Ideal Gas law PV = nRT n = number of moles R = universal gas constant = 8.3145 J/mol K	Combined Gas law $P_1V_1 = P_2V_2$ $T_1 = T_2$
Boyle's law $P_1V_1 = P_2V_2$	Charles law $V_1 = V_2$ $T_1 = T_2$
Gay-Lussac law $P_1 = P_2$ T_2	Diffusion: Rate at which two gases mix Graham's law of diffusion The rate of diffusion of a gas is inversely proportional to the square root of their density or the molar mass of the gas. Rate diffusion $\mathbf{C} = \frac{1}{\sqrt{\text{density}}}$ Diffusion-Rate $\frac{B}{\text{Diffusion-Rate}} = \sqrt{\frac{\text{Molar-Mass}_A}{\text{Molar-Mass}_B}}$
Effusion: Rate at which a gas escapes thru pin hole Graham's law of effusion The rate of effusion of a gas is inversely proportional to the square root of either the density or the molar mass of the gas. Rate effusion $\propto \frac{1}{\sqrt{\text{density}}}$	 Solution: Solution is a homogeneous mixture of two or more substances. Solute is a substance that is dissolved in the solution. Solvent is the substance that dissolves the solute. Solvent is present in greater amount.
Concentration is the ratio of solute and solvent. Concentration can be measured using molarity, molality and mole fraction. Molarity (M) = moles of solute liters of solute moles of solute kg of solute	Unit of Molarity (M) : mol/L : moles per litre Unit of Molality (M) : mol/kg : moles per kg
Mole fraction: Mole fraction of a component in solution is the number of moles of that component divided by the total number of moles of all components in the solution. Mole-fraction $(X_a) = \frac{\text{moles}_a}{\text{moles}_a + \text{moles}_b \dots}$	$\label{eq:solution} \begin{array}{l} \mbox{Dilution: Siluting a solution means adding more solvent in solution without the addition of more solute. \\ \label{eq:MiVi} M_i V_i = M_f V_f \\ \mbox{M}_i: \mbox{Molarity of solution before diluting.} \\ \mbox{V}_i: \mbox{Volume of solution before diluting.} \\ \mbox{M}_f: \mbox{Molarity of solution after diluting.} \end{array}$

	V _f : Volume of solution after diluting.
Mole : Mole is the amount of substance that contains same number of particles as there are atoms in Carbon-12. One mole of substance is Avogadro's number (i.e. 6.023×10^{23}).	One mole of gas has volume of 22.4 liter at STP.
Relation between moles and grams 1 mole = molecular weight of substance in grams.	Ionization Enthalpy: It is the energy needed to remove an electron from an atom or molecule (i.e from low state to $n=\infty$). It is always endothermic (i.e. positive). OR
	Ionization energy: energy needed to remove an electron from an atom
Henderson-Hasselbalch equation:	
$pH = pK_a + \log_{10} \frac{[A^-]}{[HA]}$	
where	
[A ⁻]: Concentration of conjugate base [HA]: concentration of the acid OR $pH = pK_a + log_{10}$ [Conjugate Base] [Acid]	