# **VECTOR ALGEBRA**

## KEY CONCEPT INVOLVED

**1. Vector** – A vector is a quantity having both magnitude and direction, such as displacement, velocity, force and acceleration.

AB is a directed line segment. It is a vector  $\overrightarrow{AB}$  and its direction is from A to B.

**Initial Points** – The point A where from the vector  $\overrightarrow{AB}$  starts is known as initial point.

**Terminal Point** – The point B, where it ends is said to be the terminal point.

**Magnitude** – The distance between initial point and terminal point of a vector is the magnitude or length of the vector  $\overrightarrow{AB}$ . It is denoted by  $|\overrightarrow{AB}|$  or AB.

**2. Position Vector** – Consider a point p (x, y, z) in space. The vector  $\overrightarrow{OP}$  with initial point, origin O and terminal point P, is called the position vector of P.



#### 3. Types of Vectors

- (i) **Zero Vector Or Null Vector** A vector whose initial and terminal points coincide is known as zero vector ( $\overrightarrow{O}$ ).
- (ii) **Unit Vector** A vector whose magnitude is unity is said to be unit vector. It is denoted as  $\hat{a}$  so that  $|\hat{a}| = 1$ .
- (iii) Co-initial Vectors Two or more vectors having the same initial point are called co-initial vectors.
- (iv) Collinear Vectors If two or more vectors are parallel to the same line, such vectors are known as collinear vectors.
- (v) **Equal Vectors** If two vectors  $\vec{a}$  and  $\vec{b}$  have the same magnitude and direction regardless of the positions of their initial points, such vectors are said to be equal *i.e.*,  $\vec{a} = \vec{b}$ .
- (vi) **Negative of a vector** A vector whose magnitude is same as that of a given vector  $\overrightarrow{AB}$ , but the direction is opposite to that of it, is known as negative of vector  $\overrightarrow{AB}$  *i.e.*,  $\overrightarrow{BA} = -\overrightarrow{AB}$

### 4. Sum of Vectors

(i) Sum of vectors  $\vec{a}$  and  $\vec{b}$  let the vectors  $\vec{a}$  and  $\vec{b}$  be so positioned that initial point of one coincides with terminal point of the other. If  $\vec{a} = \overrightarrow{AB}$ ,  $\vec{b} = \overrightarrow{BC}$ . Then the vector  $\vec{a} + \vec{b}$  is represented by the third side of  $\triangle ABC$ . *i.e.*,  $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$  ...(i)



This is known as the triangle law of vector addition.

Further  $\overrightarrow{AC} = -\overrightarrow{CA}$ 

$$\overrightarrow{AB} + \overrightarrow{BC} = -\overrightarrow{CA}$$
  $\therefore$   $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$ 

when sides of a triangle ABC are taken in order i.e. initial and terminal points coincides. Then  $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$ 

(ii) **Parallelogram law of vector addition** – If the two vectors  $\vec{a}$  and  $\vec{b}$  are represented by the two adjacent sides OA and OB of a parallelogram OACB, then their sum  $\vec{a} + \vec{b}$  is represented in magnitude and direction by the diagonal OC of parallelogram through their common point O *i.e.*,  $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$ 



- 5. Multiplication of Vector by a Scalar Let  $\vec{a}$  be the given vector and  $\lambda$  be a scalar, then product of  $\lambda$  and  $\vec{a} = \lambda \vec{a}$ 
  - (i) when  $\lambda$  is +ve, then  $\vec{a}$  and  $\lambda \vec{a}$  are in the same direction.
  - (ii) when  $\lambda$  is –ve. then  $\vec{a}$  and  $\lambda \vec{a}$  are in the opposite direction. Also  $|\lambda \vec{a}| = |\lambda| |\vec{a}|$ .
- **6.** Components of Vector Let us take the points A(1, 0, 0), B(0, 1, 0) and C(0, 0, 1) on the coordinate axes OX, OY and OZ respectively. Now,  $|\overrightarrow{OA}| = 1$ ,  $|\overrightarrow{OB}| = 1$  and  $|\overrightarrow{OC}| = 1$ , Vectors  $\overrightarrow{OA}$ ,  $\overrightarrow{OB}$  and  $\overrightarrow{OC}$  each having magnitude 1 is known as unit vector. These are denoted by  $\hat{i}$ ,  $\hat{j}$  and  $\hat{k}$ .



Consider the vector  $\overrightarrow{OP}$ , where P is the point (x, y, z). Now OQ, OR, OS are the projections of OP on coordinates axes.

$$\therefore \quad \text{OQ} = x, \text{OR} = y, \text{OS} = z \\ \qquad \therefore \quad \overrightarrow{\text{OQ}} = x\hat{i}, \quad \overrightarrow{\text{OR}} = y\hat{j} \quad , \quad \overrightarrow{\text{OS}} = z\hat{k}$$



$$\Rightarrow$$
  $\overrightarrow{OP} = x\hat{i}, + y\hat{j}, + z\hat{k}$ ,  $|\overrightarrow{OP}| = \sqrt{x^2 + y^2 + z^2} = |\vec{r}|$ 

x, y, z are called the scalar components and  $x\,\hat{i}$ ,  $y\hat{j}$ ,  $z\hat{k}$  are called the vector components of vector  $\overrightarrow{OP}$ .

7. **Vector joining two points** – Let  $P_1(x_1, y_1, z_1)$  and  $P_2(x_2, y_2, z_2)$  be the two points. Then vector joining the points  $P_1$  and  $P_2$  is  $\overline{P_1P_2}$ . Join  $P_1$ ,  $P_2$  with O. Now  $\overline{OP_2} = \overline{OP_1} + \overline{P_1P_2}$  (by triangle law)



$$\overrightarrow{P_1P_2} = \overrightarrow{OP}_2 - \overrightarrow{OP}_1$$

$$= (x_2\hat{i} + y_2\hat{j} + z_2\hat{k}) - (x_1\hat{i} + y_1\hat{j} + z_1\hat{k}) = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

$$|\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

## 8. Section Formula

(i) A line segment PQ is divided by a point R in the ratio m: n internally i.e.,  $\frac{PR}{RO} = \frac{m}{n}$ 



If  $\vec{a}$  and  $\vec{b}$  are the position vectors of P and Q then the position vector  $\vec{r}$  of R is given by

$$\vec{r} = \frac{m\vec{b} + n\vec{a}}{m + n}$$

If R be the mid-point of PQ, then  $\vec{r} = \frac{\vec{a} + \vec{b}}{2}$ 

(ii) when R divides PQ externally, i.e.,  $|\vec{a}| |\vec{b}| \hat{n}$ 



Then 
$$\vec{r} = \frac{\vec{mb} - \vec{na}}{\vec{m} - \vec{n}}$$

9. Projection of vector along a directed line – Let the vector  $\overrightarrow{AB}$  makes an angle  $\theta$  with directed line  $\ell$ . Projection of AB on  $\ell = |\overrightarrow{AB}| \cos \theta = \overrightarrow{AC} = \overrightarrow{p}$ .



The vector  $\overrightarrow{p}$  is called the projection vector. Its magnitudes is  $|\overrightarrow{b}|$ , which is known as projection of vector  $\overrightarrow{AB}$ . The angle  $\theta$  between  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$  is given by

$$\begin{split} \cos\theta &= \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\mid \overrightarrow{AB} \mid \mid \overrightarrow{AC} \mid} \ , \quad \text{Now projection } AC = \mid \overrightarrow{AB} \mid \ \cos\theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\mid \overrightarrow{AC} \mid} \\ &= \overrightarrow{AB} \cdot \left( \frac{\overrightarrow{AC}}{\mid \overrightarrow{AC} \mid} \right) \, , \quad \text{If } \ \overrightarrow{AB} = \vec{a} \, , \text{then } \ \overrightarrow{AC} = \vec{a} \cdot \left( \frac{\vec{p}}{\mid \vec{p} \mid} \right) = \vec{a} \cdot \hat{p} \end{split}$$

Thus, the projection of  $\vec{a}$  on  $\vec{b} = \vec{a} \cdot \left(\frac{\vec{b}}{|\vec{b}|}\right) = \vec{a} \cdot \hat{b}$ 

10. Scalar Product of Two Vectors (Dot Product) – Scalar Product of two vectors  $\vec{a}$  and  $\vec{b}$  is defined as  $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ 

Where  $\theta$  is the angle between  $\vec{a}$  and  $\vec{b}$   $(0 \le \theta \le \pi)$ 

(i) when 
$$\theta=0$$
, then  $\vec{a}\cdot\vec{b}=\left|\vec{a}\right|\left|\vec{b}\right|=ab$  Also  $\vec{a}\cdot\vec{a}=\left|\vec{a}\right|\left|\vec{a}\right|=a.a=a^2$ 

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$$

(ii) when 
$$\theta = \frac{\pi}{2}$$
, then  $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \frac{\pi}{2} = 0$   
 $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$ 

11. Vector Product of two Vectors (Cross Product) – The vector product of two non-zero vectors  $\vec{a}$  and  $\vec{b}$ , denoted by  $\vec{a} \times \vec{b}$  is defined as

$$\vec{a}\times\vec{b} = |\,\vec{a}\,|\,|\,\vec{b}\,|\,\sin\,\theta\cdot\hat{n}\ \ \, ,\ \ \, \text{where}\,\,\theta\ \, \text{is the angle between}\,\,\vec{a}\ \, \text{and}\,\,\vec{b}\,,\,\,0\leq\theta\leq\pi\,\,.$$

Unit vector  $\hat{\mathbf{n}}$  is perpendicular to both vectors  $\vec{\mathbf{a}}$  and  $\vec{\mathbf{b}}$  such that  $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}$  and  $\hat{\mathbf{n}}$  form a right handed orthogonal system.

(i) If 
$$\theta = 0$$
, then  $\vec{a} \times \vec{b} = 0$ ,  $\therefore \vec{a} \times \vec{a} = 0$   
and  $\therefore \hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$ 

(ii) If 
$$\theta = \frac{\Pi}{2}$$
, then  $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| |\hat{n}$   
 $\hat{i} \times \hat{j} = \hat{k}$ ,  $\hat{j} \times \hat{k} = \hat{i}$ ,  $\hat{k} \times \hat{i} = \hat{j}$   
Also,  $\hat{i} \times \hat{i} = -\hat{k}$ .  $\hat{k} \times \hat{i} = -\hat{i}$  and  $\hat{i} \times \hat{k} = \hat{i}$ 

# **CONNECTING CONCEPTS**

1. **Direction Cosines** – Let OX, OY, OZ be the positive coordinate axes, P(x, y, z) by any point in the space. Let  $\overline{OP}$  makes angles  $\alpha$ ,  $\beta$ ,  $\gamma$  with coordinate, axes OX, OY, OZ. The angle  $\alpha$ ,  $\beta$ ,  $\gamma$  are known as direction angles, cosine of these angles i.e.,



 $\cos \alpha$ ,  $\cos \beta$ ,  $\cos \gamma$  are called direction cosines of line OP. these direction cosines are denoted by  $\ell$ , m, n i.e.,  $\ell = \cos \alpha$ , m =  $\cos \beta$ , n =  $\cos \gamma$ 

2. Relation Between, I, m, n and Direction Ratios-

The perpendiculars PA, PB, PC are drawn on coordinate axes OX, OY, OZ reprectively. Let  $|\overrightarrow{OP}| = r$ 

In 
$$\triangle$$
 OAP,  $\angle$  A = 90°,  $\cos \alpha = \frac{x}{r} = \ell$ ,  $\therefore$   $x = \ell r$ , In  $\triangle$  OBP.  $\angle$  B = 90°,  $\cos \beta = \frac{y}{r} = m$   $\therefore$   $y = mr$ 
In  $\triangle$  OCP,  $\angle$  C = 90°,  $\cos \gamma = \frac{z}{r} = n$ ,  $\therefore$   $z = nr$ 

Thus the coordinates of P may b expressed as ( $\ell$  r, mr, nr)

Also, 
$$OP^2 = x^2 + y^2 + z^2$$
,  $r^2 = (1r)^2 + (mr)^2 + (nr)^2$   $\Rightarrow \ell^2 + m^2 + n^2 = 1$ 

Set of any there numbers, which are proportional to direction cosines are called direction ratio of the vactor. Direction ratio are denoted by a, b and c.

The numbers  $\ell$  r mr and nr, proportional to the direction cosines, hence, they are also direction ratios of vector  $\overrightarrow{OP}$ .

- 3. Properties of Vector Addition -
  - 1. For two vectors  $\vec{a}$ ,  $\vec{b}$  the sum is commutative i.e.,  $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
  - 2. For three vectors  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$ , the sum of vectors is associative i.e.,  $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
- **4.** Additive Inverse of Vector  $\vec{a}$  If there exists vector  $\vec{a}$  such that  $\vec{a} + (-\vec{a}) = \vec{a} \vec{a} = \vec{0}$  then  $\vec{a}$  is called the additure inverse of  $\vec{a}$
- **5.** Some Properties Let  $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$  and  $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$

(i) 
$$\vec{a} + \vec{b} = (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) + (b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}) = (a_1 + b_1) \hat{i} + (a_2 + b_2) \hat{j} + (a_3 + b_3) \hat{k}$$

(ii) 
$$\vec{a} = \vec{b}$$
 or  $(a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) = (b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k})$   $\Rightarrow a_1 = b_1, a_2 = b_2, a_3 = b_3$ 

(iii) 
$$\lambda \vec{a} = \lambda (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) = (\lambda a_1) \hat{i} + (\lambda a_2) \hat{j} + (\lambda a_3) \hat{k}$$

(iv)  $\vec{a}$  and  $\vec{b}$  are parallel, if and only if there exists a non zero scalar  $\lambda$  such that  $\vec{b} = \lambda \vec{a}$ 

*i.e.*, 
$$b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} = \lambda (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) = (\lambda a_1) \hat{i} + (\lambda a_2) \hat{j} + (\lambda a_3) \hat{k}$$
  

$$\therefore b_1 = \lambda a_1, b_2 = \lambda a_2, b_3 = \lambda a_3 \qquad \therefore \frac{b_1}{a_1} = \frac{b_2}{a_2} = \frac{b_3}{a_3} = \lambda$$

**6.** Properties of scalar product of two vectors (Dot Product)

(i) 
$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

If 
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and  $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ 

Then, 
$$\vec{a} \cdot \vec{b} = (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) \cdot (b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k})$$
,  $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ 

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}, |\vec{b}| = \sqrt{b_1^2 + b_2^2 + b_3^2} \qquad \therefore \quad \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_3^2}}$$

- (ii)  $\vec{a} \cdot \vec{b}$  is commutative *i.e.*,  $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- (iii) If  $\alpha$  is a scalar, then  $(\alpha \vec{a}) \cdot \vec{b} = \alpha (\vec{a} \cdot \vec{b}) = \vec{a} \cdot (\alpha \vec{b})$

7. Properties of Vector Product of two Vectors (Cross Product) –

(i) (a) If 
$$\vec{a} = 0$$
 or  $\vec{b} = 0$ , then  $\vec{a} \times \vec{b} = 0$ 

(b) If 
$$\vec{a} \parallel \vec{b}$$
, then  $\vec{a} \times \vec{b} = 0$ 

(ii)  $\vec{a} \times \vec{b}$  is not commutative

i.e. 
$$\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$$
, but  $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ 

- (iii) If  $\vec{a}$  and  $\vec{b}$  represent adjacent sides of a parallelogram, then its area  $|\vec{a} \times \vec{b}|$
- (iv) If  $\vec{a}$ ,  $\vec{b}$  represent the adjacent sides of a triangle, then its area =  $\frac{1}{2} |\vec{a} \times \vec{b}|$
- (v) Distributive property  $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ 
  - (a) If  $\alpha$  be a scalar, then  $\alpha (\vec{a} \times \vec{b}) = (\alpha \vec{a}) \times \vec{b} = \vec{a} \times (\alpha \vec{b})$
  - (b) If  $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ , and  $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$

Then, 
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

8. If  $\alpha_1 \beta_1 \gamma$  are the direction angles of the vector  $\vec{a} = (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k})$ . Then direction cosines of  $\vec{a}$  are given as

$$\cos \alpha = \frac{a_1}{|\vec{a}|}$$
,  $\cos \beta = \frac{a_2}{|\vec{a}|}$ ,  $\cos \gamma = \frac{a_3}{|\vec{a}|}$ 

Scalar Product of Two Vectors (Dot Product) – Scalar Product of two vectors  $\vec{a}$  and  $\vec{b}$  is defined as

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

where  $\theta$  is the angle between  $\vec{a}$  and  $\vec{b}$   $\left(0 \le \theta < \frac{\pi}{2}\right)$ (i) When  $\theta = 0$ , then  $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$ . Also  $\vec{a} \cdot \vec{a}$  a·a = a<sup>2</sup>

$$\therefore \quad \hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$$

(ii) When  $\theta = \frac{\pi}{2}$ ,  $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \frac{\pi}{2} = 0$ 

# **Class 12 Maths** NCERT Solutions

| NCERT Solutions                            | <b>Important Questions</b>                                      | NCERT Exemplar                             |
|--------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|
| Chapter 1 Relations and Functions          | Relations and Functions                                         | Chapter 1 Relations and Functions          |
| Chapter 2 Inverse Trigonometric Functions  | Concept of Relations and Functions                              | Chapter 2 Inverse Trigonometric Functions  |
| Chapter 3 Matrices                         | Binary Operations                                               | Chapter 3 Matrices                         |
| Chapter 4 Determinants                     | Inverse Trigonometric Functions                                 | Chapter 4 Determinants                     |
| Chapter 5 Continuity and Differentiability | Matrices                                                        | Chapter 5 Continuity and Differentiability |
| Chapter 6 Application of Derivatives       | Matrix and Operations of Matrices                               | Chapter 6 Application of Derivatives       |
| Chapter 7 Integrals Ex 7.1                 | Transpose of a Matrix and Symmetric  Matrix                     | Chapter 7 Integrals                        |
| Integrals Class 12 Ex 7.2                  | Inverse of a Matrix by Elementary Operations                    | Chapter 8 Applications of<br>Integrals     |
| Integrals Class 12 Ex 7.3                  | Determinants                                                    | Chapter 9 Differential Equations           |
| Integrals Class 12 Ex 7.4                  | Expansion of Determinants                                       | Chapter 10 Vector Algebra                  |
| Integrals Class 12 Ex 7.5                  | Properties of Determinants                                      | Chapter 11 Three Dimensional<br>Geometry   |
|                                            | Inverse of a Matrix and Application of                          | Chapter 12 Linear                          |
| Integrals Class 12 Ex 7.6                  | Determinants and Matrix                                         | Programming                                |
| Integrals Class 12 Ex 7.7                  | Continuity and Differentiability                                | Chapter 13 Probability                     |
| Integrals Class 12 Ex 7.8                  | Continuity                                                      |                                            |
| Integrals Class 12 Ex 7.9                  | <u>Differentiability</u>                                        |                                            |
| Integrals Class 12 Ex 7.10                 | <b>Application of Derivatives</b>                               |                                            |
| Integrals Class 12 Ex 7.11                 | Rate Measure Approximations and Increasing-Decreasing Functions |                                            |
| Integrals Class 12 Miscellaneous Exercise  | Tangents and Normals                                            |                                            |
| Chapter 8 Application of<br>Integrals      | Maxima and Minima                                               |                                            |
| Chapter 9 Differential Equations           | Integrals                                                       |                                            |
| Chapter 10 Vector Algebra                  | Types of Integrals                                              |                                            |
| Chapter 11 Three Dimensional<br>Geometry   | Differential Equation                                           |                                            |
| Chapter 12 Linear<br>Programming           | Formation of Differential Equations                             |                                            |
| Chapter 13 Probability Ex                  | Solution of Different Types of Differential                     |                                            |

| 13.1                          | <u>Equations</u>                        |  |
|-------------------------------|-----------------------------------------|--|
| Probability Solutions Ex 13.2 | Vector Algebra                          |  |
| Probability Solutions Ex 13.3 | Algebra of Vectors                      |  |
| Probability Solutions Ex 13.4 | Dot and Cross Products of Two Vectors   |  |
| Probability Solutions Ex 13.5 | Three Dimensional Geometry              |  |
|                               | Direction Cosines and Lines             |  |
|                               | Plane                                   |  |
|                               | Linear Programming                      |  |
|                               | Probability                             |  |
|                               | Conditional Probability and Independent |  |
|                               | Events                                  |  |
|                               | Baye's Theorem and Probability          |  |
|                               | <u>Distribution</u>                     |  |

# **RD Sharma Class 12 Solutions**

| Chapter 1: Relations                                    | <u>Chapter 12: Higher Order</u><br><u>Derivatives</u> | Chapter 23 Algebra of Vectors                      |
|---------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|
| Chapter 2: Functions                                    | Chapter 13: Derivative as a Rate<br>Measurer          | Chapter 24: Scalar Or Dot<br>Product               |
| Chapter 3: Binary Operations                            | Chapter 14: Differentials, Errors and Approximations  | Chapter 25: Vector or Cross<br>Product             |
| Chapter 4: Inverse Trigonometric Functions              | Chapter 15: Mean Value Theorems                       | Chapter 26: Scalar Triple Product                  |
| Chapter 5: Algebra of Matrices                          | Chapter 16: Tangents and Normals                      | Chapter 27: Direction Cosines and Direction Ratios |
| Chapter 6: Determinants                                 | Chapter 17: Increasing and Decreasing Functions       | Chapter 28 Straight line in space                  |
| Chapter 7: Adjoint and Inverse of a Matrix              | Chapter 18: Maxima and Minima                         | Chapter 29: The plane                              |
| Chapter 8: Solution of<br>Simultaneous Linear Equations | Chapter 19: Indefinite Integrals                      | Chapter 30: Linear programming                     |
| Chapter 9: Continuity                                   | Chapter 20: Definite Integrals                        | Chapter 31: Probability                            |
| Chapter 10: Differentiability                           | Chapter 21: Areas of Bounded Regions                  | Chapter 32: Mean and variance of a random variable |
| Chapter 11: Differentiation                             | Chapter 22: Differential Equations                    | Chapter 33: Binomial Distribution                  |

# **JEE Main Maths Chapter wise Previous Year Questions**

- 1. Relations, Functions and Reasoning
- 2. Complex Numbers
- 3. Quadratic Equations And Expressions
- 4. Matrices, Determinatnts and Solutions of Linear Equations
- 5. Permutations and Combinations
- 6. Binomial Theorem and Mathematical Induction
- 7. Sequences and Series
- 8. Limits, Continuity, Differentiability and Differentiation
- 9. Applications of Derivatives
- 10. Indefinite and Definite Integrals
- 11. Differential Equations and Areas
- 12. Cartesian System and Straight Lines
- 13. Circles and System of Circles
- 14. Conic Sections
- 15. Three Dimensional Geometry
- 16. <u>Vectors</u>
- 17. Statistics and Probability
- 18. Trignometry
- 19. Miscellaneous

# NCERT Solutions for Class 12

- NCERT Solutions for Class 12 Maths
- NCERT Solutions for Class 12 Physics
- NCERT Solutions for Class 12 Chemistry
- NCERT Solutions for Class 12 Biology
- NCERT Solutions for Class 12 English
- NCERT Solutions for Class 12 English Vistas
- NCERT Solutions for Class 12 English Flamingo
- NCERT Solutions for Class 12 Hindi
- NCERT Solutions for Class 12 Hindi Aroh (आरोह भाग 2)
- NCERT Solutions for Class 12 Hindi Vitan (वितान भाग 2)
- NCERT Solutions for Class 12 Business Studies
- NCERT Solutions for Class 12 Accountancy
- NCERT Solutions for Class 12 Psychology
- NCERT Solutions for Class 12 Sociology
- NCERT Solutions for Class 12 History
- NCERT Solutions for Class 12 Entrepreneurship
- NCERT Solutions for Class 12 Political Science
- NCERT Solutions for Class 12 Economics
- NCERT Solutions for Class 12 Macro Economics
- NCERT Solutions for Class 12 Micro Economics
- NCERT Solutions for Class 12 Computer Science (C++)
- NCERT Solutions for Class 12 Computer Science (Python)