APPLICATION OF DERIVATIVES

KEY CONCEPTS INVOLVED

Rate of change of Quantities – Let y = f(x) be a function. If the change in one quantity y varies with 1.

another quantity x, then $\frac{dy}{dx}$ or f'(x) denotes the rate of change of y with respect to x. $\frac{dy}{dx}\Big]_{x=x_0}$

or f' (x₀) represents the rate of change of y w.r.t. x at $x = x_0$.

2. Increasing and Decreasing function at \mathbf{x}_0 A function f is said to be

(a) Increasing on an interval (a, b) if $x_1 < x_2$ in (a, b) $\Rightarrow f(x_1) < f(x_2)$ for all $x_1, x_2 \in (a, b)$

- Alternatively, if $f'(x) \ge 0$ for each x in (a, b)
- (b) Decreasing on (a, b) if $x_1 \le x_2$ in (a, b) $\Rightarrow f(x_1) \ge f(x_2)$ for all $x_1, x_2 \in (a, b)$ Alternatively, if $f'(x) \le 0$ for each x in (a, b)
- Test: Increasing/decreasing/constant function Let f be a continuous on [a, b] and differentiable in an 3. open interval (a, b), then.
 - (i) f is increasing on [a, b], if f' (x) > 0 for each $x \in (a, b)$
 - (ii) f is decreasing on [a, b], if f' (x) < 0 for each $x \in (a, b)$
 - (iii) f is constant on [a, b], if f' (x) = 0 for each $x \in (a, b)$
- **Tangent to a Curve** Let y = f(x) be the equation of a curve. The equation of the tangent at (x_0, y_0) is 4. $y - y_0 = m (x - x_0)$, where m = slope of the tangent $= \frac{dy}{dx} \Big]_{(x_0, y_0)}$ or $f'(x_0)$ Normal to the Curve – Let y = f(x) be the equation of the curve Equation of the normal at (x_0, y_0) is
- 5.

where

$$y - y_0 = -\frac{1}{m} (x - x_0)$$

m = Slope of the tangent at (x_0, y_0)
= $\frac{dy}{dx} \Big]_{(x_0, y_0)}$ or f'(x₀)

Approximation – Let y = f(x), Δx be a small increament in x and Δy be the increament in y corresponding 6.

to the increament in x, i.e., $\Delta y = f(x + \Delta x) - f(x)$. Then approximate value of $\Delta y = \left(\frac{dy}{dx}\right) \Delta x$

Maximum Value, Minimum value, Extreme Value - Let f be a function defined in the interval I, then 7. (i) Maximum Value – If there exists a point c in I such that $f(c) \ge f(x)$, for all $x \in I$ then f(c) is called maximum value of f in I. The point c is known as a point of maximum value of f in I.

(ii) Minimum Value – If three exists a point c in I such that $f(c) \le f(x)$, $\forall x \in I$, then f(x) is called the minimum value of f in I. The point c is called as a point of minimum value of f in I

(iii) Extreme Value – If there exists a point c in I such that f(c) is either a maximum value or a minimum value of f in I, then f(c) is the extreme value of f(x) in I.The point c is said to be an extreme point.

8. Absolute Maxima and Minima – let f be a continuous function on an interval I = [a, b]. Then f has the absolute maximum value and f attains it at least once in I. Similarly, f has the absolute minimum value and attains at least once in I

At x = b, there is a local minima

At x = c, there is a local maxima

At x = a, f(a) is the greatest value or absolute max. value.

At x = d, f(d) is the least value or absolute min. value.

- 9. Local Maxima and Minima let f be a real valued function and c be an interior point in the domain of f, then
 - (a) Local Maxima c is a point of local maxima if there is an h > 0, such that $f(c) \ge f(x)$ for all $x \in [c-h, c+h)$

The value f(c) is called local maximum value of f.

(b) Local Minima – c is a point of local minima if there is an h > 0, such that f (c) ≤ f (x) for all x ∈ (c-h c+h)

The value of f(c) is known as the local minimum value of f.

Geometrically - If x = c is a point of local maxima of f, then

f is increasing (i.e., f'(x) > 0) in the interval (c - h, c) and decreasing (i.e., f'(x) < 0) in the interval (c, c + h)

 $\Rightarrow f'(c) = 0$ Similarly if x = c is a point of local minima of

Similarly, if x = c is a point of local minima of f, then f is decreasing (i.e., f'(x) < 0) in the interval (c - h, c) and increasing (i.e., f'(x) > 0) in the interval (c, c + h).

$$\rightarrow$$
 1 (c) – 0

- 10. Test of Local Maxima and Minima
 - (i) Let f be a differentiable function defined on an open interval I and c ∈ I be any point. f has a local maxima or a local minima at x = c, f' (c) = 0

- (ii) If f' (x) changes sign from positive to negative as x increases from left to right through c i.e., (a) f' (x) > 0 at every point in (c-h, c)
 - (b) f'(x) < 0 at every point in (c, c+h)
 - Then c is called a point of local maxima of f and f(c) is local maximum value of f.
- (iii) If f' (x) changes sign from negative to positive as x increase from left to right through c i.e.,
 - (a) f'(x) < 0 at every point in (c-h, c)
 - (b) f'(x) > 0 at every point in (c, c+h)
 - Then c is called a point of local minima of f and f(c) is a local minimum value of f.
- (iv) If f' (x) does not change sign as x increases through c, then c is neither a point of local maxima nor a point of local minima. Such a point is called point of inflection.
- 11. Second Derivative Test of Local Maxima and Minima let f be a twice differentiable function defined on an interval I and $c \in I$ and f be differentiable at $c \in I$, then,
 - (i) x = c is a local maxima,
 - if f' (c) = 0 and f'' (c) < 0.
 - f(c) is the local maximum value of f
 - (ii) x = c is a local minima, if f'(c) = 0 and f''(c) > 0
 - f(c) is the local minimum value of f.
 - (iii) Point of inflection If f' (c) = 0 and f'' (c) = 0Test fails. Then we apply first derivative test and find whether c is a point of local maxima, local minima or a point of inflexion.

12. To find absolute maximum value or absolute minimum value -

- (i) Find all the critical points where f'(x) = 0
- (ii) Consider the end point also.
- (iii) Calculate the functional values at all the points found in step (i) and (ii)
- (iv) Identify the maximum and minimum values out of the values calculated in step (iii). These are absolute maximum and absolute minimum values.

CONNECTING CONCEPTS

1. Increasing Function – f is said to be increasing on I, if $x_1 < x_2$ on I, then $f(x_1) \le f(x_2)$. for all $x_1, x_2 \in I$.

2. Strictly Increasing function – f is said to be strictly increasing on I, if $x_1 < x_2$ in I then $f(x_1) < f(x_2)$ for all $x_1, x_2 \in I$.

3. Decreasing function – f is said to be decreasing function on I, if $x_1 < x_2$ in I, then $f(x_1) \ge f(x_2)$ for all $x_1, x_2 \in I$.

4. Strictly Decreasing function – f is said to be strictly decreasing function on I, if $x_1 > x_2$ in I then $f(x_1) > f(x_2)$ for all $x_1, x_2 \in I$.

If $\theta = 0$, m = 0Equation of tangent is $y - y_0 = 0$ i.e., $y = y_0$ If $\theta = \frac{\pi}{2}$, m is not defined. $\therefore (x - x_0) = \frac{1}{m}(y - y_0)$ when $\theta = \frac{\pi}{2}$, $\cot \frac{\pi}{2} = 0$ \therefore Equation of tangent is $x - x_0 = 0$ or $x = x_0$

5. **Particular case of tangent** – Let $m = \tan \theta$

<u>Class 12 Maths</u> NCERT Solutions

NCERT Solutions	Important Questions	NCERT Exemplar
Chapter 1 Relations and Functions	Relations and Functions	Chapter 1 Relations and Functions
Chapter 2 Inverse Trigonometric Functions	Concept of Relations and Functions	Chapter 2 Inverse Trigonometric Functions
Chapter 3 Matrices	Binary Operations	Chapter 3 Matrices
Chapter 4 Determinants	Inverse Trigonometric Functions	Chapter 4 Determinants
Chapter 5 Continuity and Differentiability	Matrices	Chapter 5 Continuity and Differentiability
Chapter 6 Application of Derivatives	Matrix and Operations of Matrices	Chapter 6 Application of Derivatives
Chapter 7 Integrals Ex 7.1	Transpose of a Matrix and Symmetric Matrix	Chapter 7 Integrals
Integrals Class 12 Ex 7.2	Inverse of a Matrix by Elementary Operations	Chapter 8 Applications of Integrals
Integrals Class 12 Ex 7.3	Determinants	Chapter 9 Differential Equations
Integrals Class 12 Ex 7.4	Expansion of Determinants	Chapter 10 Vector Algebra
Integrals Class 12 Ex 7.5	Properties of Determinants	Chapter 11 Three Dimensional Geometry
Integrals Class 12 Ex 7.6	Inverse of a Matrix and Application of Determinants and Matrix	Chapter 12 Linear Programming
Integrals Class 12 Ex 7.7	Continuity and Differentiability	Chapter 13 Probability
Integrals Class 12 Ex 7.8	Continuity	
Integrals Class 12 Ex 7.9	<u>Differentiability</u>	
Integrals Class 12 Ex 7.10	Application of Derivatives	
Integrals Class 12 Ex 7.11	Rate Measure Approximations and Increasing-Decreasing Functions	
Integrals Class 12 Miscellaneous Exercise	Tangents and Normals	
Chapter 8 Application of Integrals	Maxima and Minima	
Chapter 9 Differential Equations	Integrals	
Chapter 10 Vector Algebra	Types of Integrals	
Chapter 11 Three Dimensional Geometry	Differential Equation	
Chapter 12 Linear Programming	Formation of Differential Equations	
Chapter 13 Probability Ex	Solution of Different Types of Differential	
CBSE Sample Papers	NCERT Solutions	LearnCBSE.in

<u>13.1</u>	Equations	
Probability Solutions Ex 13.2	Vector Algebra	
Probability Solutions Ex 13.3	Algebra of Vectors	
Probability Solutions Ex 13.4	Dot and Cross Products of Two Vectors	
Probability Solutions Ex 13.5	Three Dimensional Geometry	
	Direction Cosines and Lines	
	<u>Plane</u>	
	Linear Programming	
	Probability	
	Conditional Probability and Independent	
	<u>Events</u>	
	Baye's Theorem and Probability	
	Distribution	

RD Sharma Class 12 Solutions

Chapter 1: Relations	<u>Chapter 12: Higher Order</u> <u>Derivatives</u>	Chapter 23 Algebra of Vectors
Chapter 2: Functions	<u>Chapter 13: Derivative as a Rate</u> <u>Measurer</u>	<u>Chapter 24: Scalar Or Dot</u> <u>Product</u>
Chapter 3: Binary Operations	Chapter 14: Differentials, Errors and Approximations	<u>Chapter 25: Vector or Cross</u> <u>Product</u>
Chapter 4: Inverse Trigonometric Functions	Chapter 15: Mean Value Theorems	Chapter 26: Scalar Triple Product
Chapter 5: Algebra of Matrices	Chapter 16: Tangents and Normals	Chapter 27: Direction Cosines and Direction Ratios
Chapter 6: Determinants	Chapter 17: Increasing and Decreasing Functions	Chapter 28 Straight line in space
Chapter 7: Adjoint and Inverse of a Matrix	Chapter 18: Maxima and Minima	Chapter 29: The plane
Chapter 8: Solution of Simultaneous Linear Equations	Chapter 19: Indefinite Integrals	Chapter 30: Linear programming
Chapter 9: Continuity	Chapter 20: Definite Integrals	Chapter 31: Probability
Chapter 10: Differentiability	Chapter 21: Areas of Bounded Regions	Chapter 32: Mean and variance of <u>a random variable</u>
Chapter 11: Differentiation	Chapter 22: Differential Equations	Chapter 33: Binomial Distribution

JEE Main Maths Chapter wise Previous Year Questions

- 1. <u>Relations, Functions and Reasoning</u>
- 2. Complex Numbers
- 3. <u>Quadratic Equations And Expressions</u>
- 4. Matrices, Determinatnts and Solutions of Linear Equations
- 5. <u>Permutations and Combinations</u>
- 6. Binomial Theorem and Mathematical Induction
- 7. <u>Sequences and Series</u>
- 8. Limits, Continuity, Differentiability and Differentiation
- 9. Applications of Derivatives
- 10. Indefinite and Definite Integrals
- 11. Differential Equations and Areas
- 12. Cartesian System and Straight Lines
- 13. Circles and System of Circles
- 14. Conic Sections
- 15. Three Dimensional Geometry
- 16. Vectors
- 17. <u>Statistics and Probability</u>
- 18. <u>Trignometry</u>
- 19. Miscellaneous

NCERT Solutions for Class 12

- <u>NCERT Solutions for Class 12 Maths</u>
- NCERT Solutions for Class 12 Physics
- NCERT Solutions for Class 12 Chemistry
- <u>NCERT Solutions for Class 12 Biology</u>
- <u>NCERT Solutions for Class 12 English</u>
- <u>NCERT Solutions for Class 12 English Vistas</u>
- <u>NCERT Solutions for Class 12 English Flamingo</u>
- <u>NCERT Solutions for Class 12 Hindi</u>
- <u>NCERT Solutions for Class 12 Hindi Aroh</u> (आरोह भाग 2)
- NCERT Solutions for Class 12 Hindi Vitan (वितान भाग 2)
- NCERT Solutions for Class 12 Business Studies
- NCERT Solutions for Class 12 Accountancy
- NCERT Solutions for Class 12 Psychology
- NCERT Solutions for Class 12 Sociology
- NCERT Solutions for Class 12 History
- NCERT Solutions for Class 12 Entrepreneurship
- NCERT Solutions for Class 12 Political Science
- NCERT Solutions for Class 12 Economics
- <u>NCERT Solutions for Class 12 Macro Economics</u>
- <u>NCERT Solutions for Class 12 Micro Economics</u>
- NCERT Solutions for Class 12 Computer Science (C++)
- NCERT Solutions for Class 12 Computer Science (Python)