Chemistry formulas for grade 11, grade 12 and under graduates.

Ideal Gas law $\mathrm{PV}=\mathrm{nRT}$ $\mathrm{n}=$ number of moles $\mathrm{R}=$ universal gas constant $=8.3145 \mathrm{~J} / \mathrm{mol} \mathrm{K}$	Combined Gas law $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$ $\mathrm{~T}_{1}$
Boyle's law $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	Charles law $\mathrm{V}_{1}=\mathrm{V}_{2}$ $\mathrm{~T}_{1}=\mathrm{T}_{2}$
Gay-Lussac law $\mathrm{P}_{1}=\mathrm{P}_{2}$ $\mathrm{~T}_{1}=$ T_{2}	Diffusion: Rate at which two gases mix Graham's law of diffusion The rate of diffusion of a gas is inversely proportional to the square root of their density or the molar mass of the gas.

	V_{f}. Volume of solution after diluting.
Mole: Mole is the amount of substance that contains same number of particles as there are atoms in Carbon-12. One mole of substance is Avogadro's number (i.e. 6.023×10^{23}).	One mole of gas has volume of 22.4 liter at STP.
Relation between moles and grams 1 mole = molecular weight of substance in grams.	Ionization Enthalpy: It is the energy needed to remove an electron from an atom or molecule (i.e from low state to $n=\infty$). It is always endothermic (i.e. positive). OR Ionization energy: energy needed to remove an electron from an atom
Henderson-Hasselbalch equation: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10}\left[\mathrm{~A}^{-}\right]$ where [A^{-}]: Concentration of conjugate base [HA]: concentration of the acid OR $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10}\left[\begin{array}{l} {[\text { Conjugate Base }]} \\ {[\text { Acid }]} \end{array}\right.$	

