RELATIONS AND FUNCTIONS

KEY CONCEPT INVOLVED

- **Relations** Let A and B be two non-empty sets then every subset of $A \times B$ defines a relation from A to B and every relation from A to B is a subset of $A \times B$.
 - Let $R \subseteq A \times B$ and $(a, b) \in R$. then we say that a is related to b by the relation R as aRb. If $(a, b) \notin R$ as a R b.
- 2. **Domain and Range of a Relation** Let R be a relation from A to B, that is, let $R \subset A \times B$. then *Domain* $R = \{a : a \in A, (a, b) \in R \text{ for some } b \in B\}$ i.e. dom. R is the set of all the first elements of the ordered pairs which belong to R. *Range* $R = (b : b \in B, (a, b) \in R \text{ for some } a \in A\}$ i.e. range R is the set of all the second elements of the ordered pairs which belong to R. Thus Dom. $R \subset A$, Range $R \subset B$.
- 3. Inverse Relation Let $R \subset A \times B$ be a relation from A to B. Then inverse relation $R^{-1} \subset B \times A$ is defined by $R^{-1} \{(b, a) : (a, b) \in R\}$

It is clear that

- (i) $aRb = bR^{-1}a$
- (ii) dom. R^{-1} = range R and range R^{-1} = dom R.
- (iii) $(R^{-1})^{-1} = R$.
- **4.** Composition of Relation Let $R \subset A \times B$, $S \subset B \times C$ be two relations. Then composition of the relations R and S is denoted by $SoR \subset A \times C$ and is defined by $(a, c) \in (SoR)$ iff $b \in B$ such that $(a, b) \in R$, $(b, c) \in S$.
- **5.** Relations in a set let $A \neq \emptyset$ be a set and $R \subset A \times A$ i.e. R is a relation in the set A.
- **6.** Reflexive Relations R is a reflexive relation if $(a, a) \in R$, $\forall a \in R$ it should be noted that if for any $a \in A$ such that a \mathbb{R}' a. then R is not reflexive.
- 7. Symmetric Relation R is called symmetric relation on A if $(x, y) \in R \Rightarrow (y, x) \in R$.
 - i.e. if x is related to y, then y is also related to x.
 - It should be noted that R is symmetric iff $R^{-1} = R$.
- 8. Anti Symmetric Relations R is called an anti symmetric relation if $(a, b) \in R$ and $(b, a) \in R \Rightarrow a = b$. Thus if $a \ne b$ then a may be related to b or b may be related to a but never both.
- **9.** Transitive Relations R is called a transitive relation if $(a, b) \in R$ $(b, c) \in R \Rightarrow (a, c) \in R$
- 10. Identity Relations R is an identity relation if $(a, b) \in R$ iff a = b. i.e. every element of A is related to only itself and always identity relation is reflexive symmetric and transitive.
- 11. Equivalence Relations a relation R in a set A is called an equivalence relation if
 - (i) R is reflexive i.e. $(a, a) \in R \ \forall \ a \in A$
 - (ii) R is symmetric i.e. $(a, b) \in R \Rightarrow (b, a) \in R$
 - (iii) R is transitive i.e. $(a, b), (b, c) \in R \Rightarrow (a, c) \in R$.
- 12. Functions Suppose that to each element in a set A there is assigned, by some rule, an unique element of a set B. Such rules are called functions. If we let f denote these rules, then we write $f: A \to B$ as f is a function of A into B.
- 13. Equal Functions If f and g are functions defined on the same domain A and if f(a) = g(a) for every $a \in A$, then f = g.

- **14.** Constant Functions Let $f: A \to B$. If f(a) = b, a constant, for all $a \in A$, then f is called a constant function. Thus f is called a constant function if range f consists of only one element.
- 15. Identity Functions A function f is such that $A \rightarrow A$ is called an identity function if f(x) = x, $\forall x \in A$ it is denoted by I_A .
- **16.** One-One Functions (Injective) Let $f: A \to B$ then f is called a one-one function. If no two different elements in A have the same image i.e. different elements in A have different elements in B.

Denoted by symbol f is one-one if

$$f(a) = f(a') \Rightarrow a = a'$$

 $a \neq a' \Rightarrow f(a) \neq f(a')$

A mapping which is not one-one is called many one function.

- 17. Onto functions (Surjective) In the mapping $f: A \to B$, if every member of B appears as the image of at least one element of A, then we say "f is a function of A onto B or simply f is an onto functions" Thus f is onto iff f(A) = B
 - i.e. range = codomain

i.e.

A function which is not onto is called into function.

- **18.** Inverse of a function Let $f: A \to B$ and $b \in B$ then the inverse of b i.e. $f^{-1}(b)$ consists of those elements in A which are mapped onto b i.e. $f^{-1}(b) = \{x : x \in A, f(x) \in b\}$ $\therefore f^{-1}(b) \subset A, f^{-1}(b)$ may be a null set or a singleton.
- 19. Inverse Functions Let $f: A \to B$ be a one-one onto-function from A onto B. Then for each $b \in B$. $f^{-1}(b) \in A$ and is unique. So, $f^{-1}: B \to A$ is a function defined by $f^{-1}(b) = a$, iff f(a) = b.

Then f^{-1} is called the inverse function of f. If f has inverse function, f is also called invertible or non-singular.

Thus f is invertible (non-singular) iff it is one-one onto (bijective) function.

- **20.** Composition Functions Let $f: A \to B$ and $g: B \to C$, be two functions, Then composition of f and g denoted by gof: $A \to C$ is defined by (gof) (a) = $g \{f(a)\}$.
- 21. Binary Operation A binary operation * on a set A is a function *: $A \times A \rightarrow A$. We denote * (a, b) by a * b
- 22. Commutative Binary Operation A binary operation * on the set A is commutative if for every $a, b \in A$, a*b=b*a.
- 23. Associative Binary Operation A binary operation * on the set A is associative if (a * b) * c = a * (b * c).
- **24.** An Identity Element e for Binary Operation Let $*: A \times A \rightarrow A$ be a binary operation. There exists an element $e \in A$ such that $a*e=a=e*a \forall a \in A$, then e is called an identity element for Binary Operation *.
- **25.** Inverse of an Element a Let $*: A \times A \to A$ be a binary operation with identity element e in A. an element $a \in A$ is invertible w.r.t. binary operation *, if there exists an element b in A such that a * b = e = b * a. and b is called the inverse of a and is denoted by a^{-1} .

CONNECTING CONCEPTS

- 1. In general gof \neq fog.
- 2. $f: A \rightarrow B$, be one-one, onto then $f^{-1} \circ f = I$ and $f \circ f^{-1} = I$
- f^{-1} of = I_A and fof⁻¹ = I_B 3. $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$ then (hog) of = ho (gof).
- **4.** $f: A \to B, g: B \to C$ be one-one and onto then gof: $A \to C$ is also one-one onto and $(gof)^{-1} = f^{-1} \circ g^{-1}$.
- 5. Let: $A \to B$, then I_B of = f and $fol_A = f$. It should be noted that fol_B is not defined since for $(fol_B)(x) = fo(\{I_B(x)\}) = f(x)$
 - $I_B(x)$ exist when $x \in B$ and f(x) exist when $x \in A$
- 6. $f: A \to B, g: B \to C$ are both one-one, then $gof: A \to C$ is also one-one it should be noted that for gof to be one-one f must be one-one.
- 7. If $f: A \to B$ $g: B \to C$ are both onto then gof must be onto. However, the converse is not true. But for gof to be onto g must be onto.

The domain of the functions

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(fg)(x) = f(x)g(x)$$

is given by (dom. f) \cap (dom g) while domain of the function (f/g) (x) = $\frac{f(x)}{g(x)}$ is given by.

$$(dom f) \cap (dom. g) - \{x : g(x) = 0\}$$

- If O(A) = m, O(B) = n, then total number of mappings from A to B is n^m .
- 10. If A and B are finite sets and O(A) = m, O(B) = n, $m \le n$.

Then number of injection (one-one) from A to B is ${}^{n}P_{m} = \frac{n!}{(n-m)!}$

- 11. If $f: A \rightarrow B$ is injective (one-one), then $O(A) \le O(B)$.
- 12. If $f: A \rightarrow B$ is surjective (onto), then $O(A) \ge O(B)$.
- 13. If $f: A \rightarrow B$ is bijective (one-one onto), then O(A) = O(B).
- 14. Let $f: A \rightarrow B$ and O(A) = O(B), then f is one-one \Leftrightarrow it is onto.
- **15.** Let $f: A \to B$ and $X_1, X_2 \subseteq A$, then f is one-one iff $f(X_1 \cap X_2) = f(X_1) \cap f(X_2)$ **16.** Let $f: A \to B$ and $X \subseteq A, Y \subseteq B$, then in general $f^{-1}(f(x)) \subseteq X$, $f(f^{-1}(y)) \subseteq Y$ If f is one-one onto $f^{-1}(f(x)) = x$, $f(f^{-1}(y)) = Y$.

Class 12 Maths NCERT Solutions

NCERT Solutions	Important Questions	NCERT Exemplar
Chapter 1 Relations and Functions	Relations and Functions	Chapter 1 Relations and Functions
Chapter 2 Inverse Trigonometric Functions	Concept of Relations and Functions	Chapter 2 Inverse Trigonometric Functions
Chapter 3 Matrices	Binary Operations	Chapter 3 Matrices
Chapter 4 Determinants	Inverse Trigonometric Functions	Chapter 4 Determinants
Chapter 5 Continuity and Differentiability	Matrices	Chapter 5 Continuity and Differentiability
Chapter 6 Application of Derivatives	Matrix and Operations of Matrices	Chapter 6 Application of Derivatives
Chapter 7 Integrals Ex 7.1	Transpose of a Matrix and Symmetric Matrix	Chapter 7 Integrals
Integrals Class 12 Ex 7.2	Inverse of a Matrix by Elementary Operations	Chapter 8 Applications of Integrals
Integrals Class 12 Ex 7.3	Determinants	Chapter 9 Differential Equations
Integrals Class 12 Ex 7.4	Expansion of Determinants	Chapter 10 Vector Algebra
Integrals Class 12 Ex 7.5	Properties of Determinants	Chapter 11 Three Dimensional Geometry
	Inverse of a Matrix and Application of	Chapter 12 Linear
Integrals Class 12 Ex 7.6	Determinants and Matrix	Programming
Integrals Class 12 Ex 7.7	Continuity and Differentiability	Chapter 13 Probability
Integrals Class 12 Ex 7.8	Continuity	
Integrals Class 12 Ex 7.9	<u>Differentiability</u>	
Integrals Class 12 Ex 7.10	Application of Derivatives	
Integrals Class 12 Ex 7.11	Rate Measure Approximations and Increasing-Decreasing Functions	
Integrals Class 12 Miscellaneous Exercise	Tangents and Normals	
Chapter 8 Application of Integrals	Maxima and Minima	
Chapter 9 Differential Equations	Integrals	
Chapter 10 Vector Algebra	Types of Integrals	
Chapter 11 Three Dimensional Geometry	Differential Equation	
Chapter 12 Linear Programming	Formation of Differential Equations	
Chapter 13 Probability Ex	Solution of Different Types of Differential	

13.1	<u>Equations</u>	
Probability Solutions Ex 13.2	Vector Algebra	
Probability Solutions Ex 13.3	Algebra of Vectors	
Probability Solutions Ex 13.4	Dot and Cross Products of Two Vectors	
Probability Solutions Ex 13.5	Three Dimensional Geometry	
	Direction Cosines and Lines	
	Plane	
	Linear Programming	
	Probability	
	Conditional Probability and Independent	
	Events	
	Baye's Theorem and Probability	
	<u>Distribution</u>	

RD Sharma Class 12 Solutions

Chapter 1: Relations	<u>Chapter 12: Higher Order</u> <u>Derivatives</u>	Chapter 23 Algebra of Vectors
Chapter 2: Functions	Chapter 13: Derivative as a Rate Measurer	Chapter 24: Scalar Or Dot Product
Chapter 3: Binary Operations	Chapter 14: Differentials, Errors and Approximations	Chapter 25: Vector or Cross Product
Chapter 4: Inverse Trigonometric Functions	Chapter 15: Mean Value Theorems	Chapter 26: Scalar Triple Product
Chapter 5: Algebra of Matrices	Chapter 16: Tangents and Normals	Chapter 27: Direction Cosines and Direction Ratios
Chapter 6: Determinants	Chapter 17: Increasing and Decreasing Functions	Chapter 28 Straight line in space
Chapter 7: Adjoint and Inverse of a Matrix	Chapter 18: Maxima and Minima	Chapter 29: The plane
Chapter 8: Solution of Simultaneous Linear Equations	Chapter 19: Indefinite Integrals	Chapter 30: Linear programming
Chapter 9: Continuity	Chapter 20: Definite Integrals	Chapter 31: Probability
Chapter 10: Differentiability	Chapter 21: Areas of Bounded Regions	Chapter 32: Mean and variance of a random variable
Chapter 11: Differentiation	Chapter 22: Differential Equations	Chapter 33: Binomial Distribution

JEE Main Maths Chapter wise Previous Year Questions

- 1. Relations, Functions and Reasoning
- 2. Complex Numbers
- 3. Quadratic Equations And Expressions
- 4. Matrices, Determinatnts and Solutions of Linear Equations
- 5. Permutations and Combinations
- 6. Binomial Theorem and Mathematical Induction
- 7. Sequences and Series
- 8. Limits, Continuity, Differentiability and Differentiation
- 9. Applications of Derivatives
- 10. Indefinite and Definite Integrals
- 11. Differential Equations and Areas
- 12. Cartesian System and Straight Lines
- 13. Circles and System of Circles
- 14. Conic Sections
- 15. Three Dimensional Geometry
- 16. <u>Vectors</u>
- 17. Statistics and Probability
- 18. Trignometry
- 19. Miscellaneous

NCERT Solutions for Class 12

- NCERT Solutions for Class 12 Maths
- NCERT Solutions for Class 12 Physics
- NCERT Solutions for Class 12 Chemistry
- NCERT Solutions for Class 12 Biology
- NCERT Solutions for Class 12 English
- NCERT Solutions for Class 12 English Vistas
- NCERT Solutions for Class 12 English Flamingo
- NCERT Solutions for Class 12 Hindi
- NCERT Solutions for Class 12 Hindi Aroh (आरोह भाग 2)
- NCERT Solutions for Class 12 Hindi Vitan (वितान भाग 2)
- NCERT Solutions for Class 12 Business Studies
- NCERT Solutions for Class 12 Accountancy
- NCERT Solutions for Class 12 Psychology
- NCERT Solutions for Class 12 Sociology
- NCERT Solutions for Class 12 History
- NCERT Solutions for Class 12 Entrepreneurship
- NCERT Solutions for Class 12 Political Science
- NCERT Solutions for Class 12 Economics
- NCERT Solutions for Class 12 Macro Economics
- NCERT Solutions for Class 12 Micro Economics
- NCERT Solutions for Class 12 Computer Science (C++)
- NCERT Solutions for Class 12 Computer Science (Python)