the equation of tangent to the curve 16 x 2 + 9 y 2 = 144 at the point		
Q7	(x ₁ , y ₁) where x $_1 = 2$ and y $_1 > 0$. Find the least value of 'b' for which f (x) = x 2 + b x + 1 is an increasing on		
Q8	[1, 2] Find the points of local max. and local min. for the function. Also find		
	their max. / minimum values $y = Sin x - Cos x$, $0 \le x \le 2\pi$		
Q9	Find the absolute maximum and absolute minimum values of the function		
Q10	$f(x) = 2\cos 2x - \cos 4x$, on $[0, \pi]$ If $f(x) = x^3 + a x^2 + b x + c$ has a maximum at $x = -1$ and minimum at $x = 3$.		
Q11	Show that $a = -3, b = -9, c \in \mathbb{R}$ A given rectangular area is to be fenced off in a field whose length lies		
	along a straight river. If no fencing is required along the rive show that		
	least amount of fencing will be required when length of the field is twice its		
Q12	breadth. Find the angle x which is increasing twice as fast as its sine.		
Q13	Using differential, find the approximate value of tan ⁻¹ (0.999).		
Q14	If $y = x^4$ -10 and if x changes from 2 to 1.99, find the approximate change		
	in y.		
Q15	If the side of a cube is increased from 10 cm to 10.01 cm Find		
	approximate change in the volume of the cube.		
<u>6 Marl</u>	<u>6 Mark Questions</u>		
Q1	Find the equation of tangent to the curve $y = cos(x + y)$, $-2\pi \le x \le 2\pi$ that		
Q2	are parallel to the line $x + 2 y = 0$. Find the points on the curve $y = 4 x^{3} - 2 x^{5}$ at which tangent passes through		
	the origin.		

Q3 Find the angle of intersection of the curves y = x² & x² + y² = 20
Q4 Find the intervals in which following functions are strictly increasing or strictly decreasing f(x) = x^x, x > 0.
Q5 Find the intervals in which following functions are strictly increasing or strictly decreasing f(x) = (x + 1)³(x-3)³
Q6 Find the absolute maximum and absolute minimum values of the function f(x) = -x + 2Sin x on [0, 2π]
Q7 A jet of an enemy is flying along the curve y = x² + 2. A soldier is placed at the point (3, 2). Find the nearest distance between the soldier and the jet.

Q8 An open box with a square base in to be made out of a given quantity of sheet of area c^2 . Show that the maximum volume of the box is

- Q9 $c^3 / 6\sqrt{3}$. Q9 A sheet of paper for a poster is 15000 sq. cm. in area. The margins at the top and bottom are to be 6 cm. wide and at the sides 4 cm. wide. Find the dimensions of the sheet to maximize the printed area.
- Q10 A given quantity of metal to be cast into half cylinder with a rectangular base and semicircular ends. Show that in order that total surface area is minimum, the ratio of length of cylinder to the diameter of its semi-circular ends is π : π + 2... Answers: APPLICATION OF DERIVATIVES

1 Mark Questions

- Q2 $\{10 \pi\}$
- Q3 {Rs.0.018}
- Q4 {Rs. 66}
- Q11 $\{x = 0\}$
- Q12 {(1, ∞)}
- Q13 {(-∞,1)}
- Q14 $\{x > 1\}$
- Q15 {-1}

Q2	{(1,2); (1, -2)}
Q4	{(0,0); (3,27)}
Q5	{(-6, -11)}
Q6	$\{8x + 3\sqrt{5}y = 36\}$
Q7	{-2}
Q8	$\left\{\frac{3\pi}{4},\frac{7\pi}{4};\sqrt{2},-\sqrt{2}\right\}$
Q9	$\left\{Ab.\max.\frac{3}{2}, Ab.\min3\right\}$
Q12	$\left\{\frac{\pi}{3}\right\}$
Q13	{0.7852}
Q14	{-0.32}
Q15	${3 \text{ cm}^{3}}$

- Q1 $\left\{ x + 2y = \frac{\pi}{2}; 2x + y = -\frac{3\pi}{2} \right\}$
- Q2 {(0,0);(1,2);(-1,-2)}
- **Q3** $\left\{\tan^{-1}\frac{9}{2}\right\}$
- **Q4** $\left\{\frac{1}{e},\infty\right\}$
- Q5 {Strictly increasing in $(1,3),(3,\infty)$ & Strictly decreasing in $(-1,1),(-\infty,-1)$ }

Q6 {Ab. Min -
$$\frac{3\sqrt{3} + 5\pi}{3}$$
 & Ab Max. $\frac{3\sqrt{3} - \pi}{3}$ }

- $Q7 \qquad \{\sqrt{5}\}$
- Q9 {One side 150 cm and other side 100 cm}

Chapter 8

APPLICATIONS OF INTEGRALS

<u>6 Mark Questions</u>

Q1	Using Integration find the area of the region { (x,y):0≤y≤x ² +1, 0≤y≤x+1,0≤x≤2}
Q2	Find the area bounded by the curve $x=a(\theta - \sin \theta)$, $y=a(1-\cos \theta)$
	$0 \le heta \ \le \ 2\pi$.
Q3	Draw the rough sketch of the curve y= $(\frac{x}{\pi} + 2\sin^2 x)$ and find the area
	between the x axis, the curve and the ordinates
Q4	Find the area bounded by the curve $y^2 + x = 8 + 2y$, the y axis and the lines
	y= -1 and y=3.
Q5	Sketch the graph y= x - 1 . Evaluate $\int_{-2}^{4} x - 1 dx$ What does the value on this
	integral represent on the graph.
Q6	Find the area bounded by the curve $(1 - x^2)^{1/2}$, line x=y and the positive
	x-axis.
Q7	Find the area of the area bounded by the curve y=x sinx ² , x axis and between x=0
	and $\mathbf{x} = \sqrt{\pi/2}$.
Q8	Draw the rough sketch of $y^2+1=x$, $x \le 2$ and find the area enclosed by the curves and
	ordinate x=2.
Q9	Sketch the rough graph of $y=4\sqrt{x-1}$, $1 \le x \le 3$ and evaluate the area between the curve, x -axis and the line x=3.
Q10	Determine the area enclosed between the curve y=4x-x ² .and the x-axis

Q11 Sketch the region bounded by the curve $y=\sqrt{5-x^2}$ and y = |x-1| and find its area.

Answers: APPLICATIONS OF INTEGRALS

- Q1 23/6 sq.units
- Q2 $3\pi a^2$ Sq.units
- Q3 $3\pi/2$ sq.units
- Q4 92/3 sq.units
- Q5 9 sq.units
- Q6 π /8 sq.units
- Q7 1/2 sq.units
- Q8 4/3 sq.units
- Q9 $16\sqrt{2}$ /3 sq.units
- Q10 32/3 sq.units
- Q11 $\left(\frac{5}{2}\sin^{-1}\frac{2}{\sqrt{5}} + \frac{5}{2}\sin^{-1}\frac{1}{5} \frac{1}{2}\right)$ sq.units

Chapter 5 CONTINUITY AND DIFFENTIABILITY

1 Mark Questions

- Q1 Check the continuity of the function $f(x) = \begin{cases} 1, & \text{if } x \le 0 \\ 2, & \text{if } x > 0 \end{cases}$
- **Q2** Check the continuity of the function f(x) = |x| at x = 0
- **Q3** Check the continuity of the function $f(x) = \sin x + x^2$ at $x = \pi$
- Q4 Examine the continuity of the function f(x) = |x|

Q5 Write the points of discontinuity of the function f(x) = [x] where [x] denotes the greatest integer function less than or equal to x.

- Q6 Write the points of discontinuity of the function $f(x) = \frac{x^2 25}{x 5}$.
- Q7 Give an example of a function which is continuous but not differentiable.
- **Q8** Find the derivative of $\sin(\cos^2(\sqrt{x}))$.
- Q9 Find the points in the open interval (0, 3) where the greatest integer

function f(x) = [x] is not differentiable.

- **Q10** Write the derivative of the function $f(x) = \tan^{-1} \sqrt{\sin x}$ w. r. to x.
- Q11 Is it true that $\log(x^{\sin x} + \cos^{\sin x} x) = \sin x \log x + \sin x \log \cos x$?
- Q12 If x = f(t) and y = g(t), then is $\frac{d^2 y}{dx^2} = \frac{d^2 y/dt^2}{d^2 x/dt^2}$?
- **Q13** Check the applicability of Rolle's theorem for f(x) = [x] on [1, 5].
- Q14 Discuss the continuity of the function $f(x) = \sin|x|$
- **Q15** Discuss the continuity of the function f(x) = |x| |x 1|

4 Mark Questions

Q1 Differentiate log (x + $\sqrt{1+x^2}$)

Q2 Differentiate
$$\frac{\sqrt{a+x} + \sqrt{a-x}}{\sqrt{a+x} - \sqrt{a-x}}$$

Q3 Find
$$\frac{dy}{dx}$$
 for $\sin(xy) + \frac{x}{y} = x^2 - y$

Q4 If
$$2^{x} + 2^{y} = 2^{x+y}$$
, show that $\frac{dy}{dx} = -2^{y-x}$

Q5 If
$$\tan^{-1}\left(\frac{x^2 - y^2}{x^2 + y^2}\right) = a$$
, show that $\frac{dy}{dx} = \frac{x(1 - \tan a)}{y(1 + \tan a)}$

Q6
Differentiate
$$\tan^{-1}\left(\frac{a\cos x - b\sin x}{b\cos x + a\sin x}\right)$$

Q7 Differentiate
$$x^x + x^a + a^x + a^a$$

Q8 Differentiate
$$\left(x + \frac{1}{x}\right)^x + x^{\left(x + \frac{1}{x}\right)}$$

Q9 Find
$$\frac{dy}{dx}$$
 for $\mathbf{x} = \frac{\sin^3 \theta}{\sqrt{\cos 2\theta}}$, $\mathbf{y} = \frac{\cos^3 \theta}{\sqrt{\cos 2\theta}}$

Q10 Find
$$\frac{dy}{dx}$$
 for $\mathbf{x} = \sqrt{a^{\sin^{-1}t}}$, $\mathbf{y} = \sqrt{a^{\cos^{-1}t}}$

Q11 If
$$\mathbf{y} = (\tan^{-1} x)^2$$
 show that $(1 + x^2)^2 \frac{d^2 y}{dx^2} + 2x(1 + x^2)\frac{dy}{dx} - 2 = 0$

Q12 If sin y = x cos (a + y), show that
$$\frac{dy}{dx} = \frac{\cos^2(a+y)}{\cos a}$$

Q13
If
$$y\sqrt{1-x^2} + x\sqrt{1-y^2} = 1$$
, show that $\frac{dy}{dx} = -\sqrt{\frac{1-y^2}{1-x^2}}$

Q14
If
$$x \sin (a + y) + \sin a \cos (a + y) = 0$$
, show that $\frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}$
Q15
 $\begin{bmatrix} x - |x| \end{bmatrix}$

Check the continuity of the function
$$f(x) = \begin{cases} \frac{x - |x|}{x}, & x \neq 0\\ 2, & x = 0 \end{cases}$$
 at $\mathbf{x} = \mathbf{0}$

Q1 If
$$y = (\sin^{-1} x)^2$$
 show that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 2$

Q2 Find
$$\frac{d^2y}{dx^2}$$
 for the function $\mathbf{x} = a(\theta + \sin\theta)$, $\mathbf{y} = a(1 + \cos\theta)$ at $\theta = \frac{\pi}{2}$

Q3 Find $\frac{dy}{dx}$ for $\tan^{-1}\left(\sqrt{1+x^2}+x\right)$

Q4 Find
$$\frac{dy}{dx}$$
 for tan (x + y) + tan (x - y) = 1

Q5 Show that the function defined by g(x) = x - [x] is discontinuous at all integral points.

Answers: Continuity and Differentiability <u>1 Mark Questions</u>

- **Q1** {Not Continuous}
- Q2 {Continuous}
- Q3 {Continuous}
- Q4 {Continuous}
- Q5 {All integers}

$$\mathsf{Q6} \qquad \{\mathbf{x} = \mathbf{5}\}$$

Q7
$$\{f(x) = |x|\}$$

Q8
$$\frac{-\cos(\cos^2\sqrt{x})\sin\sqrt{x}}{\sqrt{x}}$$

Q9 {1, 2}

Q10
$$\{\frac{\cos x}{2\sqrt{\sin x} (1+\sin x)}\}$$

- $Q11 \quad \{No\}$
- Q12 {No}
- Q13 { Not applicable}
- Q15 {Continuous}
- Q14 {Continuous}

4 Marks Questions

Q1
$$\left[\frac{1}{\sqrt{1+x^2}}\right]$$

Q2 $\left\{\frac{a}{\sqrt{a^2 - x^2}(a + \sqrt{a^2 - x^2})}\right]$
Q3 $\left[\frac{2xy^2 - y - y^3 \cos(xy)}{y^2 x \cos(xy) - x + y^2}\right]$
Q4 $\left\{-2^{y-x}\right\}$
Q6 $\left\{-1\right\}$
Q7 $\left\{x^x \left(1 + \log x\right) + a x^{a-1} + a^x \log a\right\}$
Q8 $\left[\left(x + \frac{1}{x}\right)^x \left[\frac{x^2 - 1}{x^2 + 1} + \log\left(x + \frac{1}{x}\right)\right] + x^{1+\frac{1}{x}} \left(\frac{x + 1 - \log x}{x^2}\right)\right]$
Q9 $\left\{-\cot 3\theta\right\}$
Q10 $\left\{-\frac{y}{x}\right\}$
Q15 $\left\{\text{Not Continuous}\right\}$

<u>6 Mark Questions</u>

Q2
$$\left\{-\frac{1}{a}\right\}$$

Q3 $\left\{\frac{1}{\sqrt{1+x^2}(2x^2+1+2x\sqrt{1+x^2})}\right\}$
Q4 $\left\{-\frac{\sec^2(x+y)+\sec^2(x-y)}{\sec^2(x+y)-\sec^2(x-y)}\right\}$

Chapter 4 DETERMINANTS

<u>1 Mark Questions</u>

Q1	If A is a square matrix of order 3 and $ A = 5$, find the value of $\begin{vmatrix} -3A \end{vmatrix}$
Q2	If wis cube root of unity find the value of
	$\Delta = \begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & \omega \\ \omega^2 & 1 & 1 \end{vmatrix}$
Q3	Find the value of determinant
	$\Delta = \begin{vmatrix} 1 & 2 & 4 \\ 8 & 16 & 32 \\ 64 & 128 & 256 \end{vmatrix}$
Q4	Find the value of determinant
	$\Delta = \begin{vmatrix} 2 & 2 & 2 \\ x & y & z \\ y + z & z + x & x + y \end{vmatrix}$
Q5	If a, b, care in A.P. find the value of determinant
Q6	$\Delta = \begin{vmatrix} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{vmatrix}$ For what value of k, the matrix $\begin{bmatrix} 2 & k \\ \end{bmatrix}$ has no inverse
.	For what value of \mathbf{k} , the matrix $\begin{bmatrix} 3 & 5 \end{bmatrix}$ has no inverse
Q 7	A B C are three non zero matrices of same order, then find the condition on A such that $AB = AC \implies B = C$
Q8	Let Abe a non singular matrix of order 3 x 3, such that $ AdjA $ =100, find $ A $.
Q9	If A is a non singular matrix of order n, then write the value of $Adj(AdjA)$ and hence write the value of $Adj(AdjA)$ if order of A is 3 and $ A = 5$
Q10	Let A be a diagonal $A = (d_1, d_2, \dots, d_n)$ write the value of $ A $.
Q11	Using determinants find the value of the line passing through the points $(-1,3)$ and $(0,2)$.
Q12	Using determinants find the value of k for which the following system of equations has unique solution,

2x - 5y = 263x + ky = 5

Q1	If A = [a _{ij}] is a 3 x 3 matrix and A _{ij} 's denote cofactors of the corresponding elements a _{ij} 's then write the value of ,
	(i) $a_{11} A_{11} + a_{11} A_{11} + a_{11} A_{11}$
	(ii) $a_{12} A_{12} + a_{22}A_{22} + a_{32}A_{32}$ (iii) $a_{21} A_{11} + a_{22}A_{12} + a_{23}A_{13}$ (iv) $a_{11} A_{13} + a_{21}A_{23} + a_{31}A_{33}$
Q2	If $\mathbf{x} \in \mathbf{R}$, $\pi/2 \ge \mathbf{x} \ge 0$ and $\begin{vmatrix} 2\sin x & -1 \\ 1 & \sin x \end{vmatrix} = \begin{vmatrix} 3 & 0 \\ -4 & \sin x \end{vmatrix}$ find the values of \mathbf{x} .
Q3	If a ,b, c are all distinct and $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$, find the values of a, band
	с.
Q4	If x is a real number then show that if $\Delta = \begin{vmatrix} 1 & \sin x & 1 \\ -\sin x & 1 & \sin x \\ -1 & -\sin x & 1 \end{vmatrix}$ then, $2 \le \Delta \le 4$
Q5	If x, y, z are real numbers such that $x + y + z = \pi$ then find the value of, $\begin{vmatrix} \sin(x + y + z) & \sin(x + z) & \cos z \\ -\sin y & 0 & \tan x \\ \cos(x + y) & \tan(y + z) & 0 \end{vmatrix}$
Q6	Without expanding find the value of the following determinant,
	$\Delta = \begin{vmatrix} \sin \alpha & \cos \alpha & \cos(\alpha + \delta) \\ \sin \beta & \cos \beta & \cos(\beta + \delta) \\ \sin \gamma & \cos \gamma & \cos(\gamma + \delta) \end{vmatrix}$
Q7	Find value of k, if area of the triangle with vertices P (k ,0) , Q (4,0) and R(0,2) is 4 square units

Q8
If
$$A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$$
 show that $A' A^{-1} = \begin{bmatrix} \cos 2x & -\sin 2x \\ \sin 2x & \cos 2x \end{bmatrix}$
Q9
Prove that, $\begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & 3+2p & 4+3p+2q \\ 3 & 6+3p & 10+6p+3q \end{vmatrix} = 1$
Q10
 $\begin{vmatrix} x-3 & x-4 & x-q \end{vmatrix}$

Using properties prove that,
$$\begin{vmatrix} x-3 & x-4 & x-\alpha \\ x-2 & x-3 & x-\beta \\ x-1 & x-2 & x-\gamma \end{vmatrix} = 0$$

where α , β , γ are in A.P.

Q11
Prove that,
$$\begin{vmatrix} x+y & x & x \\ 5x+4y & 4x & 2x \\ 10x+8y & 8x & 3x \end{vmatrix} = \mathbf{x}^3$$

6 Mark Questions

Q1
If
$$\mathbf{a} \neq \mathbf{p}$$
 $\mathbf{b} \neq \mathbf{q}$ $\mathbf{c} \neq \mathbf{r}$ and $\begin{vmatrix} p & b & c \\ a & q & c \\ a & b & r \end{vmatrix} = 0$ find the value of

$$\frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c}$$

Q2

For the matrix $\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$ find the numbers a and b such that

 $A^2 + aA + bI = O$. Hence find A^{-1} .

Q3 Solve the equation if $a \neq 0$ and

Q4

Show that the value of the determinant $\Delta = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ is negative, It is

given that a , b , c , are positive and unequal.

Q5 Using matrix method, determine whether the following system of equations is consistent or inconsistent.

$$3x - y - 2z = 2$$

$$2y - z = -1$$

$$3x - 5y = 3$$
Q6
$$. \text{ If } A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix} \text{ find } (AB)^{-1}.$$
Q7
$$Let \quad A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix} \text{ then, verify that, } (AdjA)^{-1} = Adj(A^{-1})$$

Answers: DETERMINANTS <u>1 Mark Questions</u>

Q1	-135
Q2	0 (using properties)
Q3	0 (using properties)
Q4	0 (using properties)
Q5	0 (using properties)
Q6	$\mathbf{k} = \frac{10}{3}$
Q7	$ \mathbf{A} \neq 0$
Q8	$ \mathbf{A} = \pm 10$
Q9	For a non-singular matrix of order $n > 1$, $Adj(AdjA) = (A)^{n-2}$. A
	: if order of matrix A is 3 x 3 and $ A = 5$, then
	Adj(AdjA) = 5A
Q10	$ \mathbf{A} = \mathbf{d}_1 \cdot \mathbf{d}_2 \cdot \mathbf{d}_3 \cdot \cdot \cdot \cdot \mathbf{d}_n$
Q11	$\mathbf{x} + \mathbf{y} = 2$

Q12
$$k \neq -\frac{15}{2}$$
 (all real numbers except $-\frac{15}{2}$)
4 Mark Questions

Q1	(i) Value of A
	(ii) Value of A
Q2	(iii) 0 (iv) 0 $\mathbf{x} = \frac{\pi}{6}, \frac{\pi}{2}$
Q3	abc = -1
Q5	0
Q6	0
Q7	$\mathbf{k} = 8, 0$
	<u>6 Mark Questions</u>
Q1	0
Q2	a = -4, b = 1
	$\mathbf{A}^{-1} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$
Q3	$x = -\frac{a}{3}$ or $x = -\frac{a}{2}$
Q5	Inconsistent
Q6	$(\mathbf{AB})^{-1} = \begin{bmatrix} 9 & -3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$

Chapter 9

Differential Equations

1 Mark Q	uestions:
1	Find the order of the differential equation satisfying, $\sqrt{1-x^4} + \sqrt{1-y^4} = a (x^2 - y^2)$
2	What is the order and degree of the differential equation whose solution is $y = cx + c^2 - 3c^{3/2} + 2$, where c is a parameter.
3	Find the Equation of the curve passing through (1, 1) and satisfying the
	differential equation $\frac{dy}{dx} = \frac{2y}{x}$: $(x > 0, y > 0)$
4	$\left(\frac{d^2y}{dx^2}\right) = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}$
	What is the order and degree of the differential equation, $(a, y) \in (a, y)$
5	Five the general solution of $x(1 + y^2)^{1/2} dx + y(1 + x^2)^{1/2} dy = 0$
6	Find the equation of the curve which passes through (3,9)
	dy 1
	and satisfies differential equation $dx = \frac{1}{x^2}$
7	Form the differential equation representing the family of curves given by
	$y^2 = 4ax$
8	Show that $y = -\cos x + x$ is a solution of the differential equation $y'' = \cos x$.
9	Verify that the given function is a solution of the corresponding differential equation:
	$y = e^x + 1$: $y'' - y' = 0$
10	dig .
	Find the solution of $dx = y \tan 2x$, where $y(0) = 2$
11	$\frac{dy}{dt} + \left(\frac{1-y^2}{1-x^2}\right)^{1/2} = 0$ Find the equation corresponding to the Diff equation
12	Find the equation (y - x) dy - (y2- x2) dx = 0, where y (0) = -1
13	$\frac{1}{1} = \frac{1}{3} $
15	. Form the differential equation $c(y + c) = x^{2}$
14	Find whether $y = \frac{a}{x} + b$, is \cdots solution of $\frac{d^2 y}{d^2 x} + \frac{2}{x} \left(\frac{dy}{dx}\right) = 0$

4 Mark Questions:

1	Find the equation of the curve that passes through the point (1,2) and satisfies the differential
-	dv - 2xv
	equation, $ax (x^{n} + 1)$.
2	Solve $(1+y^2)dx = (\tan^{-1}y - x)dy$
3	dy = 1
	$\frac{1}{\sqrt{2}} - x \sin^2 x = \frac{1}{\sqrt{2}}$
	Solve dx xlog x
4	$(r-a)^2 + (y-b)^2 - r^2$
	Form the differential equation of the curve $\begin{pmatrix} x & u \end{pmatrix} + \begin{pmatrix} y & y \end{pmatrix} = i$ where $a_{i} a_{j}$ are arbitrary
	constants.
5	dy 3 2 x
	$\frac{1}{dr} = \sin^2 x \cos^2 x + xe^2$
	Solve an
6	
	From the differential constinuation determines the family of allies $\sqrt{2}$
	Form the differential equation representing the family of ellipses to a
	(x) (x) (d^2y) (d^2y)
	$y = x \log \left[\frac{1}{dx^2} + \frac{1}{$
	If (BTUR), prove that (BA)
8	Form the differential equation representing the family of parabolas having vertex at origin and axis
	along positive direction of x-axis.
9	$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y $
	Solve the differential equation $\frac{dx}{dx} - \frac{dx}{dx} - \frac{dx}{dx} + \frac{dx}{dx$
10	Solve the equation $(1 + r^3) dy + 6r^2 y = (1 + r^2)$
	Solve the equation $(1 + x) \frac{dx}{dx} + 0x y = (1 + x)$
1	

1	Solve the differential equation $x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x$
2	Solve: $\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy \frac{dy}{dx} = 0$
3	Find the particular solution of the differential equation $\log\left(\frac{dy}{dx}\right) = 3x + 4y$ at $y(0) = 0$.
4	Solve $x.dy - y.dx = \sqrt{x^2 + y^2} dx$
5	Solve $x^2 dy + y(x + y)dx = 0$ for $y = 1, x = 1$

Answers Differential Equations

	Answer-1 Mark questions
Q1	1
Q2	1 and 4
Q3	x2=y
Q4	2,2
Q5	$(1+x^2)^{1/2} + (1+y^2)^{1/2} = C$
Q6	$6xy=3x^3+29x-6$
Q7	2xy'-y=0
Q10	$Y = \frac{2}{\sqrt{COS2X}}$
Q11	$\sqrt{I - X^2} + \sqrt{I - Y^2} = 0$
Q12	Y= -(I+X)
	Answer-4 Mark questions
Q1	$y(x^2+1)=4$
Q2	$\mathbf{x} = (\tan^{-1}\mathbf{y}) - 1 + \operatorname{ce}^{\tan^{-1}\mathbf{y}}$
Q3	$\frac{x^2}{4} - \frac{x\sin 2x}{4} - \frac{\cos 2x}{2} + \log \log x + c$
Q4	$[1 + (y')^2]^3 = r^2 (y'')^2$
Q5	$\frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + xe^x - e^x + c$
Q6	$xy'y''+x(y')^2 = yy'$
Q8	2xy'-y=0
	Answer-6 Mark questions
Q1	$\sin\frac{y}{x} = \log x + c$
Q2	$\sqrt{x^{2} + 1} + \sqrt{1 + y^{2}} - \log \left \frac{1 + \sqrt{1 + x^{2}}}{x} + c \right + c = 0$
Q3	4e ³ +3e ⁻⁴ y-7=0

Chapter 7

INTEGRATION

1 Mark Questions

Find the value of the following integrals

Q1	∫Cosec ax dx
Q2	∫sin x/sin[x-a] dx
Q3	$\int (\log x) / x^2 dx$
Q4	$\int (x + \cos 6x) / (3x^2 + \sin 6x) dx$
Q5	$\int \sqrt{1-4x-x^2} dx$
Q6	$\int \cos 2x / (\sin x + \cos x)^2 dx$
Q7	$\int dx/(e^{x}+e^{-x}) dx$
Q8	$\int (1+\tan^2 x)/(1+\tan x) dx$
Q9	$\int (\sin 2x \cos 2x) / \sqrt{(9 - \cos^4 2x)} dx$
Q10	$\int_{1}^{\sqrt{3}} dx/(1+x^2) dx$
Q11	$\int_{1/3}^{1} (x-x^3)^{1/3}/x^4 dx$
Q12	$\int_{0}^{\pi/2} (\cos^2 x/2 - \sin^2 x/2) dx$
Q13	$\int_{0}^{\pi/2} \log \left[(4+3\sin x) / (4+3\cos x) \right] dx$
Q14	$\int_{0}^{\pi} \sin^{6}x \cos^{5}x dx$
Q15	$\int_{0}^{\pi/2} \log(\cot x) dx$

Q16
$$\int_{-\pi/4}^{\pi/4} dx/sec^2x(1+sinx)$$

Q17 $\int_{0}^{1} x(1-x)^5 dx$
Q18 $\int_{\pi/8}^{3\pi/8} cosx/(cosx + sinx) dx$

Q19 If
$$f(x) = \int_{0}^{x} t \sin t \, dt$$
, then find f '(x

4 Mark Questions

Evaluate

Q1

$$\int_{-1}^{3/2} \pi$$

Q2

$$\int_{0}^{\pi} \Theta \sin^{3} \Theta \, \mathrm{d} \Theta$$

ſ

Q3
$$\int_{0}^{\pi} x \log (\sin x) dx$$

$$Q4 \qquad \int_{0}^{2\pi} dx/(e^{\sin x}+1)$$

Q6
$$\int e^x (1-\sin x)/(1-\cos x) dx$$

Q7

$$\int_{0}^{\pi/2} dx/(1+\cot^{3} x)$$

Q8

$$\int_{0}^{1} \log (1+x)/(1+x^{2}) dx$$

Q9
$$\int_{-\pi/2}^{\pi/2} [\sin |\mathbf{x}| + \cos |\mathbf{x}|] d\mathbf{x}$$

Q10

$$\int_{0}^{\pi} \frac{1}{x'(a^2\cos^2 x + b^2\sin^2 x) dx}$$
Q11

$$\int_{0}^{\pi/2} \sin 2x \log (\tan x) dx$$

Q12
$$\int_{0}^{1} \log(\frac{1}{x}-1) dx$$

Q13
$$\int_{0}^{\pi/4} \log(1+\tan x) dx$$

Q14
$$\int_{\pi/3}^{\pi/2} \sqrt{(1+\cos x)/(1-\cos x)^{5/2}} \, dx$$

Q15
$$\int_{\pi/4}^{\pi/2} \cos\Theta / (\cos\Theta/2 + \sin\Theta/2)^3 d\Theta$$

Q16

$$\int_{0}^{a} \sin^{-1} (x/a+x) dx$$
Q17

$$\int_{-a}^{\pi/4} \sqrt{\tan x} dx$$
Q18

$$\int_{-a}^{a} \sqrt{[(a-x)/(a+x)]} dx$$
Q19

$$\int_{0}^{\pi/2} dx / (4\sin^{2}x+5\cos^{2}x)$$
Q20

$$\int_{\pi/6}^{\pi/3} dx / [1+\sqrt{\tan x}]$$
Q21

$$\int_{1}^{3} \log x / (1+x)^{2} dx$$
Q22

$$\int_{0}^{a^{2}} [\frac{1}{\log x} - (\frac{1}{\log x})^{2}] dx$$
Q23

$$\int_{1}^{4} (x^{2}+x) / \sqrt{(2x+1)} dx$$
Q24

$$\int_{0}^{a} dx / \sqrt{(ax-x^{2})} dx$$

Answers: INTEGRATION

1 Mark Questions

- Q1 1/a log | cosec ax-cot ax | +c
- Q2 (Hint:Put x-a=t)

(x-a) Cos a + Sin a log|Sin (x-a)| +c

Q3 Hint: Write in the form $\int \log x^{-2}$ and use integration by parts.

 $-1/x \log x - 1/x + c \text{ or } -1/x [\log x + 1] + c$

Q4 $1/6 \log |3x^2 + \sin 6x| + c$

Q5	5/2 [Sin ⁻¹ (x+2)/√5] + (x+2)(√1-4x-x ²)/2 +c		
Q6	. log Sin x + Cos x +c		
Q7	$\tan^{-1}(e^{x}) + c$		
Q8	$\log 1+t \text{ an } x +c$		
Q9	-1/4 Sin ⁻¹ [1/3 Cos ² 2x] +c		
Q10	π /12		
Q11	4		
Q12	1		
Q13	ZERO		
Q14	ZERO		
Q15	ZERO		
Q16	π /2		
Q17	1/42		
Q18	Л/8		
Q19	x Sin x		
	4 Mark Questions		
Q1	$\frac{3}{\pi}+\frac{1}{\pi^{2}}$		
Q2	2π /3		
Q3	$\frac{-\pi^2}{2}$ ln 2		
Q4	π		
Q5	$-e^{x} \cot(x/2)$		
Q6	$\mathbf{e}^{\mathbf{x}}\left(\frac{x-1}{x+1}\right) + \mathbf{c}$		

Q7	Hint $\int_{0}^{\pi/2} \frac{dx}{1 + \frac{(\cos x)^{3}}{(\sin x)^{3}}}$
	$\pi / 4$
Q8	Hint: Put $x = tan\Theta$
	$\pi / 8 \ (\log 2)$
Q9	4
Q10	$\frac{\pi^{2}}{2ab}$
Q11	0
Q12	Hint: put x=cos ² t ,the question will be transformed to Q.11
Q13	$(\pi / 8) \log 2$
Q14	3/2
Q15	$\frac{2}{\cos\frac{\pi}{8} + \sin\frac{\pi}{8}} - \sqrt{2}$
Q16	a $(\frac{\pi}{2} - 1)$
Q17	$\frac{\pi}{2\sqrt{2}} + \frac{1}{\sqrt{2}} \log(\sqrt{2} - 1)$
Q18	\mathbf{a}^{π}
Q19	$\frac{\pi}{4\sqrt{5}}$
Q20	$\left(\frac{e^2}{2}\right) - \mathbf{e}$
Q21	Hint.Take log x as the first function
Q22	$\left(\frac{e^2}{2}\right) - \mathbf{e}$
Q23	Hint: Take $x^2 + x$ as first function and the other as second

 $[57 - 5\sqrt{5}] / 5$

Q24 ^π

Chapter 12 Linear Programming

4 /6Mark Questions

Q1 Solve the following problem graphicall		graphically:
	Minimise and Maximise Z=	3x +9y
	Subject to the constraints:	$x + 3y \le 60$
		$x + y \ge 10$
		$x \leq y$
		$x \ge 0, y \ge 0$

Q2 Determine graphically the minimum value of the objective function.

$$\mathbf{Z} = -50\mathbf{x} + 20\mathbf{y}$$

Subject to constraints:

$$2x - y \ge -5$$
$$3x + y \ge 3$$
$$2x - 3y \le 12$$
$$x \ge 0, y \ge 0$$

Q3 Minimize Z=3x+2y

Subject to constraints:

$$x + y \ge 8$$
$$3x + 5y \le 15$$

$\mathbf{x} \ge 0, \mathbf{y} \ge 0$)
---------------------------------------	---

Q4	Minimize Z = x + 2y
	Subject to $2x + y \ge 3$, $x + 2y \ge 6$, $x, y \ge 0$.
	Show that the minimum of Z occurs at more than two points.
	5. Minimize and Maximise $Z = 5x + 10y$
Q5	Minimize and Maximise $Z = 5x + 10y$
	Subject to $x + 2y \le 120, x + y \ge 60, x - 2y \ge 0, x, y \ge 0$
Q6	Maximise $Z = -x + 2y$,
	Subject to $x \ge 3$, $x + y \ge 5$, $x + 2y \ge 6$, $y \ge 0$
Q7	Maximise $Z = x + y$
	Subject to $x - y \le -1$, $-x + y \le 0$, $x, y \ge 0$
Q8	The corner points of a feasible region determined by the following system
	of linear
	inequalities: $2x + y \le 10$, $x + 3y \le 15$, $x, y \ge 0$ are $(0,0)$, $(5,0)$, $(3,4)$ and
	(0,5).
	Let $Z = px + qy$,
	where $p,q > 0$. Condition on p and q so that the maximum of Z occurs

where p,q > 0. Condition on p and q so that the maximum of Z occur at both (3,4)

- Q9 If a young man drives his motorcycle at 25 km/hr he has to spend Rs.2 per km on petrol.If he rides at a faster speed of 40 km/hr the petrol cost increases to Rs.5 per km. He has Rs.100 to spend on petrol & wishes to find what is the max. distance he can travel within an hour.Express as LPP & solve it.
- Q10 The manager of an oil refinery must decide on the optimal mix of two possible blending processes of which the inputs & outputs per production run,are as follows:

	Input		Output	
Process	Crude A	Crude B	Gasoline P	Gasoline Q
1	5	3	5	8
2	4	5	4	4

The max.Crude A & B available are 200 & 150 units resp. Market requirementa are atleast 100 & 80 units P & Q resp..The profit from process 1 & process 2 are Rs.300/- & Rs 400/- resp. Formulate LPP & solve.

Answers: Linear Programming

Q1	The max.value of Z on the feasible region occurs at the two corner points (15,15) & (0.20) and it is 180 in each case
Q2	No minimum value
Q3	No feasible region & hence no feasible solution
Q4	Minimum $Z = 6$ at all the points on the line segment joining points (6,0) and (0,3)
Q5	Minimum Z = 300 at (60,0)
	Maximum $Z = 600$ at all the points on the line segment joining the points (120, 0) and (60, 30)
Q6	Z has no maximum value
Q7	No feasible region . Hence no maximum value of Z
Q8	q = 3p
Q9	Max. $Z = 30$ km when 50/3 Km travelled at 25 Km/hr & 40/3 Km travelled at
	40 Km /hr $\left(\frac{50}{3}, \frac{40}{3} \right)$
Q10	Max Z= $\frac{Rs.1,80,000}{13}$, x = $\frac{400}{13}$, y = $\frac{150}{13}$

Chapter 3

Matrix

1 Mark Questions

Q5

- Q1 Write the number of possible matrices which can be made if it has 12 elements.
- Q2 Let $A = [a_{ij}]$ be a matrix of order 2 x 3 and

$$\mathbf{a}_{ij} = \frac{i-j}{i+j}$$
, write the value of \mathbf{a}_{23} .

- Q3 If $\begin{bmatrix} a+b & 2\\ 5 & ab \end{bmatrix} = \begin{bmatrix} 6 & 2\\ 5 & 8 \end{bmatrix}$ find the relation between a and b.
- Q4 If following information regarding the number of men and women workers in three factories I, II and III is written in the form of 3 x 2 matrix. What does the entry in third row and second column represent? Men workers Women workers

Factory I	30	25
Factory II	25	31
Factory III	27	26

If,
$$\mathbf{A} = [\mathbf{a}_{ij}] = \begin{bmatrix} 2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2 \end{bmatrix}$$
 and $\mathbf{B} = [\mathbf{b}_{ij}] = \begin{bmatrix} 2 & -1 \\ -3 & 4 \\ 1 & 2 \end{bmatrix}$

Write the value of (i) $a_{22} + b_{21}$

(ii)
$$\mathbf{a}_{11} \, \mathbf{b}_{11} + \, \mathbf{a}_{22} \, \mathbf{b}_{22}$$

- Q6 Is it possible to have the product of two matrices to be the null matrix while neither of them is the null matrix? If it is so, give an example.
- Q7 Under what conditions is the matrix equation
 - $A^2 B^2 = (A-B)(A+B)$ is true.
- Q8 Write the order of matrix B if A is any matrix of order m x n such that

	AB and BA both are defined.
Q10	
If	$f A = \begin{bmatrix} -1 & 2 & -5 \end{bmatrix} B = \begin{bmatrix} -1 \end{bmatrix}$
	write the orders of AB and BA.
Q11 G	Give an example of two non-zero matrices A and B such that
010	$AB = 0$ but $BA \neq 0$.
Q12	If $A = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$ find A^6 .
Q13	f $\mathbf{A} = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ and $\mathbf{A}^2 = \mathbf{I}$, find the value of $\alpha^2 + \beta \gamma$
Q14	$\left[\sin x - \cos x\right]$
I	$\mathbf{f} \mathbf{A} = \begin{vmatrix} \cos x & \sin x \end{vmatrix}$
	π
	$0 < x < \frac{1}{2}$ and $A + A = 1$,
	hans I is souit as stairs find and a far
015	Where I is unit matrix, find value of x. If the following matrix is skew symmetric find the values of a b c
Z IO	$\begin{bmatrix} 0 & a & 3 \end{bmatrix}$
	$\mathbf{A} = \begin{bmatrix} 2 & b & -1 \end{bmatrix}$
	$\begin{vmatrix} c & 1 & 0 \end{vmatrix}$
Q16 I	If A and B are symmetric matrices and $AB = BA$, prove that
	matrix X = AB is also symmetric.
Q17 If	f A and B are square matrices of same order and B is symmetric,
	show that A' BA is also symmetric.
018	Live an example of a matrix which is both symmetric
Z 10 C	and skew symmetric
Q19	$\begin{bmatrix} 2 & 3 \end{bmatrix} = \mathbf{P} + \mathbf{O}$ where P is symmetric and O is
Ĺ	$\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$
	skew symmetric matrix find the matrices P and O
	skew symmetric matrix, mu the matrices I and Q.
Q20 I	f A is square matrix then write the value of A(AdjA)
<u>4 Mark Ques</u>	<u>tions</u>

Q1 For what values of x and y are the following matrices equal

$$\mathbf{A} = \begin{bmatrix} 2x+1 & 3y \\ 0 & y^2 - 5y \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} x+3 & y^2 + 2 \\ 0 & -6 \end{bmatrix}$$

Q2 Find matrix A such that 2A-3B+5C = 0 where,

$$\mathbf{B} = \begin{bmatrix} -2 & 2 & 0 \\ 3 & 1 & 4 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 2 & 0 & -2 \\ 7 & 1 & 6 \end{bmatrix}$$

Q3 Find the values of x and y for which the following matrix equation

A-3B = C is satisfied, where

$$\mathbf{A} = \begin{bmatrix} x^2 \\ y^2 \end{bmatrix} \qquad \qquad \mathbf{B} = \begin{bmatrix} x \\ 2y \end{bmatrix} \qquad \qquad \mathbf{C} = \begin{bmatrix} -2 \\ 9 \end{bmatrix}$$

Q4 Let $f(x) = x^2 - 5x + 6$, find f(A)

$$\mathbf{If, A} = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$

5. If, $\mathbf{A} = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ find all those values of α for which A = B.

Q6

. Using Principle of Mathematical Induction, prove that

$$\mathbf{A}^{\mathbf{n}} = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix} \qquad \text{Where,} \qquad \mathbf{A} = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$

<u>6 Mark Questions</u>

Q1
If
$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$$
 find x, y such that $\mathbf{A}^2 + \mathbf{xI} = \mathbf{yA}$

Hence find A⁻¹.

Q2

$$. If A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} Prove that, A = \begin{bmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \end{bmatrix} for$$

every positive integer n.

- Q3 The sum of three numbers is -1. If we multiply the second number by 2, third number by 3 and add them we get 5. If we subtract the third number from the sum of first and second numbers we get -1. Represent it by a system of equations . Find the three numbers using inverse of a matrix .
- Q4 If $A(x_1,y_1)$, $B(x_2,y_2)$ and $C(x_3,y_3)$ are the vertices of an equilateral triangle with each side equal to 'a' units, prove that,

$$\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = \sqrt{3} \ \alpha^2$$

Answers: Matrix

<u>1 Mark Questions</u>

Q1 6

- Q2 -1/5
- Q3 a=2b { a=4, b=2}
- Q4 Number of women workers in factory III.
- Q5 1, 20

$$\mathbf{Q6} \qquad \mathbf{A} = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \mathbf{B} = \begin{bmatrix} \mathbf{1} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{bmatrix} \mathbf{AB} = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$$

Q7 AB = BA ie, if the matrices A & B commute with each other.
Q8 n x m

Q9	k = 4, a = -4, b = -10, c = 0
Q10	1 x 1, 3 x 3,
Q10	$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mathbf{B} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$
Q12	$\mathbf{A}^6 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
Q13	$\alpha^2 + \beta \gamma = 1$
Q14	$\mathbf{x}=\pi/6$
Q15	a = -2, b = 0, c = -3
Q18	Null Matrix
Q19	$\mathbf{P} = \begin{bmatrix} 2 & 2 \\ 2 & 0 \end{bmatrix} \qquad \mathbf{Q} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
Q20	
	4 Marks Questions
Q1	x=2, y=2
Q2	$\mathbf{A} = \begin{bmatrix} -8 & 3 & 5 \\ -13 & -1 & -9 \end{bmatrix}$

Q3 x=1, 2 y=
$$3\pm 3\sqrt{2}$$

Q4

$$\mathbf{f}(\mathbf{A}) = \begin{bmatrix} 1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4 \end{bmatrix}$$

Q5 No values of α can be found for which $A^2 = B$ is true.

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & -5 \\ 3 & 4 & 0 \end{bmatrix}$$

Q1 x = 8 y = 8

Q2
$$\mathbf{A}^{-1} = \frac{1}{8} \begin{bmatrix} 5 & -1 \\ -7 & 3 \end{bmatrix}$$

Q3 Let numbers be x, y, z then

x + y + z = -1 2y + 3z = 5 x + y - z = -1 Ans x = $-\frac{7}{2}$, $y = \frac{5}{2}$, z = 0

Chapter 13

PROBABILITY

1 Mark Questions

- Q1 If A and B are two independent events, find P(B) when P(A U B) = 0.60 and P(A) = 0.35.
- Q2 A card is drawn from a well shuffled pack of 52 cards. The outcome is noted and the pack is again reshuffled without replacing the card. Another card is then drawn. What is the probability that the first card is a spade and the second is a Black King.
- Q3 Find the chance of drawing two white balls in succession from a bag containing 3 red and 5 white balls, the ball first drawn not replaced.
- Q4 Given P(A) = 1/4, P(B) = 2/3 and P(A U B) = 3/4. Are the events independent ?
- Q5 Given P(A) = 0.3, P(B) = 0.2. find P(B/A) if A and B are mutually exclusive events.
- Q6 Does the following table represents a probability distribution ?

Χ	-2	-1	0	1	2
P(X)	0.1	0.2	-0.2	0.4	0.5

- Q7 Father, mother and son line up at random for a family picture. If E is the event "Son on one end" and F is the event "Father in middle", Find P(F/E).
- Q8 A bag contains 5 brown and 4 white socks. A man pulls out 2 socks. Find the probability that these socks are of same colour.
- Q10 Out of 30 consecutive integers, 2 are chosen at random. Find the probability that their sum is odd.
- Q11 An urn contains 9 balls, two of which are red, 3 blue and 4 black. Three balls are drawn at random. Find the probability that they are of the same color.
- Q12 If X is a random variable with probability distribution as given below, find the value of k.

Χ	0	1	2	3
P(X)	k	3k	3k	k

Q13 A random variable X takes the values 0,1,2,3 and its mean is 1.3. If P(X

=3)=2P(X = 1) and P(X = 2)=0.3. then find P(X = 0).

- Q14 If P(A) = 7/13, P(B) = 9/13 and $P(A \cap B) = 4/13$. Find P(A'/B).
- Q15 A couple has 2 children. Find the probability that both the children are boys, if it is known that at least one of the children is a boy.
- Q16 A coin is tossed 7 times. Write the probability distribution of getting r heads.
- Q17 If P(A)=0.4, P(B)= p and P(A U B)= 0.7, find the value of p if A and B are independent events.
- Q18 In two successive throws a pair of dice, find the probability of getting a total of 8 each time
- Q19 A policeman fires 4 bullets on a dacoit. The probability that the dacoit will not be killed by a bullet is 0.4. What is the probability that the dacoit is still alive ?
- Q20 4 Cards are drawn from a well shuffled pack of 52 cards. Find the probability of drawing all the 4 cards of the same suit if a card is replaced after each other.

- Q1 'A' speaks truth in 60% cases and 'B' in 90% cases. In what % of cases are they likely to contradict each other in stating the same fact?
- Q2 The probability of student A passing an examination is 3/5 and of student B passing is 4/5. Assuming the two events : 'A passes', 'B passes', as independent find the probability of:
 - a. Both students passing the examination
 - b. Only A passing the examination
 - c. Only one of the two passing the examination
 - d. Neither of the two passing the examination
- Q3 A problem in Mathematics is given to three students whose chances of solving it are 1/3,1/5,1/6. What is the probability that at least one of them solves the problem.
- Q4 A' speaks truth in 60% cases and 'B' in 90% cases. In what % of cases are they likely to contradict each other in stating the same fact?
- Q5 A and B are two independent events. The probability that both A and B

occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of occurrence of A.

- Q6 A coin is tossed until a head appears or until it has been tossed three times. Given that 'head' does not occur on the first toss, what is the probability that the coin is tossed thrice?
- Q7 A company has two plants to manufacture scooters. Plant-1 manufactures 70% of the scooters and Plant-2 manufactures 30%. At Plant-1, 80% of the scooters are rated of standard quality and at Plant-2, 90% of the scooters are rated of standard quality. A scooter is chosen at random and is found to be of standard quality. Find the probability that it has come from Plant-2.
- Q8 Find the mean and standard deviation of the probability distribution of the numbers obtained when a card is drawn at random from a set of 7 cards numbered 1 to 7.
- Q9 A pair of dice is rolled twice. Let X denote the number of times, ' a total of 9 is obtained'. Find the mean and variance of the random variable X.
- Q10 A box contains 12 bulbs of which 3 are defective. A sample of 3 bulbs is selected from the box. Let X denote the number of defective bulbs in the sample, find the probability distribution of X.
- Q11 A box contains 12 bulbs of which 3 are defective. A sample of 3 bulbs is selected from the box. Let X denote the number of defective bulbs in the sample, find the probability distribution of X.
- Q12 Two dice are thrown six times. 'A total of 7' is considered as success. Find the probability of at least 4 successes.
- Q13 Four cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that
 - i. All the four cards are spades?
 - ii. Only three cards are spades?
 - iii. None is a spade?
- Q14 The sum of mean and variance of a binomial distribution is 35/16, for 5 trials. Find the distribution.
- Q15 A man takes a step forward with probability 0.4 and backwards with probability 0.6. Find the probability that at the end of eleven steps he is one step away from the starting point.
- Q16 10% of the tools produced by a machine are defective. Find the probability

distribution of the number of defective tools in a sample of 3 drawn at random.

- Q17 3 defective bulbs are mixed with 7 good ones, 3 bulbs are drawn at random. Find the probability distribution of the defective bulbs.
- Q18 The probability distribution of a random variable X is given by

Χ	0	1	2
P(X)	3 c ³	4c-10c ²	5c - 1

where c > 1 then find each of the following :

- i. c ii. P(X< 2)
- iii. P(1 < X≤2)
- Q19 A letter is known have to come from TATANAGAR or CALCUTTA. On the envelope just two consecutive letters TA are visible. Find the probability that the letter has come from
 - i. Calcutta
 - ii. Tatanagar
- Q20 Fatima and John appear in an interview for two vacancies on the same post. The probability of Fatima's selection is 1/7 and that of John's selection is 1/5. What is the probability that:
 - i. Both of them will be selected.
 - ii. Only one of them is selected.
 - iii. None of them will be selected.

- Q1 A pair of dice is thrown 7 times . If getting a total of 7 is considered a successes, what is the probability of
 - I) No Success II) 6 Success III) At least 6 Success IV) At most 6 Successes.
- Q2 Let X denote the number of hours you study during a randomly selected school day. The probability that X can take the value x has the following form where k is some unknown constant:

- (a) Find the value of k
- (b) What is the probability that you study
 - (i) At least 2 hours ?
 - (ii) Exactly two hours ?
 - (iii) At most two hours ?
- Q3 Three urns contain respectively 3 green and 2 white balls , 5green and 6 white balls and 2 green, 4white balls. One ball in drawn from each urn. Find the mean and variance of the probability distribution of the discrete random variable ,"Number of white balls drawn".
- Q4 A pack of playing cards was found to contain only 51 cards. If the first 13 cards which are examined are all red, what is the probability that the missing card is black.

Answers PROBABILITY

Q1	1) 5/13
Q2	25/2652
Q3	5/14
Q4	Yes
Q5	0
Q6	No
07	1/2

Q8	48/108
Q9	15/29
Q10	11/16
Q11	5/84
Q12	1/8
Q13	0.4
Q14	5/9
Q15	1/3
Q16	P(r)= ⁷ c _r (1/2) ⁷ , r=0,1,27
Q17	0.5
Q18	25/1296
Q19	0.0256
Q20	1/64
	4 Mark Questions
Q1	<u>4 Mark Questions</u> 5 2/77
Q1 Q2	<u>4 Mark Questions</u> 5 2/77 1 2/25,3/25,11/25,
Q1 Q2	<u>4 Mark Questions</u> 5 2/77 1 2/25,3/25,11/25, 2/25
Q1 Q2	<u>4 Mark Questions</u> 5 2/77 1 2/25,3/25,11/25, 2/25
Q1 Q2 Q3	<u>4 Mark Questions</u> 5 2/77 1 2/25,3/25,11/25, 2/25 5/9
Q1 Q2 Q3 Q4	<u>4 Mark Questions</u> 5 2/77 1 2/25,3/25,11/25, 2/25 5/9 42%
Q1 Q2 Q3 Q4	<u>4 Mark Questions</u> 5 2/77 1 2/25,3/25,11/25, 2/25 5/9 42%
Q1 Q2 Q3 Q4 Q5	4 Mark Questions 5 2/77 1 2/25,3/25,11/25, 2/25 5/9 42% ¹ / ₂ OR 1/3
Q1 Q2 Q3 Q4 Q5 Q6	<u>4 Mark Questions</u> 5 2/77 1 2/25,3/25,11/25, 2/25 5/9 42% ¹ / ₂ OR 1/3 1/2
Q1 Q2 Q3 Q4 Q5 Q6 Q7	<u>4 Mark Questions</u> 5 2/77 1 2/25,3/25,11/25, 2/25 5/9 42% ¹ / ₂ OR 1/3 1/2 27/83
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8	4 Mark Questions 5 2/77 1 2/25,3/25,11/25, 2/25 5/9 42% ½ OR 1/3 1/2 27/83 4,2

Q10

Χ	0	1	2	3	
P(x)	84/220	108/220	27/220	1/220	

Q11

X	0	1	2
P(x)	9/16	3/8	1/16
	6		

- Q12 $(406/6^6)$
- Q13 1/256, 3/64, 81/256
- (3/4+1/4) 5 Q14
- Q15 ¹¹C₅(3/5)⁵(2/5)⁵
- Q16

Χ	0	1	2	3
P(x)	727/1000	243/1000	27/1000	1/1000

Q17

Q1

Q2

Q3

Q4

Q5

Χ	0	1	2	3
P(x)	7/24	21/40	7/40	1/120

 $(5/6)^7, 35(1/6)^7, (1/6)^5, 1-(1/6)^7$

(a) 0.15 (b) 0.75 ,0.3,0.55

532/330,0.71

0

625/1296

Q18 1/3, 1/3, 2/3

- Q19 4/11
- Q20 1/35, 2/7, 24/35

6 Mark Questions

2

150/1296

1

500/1296

3

20/1296

4

1/1296

2/3

Х

P(x)