Class 9 Math's Formula

Number system

S.no	Type of Numbers	Description
1	Natural Numbers	$N=\{1,2,3,4,5 \ldots\}$ It is the counting numbers
2	Whole number	$W=\{0,1,2,3,4,5 \ldots \ldots . .\}$ It is the counting numbers + zero
3	Integers	$\mathrm{Z}=\{\ldots-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6 \ldots\}$
4	Positive integers	$\mathrm{Z}_{+}=\{1,2,3,4,5 \ldots \ldots .$.
5	Negative integers	$Z_{-}=\{\ldots-7,-6,-5,-4,-3,-2,-1\}$
6	Rational Number	A number is called rational if it can be expressed in the form p / q where p and q are integers (q> $0)$. Example: $1 / 2$, 4/3,5/7,1 etc.
7	Irrational Number	A number is called rational if it cannot be expressed in the form p / q where p and q are integers (q>0). Example: $\sqrt{3}, \sqrt{2}, \sqrt{5}, \pi$ etc
8.	Real Numbers:	All rational and all irrational number makes the collection of real number. It is denoted by the letter R
9	What is zero	Zero number definition
		Zero is a number used in mathematics to describe no quantity or null quantity. It is also used as placeholder digit in many numbers The modern 0 symbol was invented in India in the 6-th century, used later by the Persians and

Arabs and later in Europe.
Important facts about zero

1) Zero is a number but it is neither positive nor negative number.

So it is not included in the set of positive number nor negative numbers.

But it is included in the set of non-negative numbers
2) Zero is an even number
3) Zero is not a prime nor a composite number. It cannot be prime because it has an infinite number of factors and cannot be composite because it cannot be expressed by multiplying prime numbers (0 must always be one of the factors)
6) $a^{0}=1$
7) $a^{1}=a$

Polynomial expressions

> A polynomial expression $S(x)$ in one variable x is an algebraic expression in x term as
> $5(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots \ldots \ldots+a x+a_{c}$
> Where $a_{n}, a_{n-1}, \ldots, a, a_{0}$ are constant and real numbers and a_{n} is not equal to zero

Some Important point to Note

S.no Points

$1 \quad a_{n}, a_{n-1}, a_{n-2}, \ldots . . a_{1}, a_{0}$ are called the coefficients for $x^{n}, x^{n-1}, \ldots . . x^{1}, x^{0}$
$2 \quad \mathrm{n}$ is called the degree of the polynomial
3 when $a_{n}, a_{n-1}, a_{n-2}, \ldots . . a_{1}, a_{0}$ all are zero, it is called zero polynomial
4 A constant polynomial is the polynomial with zero degree, it is a constant value polynomial

5 A polynomial of one item is called monomial, two items binomial and three items as trinomial

6 A polynomial of one degree is called linear polynomial, two degree as quadratic polynomial and degree three as cubic polynomial

Important concepts on Polynomial

Concept Description

Zero's or roots It is a solution to the polynomial equation $S(x)=0$ i.e. a number of the polynomial " a " is said to be a zero of a polynomial if $S(a)=0$. If we draw the graph of $S(x)=0$, the values where the curve cuts the X -axis are called Zeros of the polynomial

Remainder Theorem's

If $p(x)$ is an polynomial of degree greater than or equal to 1 and $p(x)$ is divided by the expression ($x-a$), then the remainder will be $p(a)$

```
Factor's
Theorem's
If x-a is a factor of polynomial p(x) then p(a)=0 or if p(a)
=0,x-a is the factor the polynomial p(x)
```


COORDINATE GEOMETRY

S.no Points

1 We require two perpendicular axes to locate a point in the plane. One of them is horizontal and other is Vertical

2 The plane is called Cartesian plane and axis are called the coordinates axis
3 The horizontal axis is called x-axis and Vertical axis is called Y-axis
4 The point of intersection of axis is called origin.
5 The distance of a point from y axis is called x-coordinate or abscissa and the distance of the point from x-axis is called y - coordinate or Ordinate

6 The distance of a point from y axis is called x-coordinate or abscissa and
the distance of the point from x-axis is called y - coordinate or Ordinate
$7 \quad$ The Origin has zero distance from both x-axis and y-axis so that its abscissa and ordinate both are zero. So the coordinate of the origin is (0, 0)

8 A point on the x-axis has zero distance from x-axis so coordinate of any point on the x-axis will be $(x, 0)$

9 A point on the y-axis has zero distance from y-axis so coordinate of any point on the y-axis will be $(0, y)$

10 The axes divide the Cartesian plane in to four parts. These Four parts are called the quadrants

The coordinates of the points in the four quadrants will have sign according to the below table

	y-coordinate
	+
	+
-	-
+	-

LINEAR EQUATIONS IN TWO VARIABLES

An equation of the form $a x+b y+c=0$, where a, b and c are real numbers, such that a and
b are not both zero, is called a linear equation in two variables Important points to Note

S.no Points

1 A linear equation in two variable has infinite solutions
2 The graph of every linear equation in two variable is a straight line
$3 x=0$ is the equation of the y-axis and $y=0$ is the equation of the x-axis
4 The graph $x=a$ is a line parallel to y-axis.
5 The graph $y=b$ is a line parallel to x-axis
6 An equation of the type $y=m x$ represents a line passing through the origin.

7 Every point on the graph of a linear equation in two variables is a solution of the linear
equation. Moreover, every solution of the linear equation is a point on the graph

Euclid Geometry

S.no	Terms	Descriptions
1	Euclid	Euclid a Greek mathematician is called the Father of Geometry
2	Euclid Geometry definition	1) A point is that which has no part 2) A line is breath less and has length only 3) The end of a line is points 4) A straight line is a line which lies evenly with the points on itself 5) A surface is that which has length and breadth only 6) The edges of a surface are lines The definitions of line, point, plane explained by Euclid is not accepted by the Mathematician. So these terms are taken as undefined
3	Axioms or Postulates	Axioms or Postulates are assumptions which are obvious universal truths. They are not proved
4	Theorems	They are statements which are proved using axioms/postulates, definition, previously proved statement and deductive reasoning
5	Euclid Axioms	1) Things which are equal to same things are equal to one another If $x=z, y=z$ then $x=y$ 2) If equals are added to equals, the wholes are equal $x=y \quad=>\quad x+z=y+z$ 3) If equals are subtracted from equals, the remainders are equal $x=y \quad=>x-z=y-z$ 4) Things which coincide with one another are equal to one another

5) The whole is greater than the part
6) Things which are double of the same things are equal to one another
7) Things which are halves of the same things are equal to one another
8) If first thing is greater than second and second is greater than third, then first is greater than third

6
Euclid Postulates

1) A straight line may be drawn from one point to another point
2) A terminated line can be produced indefinitely
3) A circle can be drawn with any center and any radius
4) All right angles are equal to one another
5) If a straight line falling on two straight lines makes the interior angles on the same side of it taken together less than two right angles, then the straight lines if produced indefinitely meet on that side on which the angles are less than the two right angles

7 Playfair Axiom

For every line I and for every point P not lying on the line I, there exists a unique line m passing through P and Parallel to I

Line and Angles

What is angle: An angle is a formed of two rays with a common endpoint. The Common end point is known as the vertex of the angle and the rays as the sides, sometimes as the legs and sometimes the arms of the angle

Types Of angles

Ancle Type

Figure

Acute Angle
$0<\boldsymbol{\theta}<\mathbf{9 0}$
65

Obtuse Angle

$90<\theta<180$

Right Angle

$\theta=90$

Reflex Angle

$\mathbf{1 8 0}<\boldsymbol{\theta}<\mathbf{3 6 0}$
Straight Angle

$\theta=180$

S.no Terms Descriptions

1 Complimentary Two angles whose sum equal to 90° Angles

$2 \begin{aligned} & \text { Supplementary } \\ & \text { Angles }\end{aligned}$
$3 \quad$ Vertically Opposite angles

If two lines intersect with each other, then vertically opposite angles are equal

B

A
D
$\angle A O C=\angle B O D$
4 Transversal across
If the transversal intersect two parallel lines

a) Each pair of corressponding angles are equals $\angle 1=\angle 8 \quad \angle 2=\angle 5 \quad \angle 4=\angle 7 \quad \angle 3=\angle 6$
b) Each pair of alternate interior angles are equal
$\angle 3=\angle 8 \quad \angle 4=\angle 5$
c) Each pair of interior angles on the same side of the transversal is supplimentary
$\angle 4+\angle 8=180 \quad \angle 3+\angle 5=180$
5 Theorem on
Transversal across the lines

If a transversal intersect two lines such that either
a) any one pair of corresponding angles are equal
b) any one pair of alternate interior angles are equal
c) any one pair of interior angles on the same side of the transversal is supplimentary

Then the two lines are parallel

6 Parallel lines Note
Lines which are parallel to a given line are parallel with each other

Angles rules

if the side of the triangle is produced, the exterior angle formed is equal to the sum of the opposite interior angle

Triangles

S.no	Terms	Descriptions
1	Congruence	Two Geometric figure are said to be congruence if they are exactly same size and shape Symbol used is \cong Two angles are congruent if they are equal Two circle are congruent if they have equal radii Two squares are congruent if the sides are equal
2	Triangle Congruence	- Two triangles are congruent if three sides and three angles of one triangle is congruent to the corresponding sides and angles of the other D
		B C E

- Corresponding sides are equal

$$
\mathrm{AB}=\mathrm{DE}, \mathrm{BC}=\mathrm{EF}, \mathrm{AC}=\mathrm{DF}
$$

- Corresponding angles are equal

$$
\angle A=\angle D, \angle B=\angle E, \angle C=\angle F
$$

- We write this as

$A B C \cong D E F$

- The above six equalities are between the corresponding parts of the two congruent triangles. In short form this is called

C.P.C.T

- We should keep the letters in correct order on both sides

3 Inequalities in

1) In a triangle angle opposite to longer side is larger
2) In a triangle side opposite to larger angle is larger
3) The sum of any two sides of the triangle is greater than the third side

In triangle $A B C$
$A B+B C>A C$

Different Criterion for Congruence of the triangles

1 Side angle Side (SAS) congruence

- Two triangles are congruent if the two sides and included angles of one triangle is equal to the two sides and included angle
- It is an axiom as it cannot be
proved so it is an accepted truth
- ASS and SSA type two triangles may not be congruent always

If following condition
$A B=D E, B C=E F$
$\angle B=\angle E$

Then
$A B C \cong D E F$
2 Angle side angle (ASA) congruence

- Two triangles are congruent if the two angles and included side of one triangle is equal to the
corresponding angles and side
- It is a theorem and can be proved

If following condition

$B C=E F$
$\angle B=\angle E, \angle C=\angle F$
Then
$A B C \cong D E F$

- Two triangles are congruent if the any two pair of angles and any side of one triangle is equal to the

corresponding angles and side
- It is a theorem and can be proved

If following condition

$B C=E F$
$\angle A=\angle D, \angle C=\angle F$

Then
$A B C \cong D E F$

4 Side-Side-Side (SSS)
congruence

- Two triangles are congruent if the three sides of one triangle is equal to the three sides of the another

E
If following condition
$B C=E F, A B=D E, D F$
=AC
Then
$A B C \cong D E F$

5 Right angle -hypotenuseside(RHS) congruence

- Two right triangles are congruent if the hypotenuse and a side of the one triangle are equal to corresponding hypotenuse and side of the another

If following condition
$A C=D F, B C=E F$
Then
$A B C \cong D E F$

Some Important points on Triangles

Terms
Orthocente
Equilateral
Median
Altitude
Isosceles
Centroid

Terms
Orthocenter

Equilateral

Median

Altitude

Centroid

Description

Point of intersection of the three altitude of the triangle
triangle whose all sides are equal and all angles are equal to 60°
A line Segment joining the corner of the triangle to the midpoint of the opposite side of the triangle
A line Segment from the corner of the triangle and perpendicular to the opposite side of the triangle A triangle whose two sides are equal Point of intersection of the three median of the triangle is called the centroid of

In center

Circumcenter

Scalene triangle

Right Triangle Obtuse Triangle

Acute Triangle
the triangle
All the angle bisector of the triangle passes through same point
The perpendicular bisector of the sides of the triangles passes through same point
Triangle having no equal angles and no equal sides
Right triangle has one angle equal to 90° One angle is obtuse angle while other two are acute angles
All the angles are acute

Quadrilaterals

| S.no Terms | Descriptions |
| :--- | :--- | :--- |
| $\mathbf{1}$ Quadrilateral | A quadrilateral is the union of four line-segments
 determined by four distinct coplanar points of
 which no three are collinear and the line-
 segments intersect only at end points.
 For ABCD to be quadrilateral, following condition
 are required
 a) The four points A, B, C and D must be distinct
 and co-planar.
 b) No three of points A, B, C and D are co-linear.
 c) Line segments i.e. AB, BC, CD, DA intersect at
 their end points only. |

A quadrilateral is a four-sided polygon with four angles. There are many kinds of quadrilaterals. The five most common types are the parallelogram, the rectangle, the square, the trapezoid, and the rhombus.

2	Angle Property of Quadrilateral	1) Sum of all the interior angles is 360° 2) Sum of all the exterior angles is 360°
3	Parallelogram	A quadrilateral which has both pairs of opposite sides parallel is called a parallelogram. Its properties are: - The opposite sides of a parallelogram are equal. - The opposite angles of a parallelogram are equal. - The diagonals of a parallelogram bisect each other. - The diagonal of a parallelogram divide into two congruent triangles
		A quadrilateral is said to a parallelogram if Opposite sides are equal OR Opposite angles are equal OR Diagonal bisects each other OR A pair of opposite are parallel and equal

4 Trapezium
A quadrilateral which has one pair of opposite sides parallel is called a trapezium.

5 Rhombu
Rhombus is a parallelogram in which any pair of adjacent sides is equal.
2) A line drawn through mid-point of one side of a triangle and parallel to another side bisect the third side of the triangle

Area of Parallelogram

3) If a planar region formed by a figure T is made up of two non-overlapping planar regions

Formed by figures P and Q, then $\operatorname{ar}(T)=\operatorname{ar}(P)+$ ar (Q), where ar (X) denotes the area of

Figure X .

3 Figure on the same base and between same parallels

4 Parallelogram on same base and between same parallel

Two figures are said to be on the same base and between the same parallels, if they have a common base (side) and the vertices, (or the vertex) opposite to the common base of each figure lies on a line parallel to the base.

In the above figure triangle and parallelogram are on the same base and between same parallel

Parallelograms on the same base (or equal bases) and between the same parallels are equal in area.

Area of Parallelogram ABCD= Area of Parallelogram PBCQ

5 Area of Parallelogram

Area of parallelogram is equal base multiplied by Height

B

Area of Parallelogram =Height X Base

Parallelograms on the same base (or equal bases) and having equal areas lie between the same parallel

Triangles and
Parallelogram
a) If a parallelogram and a triangle are on the same base and between the same parallels, then area of the triangle is half the area of parallelogram

A
B
b) Triangles on the same base (or equal bases) and between the same parallels are equal in area

2 Equal chords of a circle (or of congruent circles) subtend equal angles at the center.

3 If the angles subtended by two chords of a circle (or of congruent circles) at the center (corresponding center) are equal, the chords are equal.

4 The perpendicular from the center of a circle to a chord bisects the chord.
5 The line drawn through the center of a circle to bisect a chord is perpendicular to the chord.

6 There is one and only one circle passing through three non-collinear points
7 Equal chords of a circle (or of congruent circles) are equidistant from the center (or corresponding centers).

8 Chords equidistant from the center (or corresponding centers) of a circle (or of congruent circles) are equal

9 If two arcs of a circle are congruent, then their corresponding chords are equal and conversely, if two chords of a circle are equal, then their corresponding arcs (minor, major) are congruent.

13 Angle in a semicircle is a right angle.
14 If a line segment joining two points subtends equal angles at two other points lying on the same side of the line containing the line segment, the four points lie on a circle.

15 The sum of either pair of opposite angles of a cyclic quadrilateral is 180°.
16 If the sum of a pair of opposite angles of a quadrilateral is 180°, then the

quadrilateral is cyclic.

Heron Formula

| S.no | Term
 $\mathbf{1}$
 $\mathbf{2}$$\quad$Mensuration
 It is branch of mathematics which is concerned
 about the measurement of length , area and
 Volume of plane and Solid figure |
| :--- | :--- | :--- |
| $\mathbf{3}$ | a)The perimeter of plane figure is defined as the
 length of the boundary
 b)It units is same as that of length i.e. $\mathrm{m}, \mathrm{cm}, \mathrm{km}$ |
| Area | a)The area of the plane figure is the surface
 enclosed by its boundary
 b) It unit is square of length unit. i.e. $\mathrm{m}^{2}, ~ \mathrm{~km}$ |

Unit Conversion

$\mathbf{1}$ Meter	$\mathbf{1 0}$ Decimeter	$\mathbf{1 0 0}$ centimeter
$\mathbf{1}$ Decimeter	10 centimeter	100 millimeter
$\mathbf{1}$ Km	10 Hectometer	100 Decameter
$\mathbf{1}$ Decameter	10 meter	1000 centimeter
$\mathbf{1}$ square Meter	$\mathbf{1 0 0}$ square Decimeter	$\mathbf{1 0 0 0 0}$ square centimeter

Side $=a$
5 Rectangle of

$$
P=2 L+2 B
$$

$A=L X B$
Length and
breadth L and B respectively

6 Parallelograms $P=2 a+2 b$
Two sides are given as a and b

A = BaseX height
When the diagonal is also given ,say d

Then
$A=2 \sqrt{s(s-a)(s-b)(s-d)}$

Where $s=\frac{a+\bar{b}+\dot{d}}{2}$
7 Rhombus
Diagonal d_{1} and d_{2} are given

$$
\text { side }=\frac{1}{2} \sqrt{d_{1}^{2}+d_{2}^{2}}
$$

8 Quadrilateral

a) $P=a+b+c+d$

a) All the sides are given a, b, c,d
b) Both the diagonal are perpendicular to each other
a)
$A=\sqrt{(s-a)(s-b)(s-c)(s-d)}$
where $s=\frac{a+b+c+d}{2}$
b)
$A=\frac{1}{2} \alpha_{1} \alpha_{2}$
where d_{1} and d_{2} are the diagonal
c) $A=\frac{1}{2} d\left(h_{1}+h_{2}\right)$
c) When a diagonal and perpendicular to diagonal are given are perpendicular to that

Surface Area and Volume

S.no	Term	Description
1	Mensuration	It is branch of mathematics which is concerned about the measurement of length ,area and Volume of plane and Solid figure
2	Perimeter	a)The perimeter of plane figure is defined as the length of the boundary b)It units is same as that of length i.e. $\mathrm{m}, \mathrm{cm}, \mathrm{km}$
3	Area	a)The area of the plane figure is the surface enclosed by its boundary b) It unit is square of length unit. i.e. $\mathrm{m}^{2}, \mathrm{~km}^{2}$
4	Volume	Volume is the measure of the amount of space inside of a solid figure, like a cube, ball, cylinder or pyramid. Its units are always "cubic", that is, the number of little element cubes that fit inside the figure.

Volume Unit conversion

$\mathbf{1} \mathbf{~ c m}^{\mathbf{3}}$	$\mathbf{1 m L}$	$\mathbf{1 0 0 0} \mathbf{~ m m}^{\mathbf{3}}$
$\mathbf{1}$ Litre	1000 ml	$1000 \mathrm{~cm}^{3}$
$\mathbf{1} \mathbf{~ m}^{\mathbf{3}}$	$10^{6} \mathrm{~cm}^{3}$	1000 L
$\mathbf{1} \mathbf{~ d m}^{\mathbf{3}}$	$1000 \mathrm{~cm}^{3}$	1 L

Surface Area and Volume of Cube and Cuboid

Cube

Type	Measurement
Surface Area of Cuboid of Length L,	$2(L B+B H+L H)$.
Breadth B and Height H	

Lateral surface area of the cuboids
2(L + B) H
Diagonal of the cuboids
$\sqrt{L^{2}+B^{2}+H^{2}}$
Volume of a cuboids
LBH
Length of all 12 edges of the cuboids
$4(L+B+H)$.
Surface Area of Cube of side L $6 L^{2}$
Lateral surface area of the cube $4 L^{2}$
Diagonal of the cube $L \sqrt{9}$
Volume of a cube L^{3}

Surface Area and Volume of Right circular cylinder

Radius	The radius (r) of the circular base is called the radius of the cylinder
Height	The length of the axis of the cylinder is called the height (h) of the cylinder
Lateral Surface The curved surface joining the two base of a right circular cylinder is called Lateral Surface.	
Type	
Curved or lateral Surface Area of cylinder Total surface area of cylinder Volume of Cylinder	Measurement

Surface Area and Volume of sphere and hemisphere

Sphere

Hemisphere

Sphere	A sphere can also be considered as a solid obtained on rotating a circle About its diameter
Hemisphere	A plane through the centre of the sphere divides the sphere into two equal parts, each of which is called a hemisphere
radius The radius of the circle by which it is formed Spherical Shell The difference of two solid concentric spheres is called a spherical shell Lateral Total surface area of the sphere Area for Sphere Surface Lateral Surface area of Hemisphere It is the curved surface area leaving the circular base	

Type	Measurement
Surface area of Sphere	$4 \pi r^{2}$
Volume of Sphere	$\frac{4}{3} \pi r^{3}$
Curved Surface area of hemisphere	$2 \pi r^{2}$
Total Surface area of hemisphere	$3 \Pi r^{2}$
Volume of hemisphere	$\frac{2}{3} \pi r^{3}$
Volume of the spherical shell whose outer and inner radii and ' R ' and ' r ' respectively	$\frac{4}{3} \pi\left(R^{3}-r^{7}\right)$
How the Surface area and Volume are determined	
Area of Circle	The circumference of a circle is $2 \pi r$. This is the definition of n (pi). Divide the circle into many triangular segments. The area of the triangles is $1 / 2$ times the sum of their bases, 2nr (the circumference), times their height, r. $A=\frac{1}{2} 2 \pi r r=\pi r^{2}$
Surface Area of cylinder	This can be imagined as unwrapping the surface into a rectangle.

Statistics

S.no	Term	Description $\mathbf{1}$ $\mathbf{2}$$\quad$Statistics which studies ways to collect, summarize, and draw conclusions from data
Data	A systematic record of facts or different values of a quantity is called data.	
Data is of two types - Primary data and Secondary data.		
Primary Data: The data collected by a researcher with a specific purpose in mind is called primary data.		

Secondary Data: The data gathered from a source where it already exists is called secondary data

3
Features of data

- Statistics deals with collection, presentation, analysis and interpretation of numerical data.
- Arranging data in an order to study their salient features is called presentation of data.
- Data arranged in ascending or descending order is called arrayed data or an array
- Range of the data is the difference between the maximum and the minimum values of the observations
- Table that shows the frequency of different values in the given data is called a frequency distribution table
- A frequency distribution table that shows the frequency of each individual value in the given data is called an ungrouped frequency distribution table.
- A table that shows the frequency of groups of values in the given data is called a grouped frequency distribution table
- The groupings used to group the values in given data are called classes or classintervals. The number of values that each class contains is called the class size or class width. The lower value in a class is called the lower class limit. The higher value in a class is called the upper class limit.
- Class mark of a class is the mid value of the two limits of that class.
- A frequency distribution in which the upper limit of one class differs from the lower limit of the succeeding class is called an Inclusive or discontinuous Frequency Distribution.
- A frequency distribution in which the upper
limit of one class coincides from the lower limit of the succeeding class is called an exclusive or continuous Frequency Distribution

4 Bar graph

5 Histogram

6
Mean

Median

A bar graph is a pictorial representation of data in which rectangular bars of uniform width are drawn with equal spacing between them on one axis, usually the x axis. The value of the variable is shown on the other axis that is the y axis.

A histogram is a set of adjacent rectangles whose areas are proportional to the frequencies of a given continuous frequency distribution

The mean value of a variable is defined as the sum of all the values of the variable divided by the number of values.

$$
a_{m}=\frac{a_{1}+a_{2}+a_{3}+a_{4}}{4}=\frac{\sum_{0}^{n} a}{n}
$$

The median of a set of data values is the middle value of the data set when it has been arranged in ascending order. That is, from the smallest value to the highest value

Median is calculated as
$\frac{1}{2}(n+1)$

Where n is the number of values in the data If the number of values in the data set is even, then the median is the average of the two middle values.

8 Mode
 Mode of a statistical data is the value of that variable which has the maximum frequency

Probability

```
S.n Term Description
O
1 Empirical It is a probability of event which is calculated based on probability experiments
Emprical Probability \(=\frac{\text { No of trails whichexpected outcome }}{\text { Total Number of trials }}\)
```


Example:

A coin is tossed 1000 times; we get 499 times head and 501 times tail,

So empirical or experimental probability of getting head is calculated as

$$
p=\frac{499}{1000}=.499
$$

Empirical probability depends on experiment and different will get different values based on the experiment

2 Important point If the event A, B, C covers the entire possible outcome in about events the experiment. Then,

$$
P(A)+P(B)+P(C)
$$

$$
=1
$$

The probability of an event (U) which is impossible to occur is 0 . Such an event is called an impossible event

$$
P(U)=0
$$

4 Sure or certain event

The probability of an event (X) which is sure (or certain) to occur is 1 . Such an event is called a sure event or a certain event

$$
P(X)=1
$$

5 Probability of Probability of any event can be as any event

$$
0 \leq p(E) \leq 1
$$

