Testprep

Progression

Table of Content

1. Introduction.
2. Definition.
3. General term of an A.P.
4. Selection of terms in an A.P.
5. Arithmetic mean.
6. Properties of A.P.
7. Definition.
8. General term of G.P.
9. Sum of first n terms of a G.P.
10. Selection of terms in a G.P.
11. Sum of infinite terms of a G.P.
12. Geometric mean.
13. Properties of G.P.
14. Definition.
15. General term of an H.P.
16. Harmonic mean.
17. Properties of H.P.
18. nth term of A.G.P.

Online Test
www.testprepkart.com
[廌 info@testprepkart.com
(C) $+91-8800123492$
19. Sum of A.G.P.
20. Method of finding sum.
21. Method of difference.
22. Special series.
23. Vn method.
24. Properties of arithmetic, geometric and harmonic means between two given numbers.
25. Relation between A.P., G.P. and H.P.
26. Applications of progressions.

6) www.testprepkart.com

20 info@testprepkart.com
Online Test

1. Introduction.

(1) Sequence: A sequence is a function whose domain is the set of natural numbers, N .

If $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{C}$ is a sequence, we usually denote it by $\langle f(n)\rangle=\langle f(1), f(2), f(3), \ldots$.
It is not necessary that the terms of a sequence always follow a certain pattern or they are described by some explicit formula for the $\mathrm{n}^{\text {th }}$ term. Terms of a sequence are connected by commas. Example: 1, 1, 2, 3,5,

8 , \qquad is a sequence.
(2) Series: By adding or subtracting the terms of a sequence, we get a series.

If $t_{1}, t_{2}, t_{3}, \ldots . . t_{n}, \ldots$. is a sequence, then the expression $t_{1}+t_{2}+t_{3}+\ldots .+t_{n} \ldots$ is a series.
A series is finite or infinite as the number of terms in the corresponding sequence is finite or infinite.
Example: $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots$. is a series.
(3) Progression: A progression is a sequence whose terms follow a certain pattern i.e. the terms are arranged under a definite rule.
Example: $1,3,5,7,9, \ldots \ldots .$. is a progression whose terms are obtained by the rule : $T_{n}=2 n-1$, where T_{n} denotes the $\mathrm{n}^{\text {th }}$ term of the progression.

Progression is mainly of three types: Arithmetic progression, Geometric progression and Harmonic progression.

However, here we have classified the study of progression into five parts as:

- Arithmetic progression
- Geometric progression
- Arithmetico-geometric progression
- Harmonic progression
- Miscellaneous progressions

Arithmetic Progression (A.P)

2. Definition

A sequence of numbers $<t_{n}>$ is said to be in arithmetic progression (A.P.) when the difference $t_{n}-t_{n-1}$ is a constant for all $\mathrm{n} \in \mathrm{N}$. This constant is called the common difference of the A.P., and is usually denoted by the letter d .

If ' a ' is the first term and ' d ' the common difference, then an A.P. can be represented as $a, a+d, a+2 d, a+3 d, \ldots \ldots \ldots$

Example: $2,7,12,17,22, \ldots \ldots$. is an A.P. whose first term is 2 and common difference 5.
Algorithm to determine whether a sequence is an A.P. or not.
Step I: Obtain a_{n} (the $\mathrm{n}^{\text {th }}$ term of the sequence).
Step II: Replace n by $\mathrm{n}-1$ in a_{n} to get a_{n-1}.
Step III: Calculate $a_{n}-a_{n-1}$.
If $a_{n}-a_{n-1}$ is independent of n , the given sequence is an A.P. otherwise it is not an A.P. An arithmetic progression is a linear function with domain as the set of natural numbers N.
$\therefore t_{n}=A n+B$ represents the $\mathrm{n}^{\text {th }}$ term of an A.P. with common difference A.

3. General Term of an A.P.

(1) Let ' a ' be the first term and ' d ' be the common difference of an A.P. Then its $\mathrm{n}^{\text {th }}$ term is $a+(n-1) d$.

$$
T_{n}=a+(n-1) d
$$

(2) $\mathbf{p}^{\text {th }}$ term of an A.P. from the end : Let ' a ' be the first term and ' d ' be the common difference of an A.P. having n terms. Then $\mathrm{p}^{\text {th }}$ term from the end is $(n-p+1)^{\text {th }}$ term from the beginning.

$$
p^{t h} \text { term from the end }=T_{(n-p+1)}=a+(n-p) d
$$

Knowledge... Everywhere

Important Tips
(*) General term $\left(T_{n}\right)$ is also denoted by I (last term).

- Common difference can be zero, +ve or -ve.
- n (number of terms) always belongs to set of natural numbers.
- If T_{k} and T_{p} of any A.P. are given, then formula for obtaining T_{n} is $\frac{T_{n}-T_{k}}{n-k}=\frac{T_{p}-T_{k}}{p-k}$.
- If $p T_{p}=q T_{q}$ of an A.P., then $T_{p+q}=0$.
- If $p^{\text {th }}$ term of an A.P. is q and the $q^{\text {th }}$ term is p, then $T_{p+q}=0$ and $T_{n}=p+q-n$.
- If the $\mathrm{p}^{\text {th }}$ term of an A.P. is $\frac{1}{q}$ and the $\mathrm{q}^{\text {th }}$ term is $\frac{1}{p}$, then its $\mathrm{pq}^{\text {th }}$ term is 1 .
- If $T_{n}=p n+q$, then it will form an A.P. of common difference p and first term $p+q$.

4. Selection of Terms in an A.P.

When the sum is given, the following way is adopted in selecting certain number of terms:

Number of terms
3
4
5

Terms to be taken

$$
\begin{aligned}
& a-d, a, a+d \\
& a-3 d, a-d, a+d, a+3 d \\
& a-2 d, a-d, a, a+d, a+2 d
\end{aligned}
$$

In general, we take $a-r d, a-(r-1) d$, \qquad $a-d, a, a+d, \ldots . ., a+(r-1) d, a+r d$, in case we have to take $(2 r+1)$ terms (i.e. odd number of terms) in an A.P.
And, $a-(2 r-1) d, a-(2 r-3) d, \ldots \ldots . ., a-d, a+d, \ldots \ldots ., a+(2 r-1) d$, in case we have to take $2 r$ terms in an

A.P.

When the sum is not given, then the following way is adopted in selection of terms.

Number of terms	Terms to be taken
3	$a, a+d, a+2 d$
4	$a, a+d, a+2 d, a+3 d$
5	$a, a+d, a+2 d, a+3 d, a+4 d$

Knowledge... Everywhere

Sum of \mathbf{n} terms of an A.P.: The sum of \mathbf{n} terms of the series $a+(a+d)+(a+2 d)+$ \qquad $+\{a+(n-1) d\}$ is given by

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Also, $S_{n}=\frac{n}{2}(a+l)$, where $\mathrm{I}=$ last term $=a+(n-1) d$

Important Tips

(- The common difference of an A.P is given by $d=S_{2}-2 S_{1}$ where S_{2} is the sum of first two terms and S_{1} is the sum of first term or the first term.

- The sum of infinite terms $=\left\{\begin{array}{l}\infty, \text { when } d>0 \\ -\infty, \text { when } d<0\end{array}\right.$.
- If sum of n terms S_{n} is given then general term $T_{n}=S_{n}-S_{n-1}$, where S_{n-1} is sum of ($\mathrm{n}-1$) terms of A.P.
- Sum of n terms of an A.P. is of the form $A n^{2}+B n$ i.e. a quadratic expression in n, in such case, common difference is twice the coefficient of n^{2} i.e. 2A.
- - If for the different A.P's $\frac{S_{n}}{S_{n}^{\prime}}=\frac{f_{n}}{\phi_{n}}$, then $\frac{T_{n}}{T_{n}^{\prime}}=\frac{f(2 n-1)}{\phi(2 n-1)}$
- If for two A.P.'s $\frac{T_{n}}{T_{n}^{\prime}}=\frac{A n+B}{C n+D}$ then $\frac{S_{n}}{S_{n}^{\prime}}=\frac{A\left(\frac{n+1}{2}\right)+B}{C\left(\frac{n+1}{2}\right)+D}$
- Some standard results
- Sum of first n natural numbers $=1+2+3+\ldots \ldots \ldots+n=\sum_{r=1}^{n} r=\frac{n(n+1)}{2}$
- Sum of first n odd natural numbers $=1+3+5+\ldots . .+(2 n-1)=\sum_{r=1}^{n}(2 r-1)=n^{2}$
- Sum of first n even natural numbers $=2+4+6+\ldots . . .+2 n=\sum_{r=1}^{n} 2 r=n(n+1)$
- - If for an A.P. sum of p terms is q and sum of q terms is p, then sum of $(p+q)$ terms is $\{-$ $(p+q)\}$.
- If for an A.P., sum of p terms is equal to sum of q terms, then sum of $(p+q)$ terms is zero.
- If the $\mathrm{p}^{\text {th }}$ term of an A.P. is $\frac{1}{q}$ and $\mathrm{q}^{\text {th }}$ term is $\frac{1}{p}$, then sum of pq terms is given by $S_{p q}=\frac{1}{2}(p q+1)$

5. Arithmetic Mean.

(1) Definitions

(i) If three quantities are in A.P. then the middle quantity is called Arithmetic mean (A.M.) between the other two.
If $\mathrm{a}, \mathrm{A}, \mathrm{b}$ are in A.P., then A is called A.M. between a and b .
(ii) If $a, A_{1}, A_{2}, A_{3}, \ldots \ldots, A_{n}, b$ are in A.P., then $A_{1}, A_{2}, A_{3}, \ldots \ldots, A_{n}$ are called n A.M.'s between a and b .

(2) Insertion of arithmetic means

(i) Single A.M. between \mathbf{a} and \mathbf{b} : If a and b are two real numbers then single A.M. between a and $\mathrm{b}=\frac{a+b}{2}$
(ii) \mathbf{n} A.M.'s between \mathbf{a} and \mathbf{b} : If $A_{1}, A_{2}, A_{3}, \ldots \ldots, A_{n}$ are n A.M.'s between a and b , then
$A_{1}=a+d=a+\frac{b-a}{n+1}, A_{2}=a+2 d=a+2 \frac{b-a}{n+1}, A_{3}=a+3 d=a+3 \frac{b-a}{n+1}, \ldots \ldots . ., A_{n}=a+n d=a+n \frac{b-a}{n+1}$

Important Tips

- Sum of n A.M.'s between a and b is equal to n times the single A.M. between a and b.
i.e. $A_{1}+A_{2}+A_{3}+\ldots \ldots \ldots .+A_{n}=n\left(\frac{a+b}{2}\right)$
- If A_{1} and A_{2} are two A.M.'s between two numbers a and b , then $A_{1}=\frac{1}{3}(2 a+b), A_{2}=\frac{1}{3}(a+2 b)$.
- Between two numbers, $\frac{\text { Sum of } m \text { A.M.'s }}{\text { Sum of } n \text { A.M.'s }}=\frac{m}{n}$.
σ If number of terms in any series is odd, then only one middle term exists which is $\left(\frac{n+1}{2}\right)^{\text {th }}$ term.
- If number of terms in any series is even then there are two middle terms, which are given by $\left(\frac{n}{2}\right)^{\text {th }}$ and $\left\{\left(\frac{n}{2}\right)+1\right\}^{\text {th }}$ term.

www.testprepkart.com

6. Properties of A.P.

(1) If $a_{1}, a_{2}, a_{3} \ldots$. are in A.P. whose common difference is d , then for fixed non-zero number $\mathrm{K} \in \mathrm{R}$.
(i) $a_{1} \pm K, a_{2} \pm K, a_{3} \pm K, \ldots .$. will be in A.P., whose common difference will be d .
(ii) $K a_{1}, K a_{2}, K a_{3} \ldots \ldots .$. will be in A.P. with common difference $=\mathrm{Kd}$.
(iii) $\frac{a_{1}}{K}, \frac{a_{2}}{K}, \frac{a_{3}}{K} \ldots \ldots$ will be in A.P. with common difference $=\mathrm{d} / \mathrm{K}$.
(2) The sum of terms of an A.P. equidistant from the beginning and the end is constant and is equal to sum of first and last term. i.e. $a_{1}+a_{n}=a_{2}+a_{n-1}=a_{3}+a_{n-2}=\ldots$.
(3) Any term (except the first term) of an A.P. is equal to half of the sum of terms equidistant from the term i.e. $a_{n}=\frac{1}{2}\left(a_{n-k}+a_{n+k}\right), \mathrm{k}<\mathrm{n}$.
(4) If number of terms of any A.P. is odd, then sum of the terms is equal to product of middle term and number of terms.
(5) If number of terms of any A.P. is even then A.M. of middle two terms is A.M. of first and last term.
(6) If the number of terms of an A.P. is odd then its middle term is A.M. of first and last term.
(7) If $a_{1}, a_{2}, \ldots \ldots . a_{n}$ and $b_{1}, b_{2}, \ldots \ldots b_{n}$ are the two A.P.'s. Then $a_{1} \pm b_{1}, a_{2} \pm b_{2}, \ldots \ldots a_{n} \pm b_{n}$ are also A.P.'s with common difference $d_{1} \neq d_{2}$, where d_{1} and d_{2} are the common difference of the given A.P.'s.
(8) Three numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. iff $2 b=a+c$.
(9) If T_{n}, T_{n+1} and T_{n+2} are three consecutive terms of an A.P., then $2 T_{n+1}=T_{n}+T_{n+2}$.
(10) If the terms of an A.P. are chosen at regular intervals, then they form an A.P.

Testprep Kart

Geometric Progression (G.P.)

7. Definition.

A progression is called a G.P. if the ratio of its each term to its previous term is always constant. This constant ratio is called its common ratio and it is generally denoted by r.
Example: The sequence $4,12,36,108, \ldots .$. is a G.P., because $\frac{12}{4}=\frac{36}{12}=\frac{108}{36}=\ldots . .=3$, which is constant.
Clearly, this sequence is a G.P. with first term 4 and common ratio 3 .
The sequence $\frac{1}{3},-\frac{1}{2}, \frac{3}{4},-\frac{9}{8}, \ldots$. is a G.P. with first term $\frac{1}{3}$ and common ratio $\left(-\frac{1}{2}\right) /\left(\frac{1}{3}\right)=-\frac{3}{2}$

8. General Term of a G.P.

(1) We know that, $a, a r, a r^{2}, a r^{3}, \ldots . . a r^{n-1}$ is a sequence of G.P.

Here, the first term is ' a ' and the common ratio is ' r '.
The general term or $\mathrm{n}^{\text {th }}$ term of a G.P. is $T_{n}=a r^{n-1}$
It should be noted that,
$r=\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}=\ldots .$.
(2) $\mathbf{p}^{\text {th }}$ term from the end of a finite G.P. : If G.P. consists of ' n ' terms, $p^{\text {th }}$ term from the end $=(n-p+1)^{t h}$ term from the beginning $=a r^{n-p}$.
Also, the $\mathrm{p}^{\text {th }}$ term from the end of a G.P. with last term I and common ratio r is $l\left(\frac{1}{r}\right)^{n-1}$

Online Test

Testprep Kart

Important Tips

(G) If a, b, c are in G.P. $\Rightarrow \frac{b}{a}=\frac{c}{b}$ or $\quad b^{2}=a c$

If T_{k} and T_{p} of any G.P. are given, then formula for obtaining T_{n} is
$\left(\frac{T_{n}}{T_{k}}\right)^{\frac{1}{n-k}}=\left(\frac{T_{p}}{T_{k}}\right)^{\frac{1}{p-k}}$
σ If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P. then
$\Rightarrow \frac{b}{a}=\frac{c}{b} \Rightarrow \frac{a+b}{a-b}=\frac{b+c}{b-c}$ or $\frac{a-b}{b-c}=\frac{a}{b}$ or $\frac{a+b}{b+c}=\frac{a}{b}$
Let the first term of a G.P be positive, then if $r>1$, then it is an increasing G.P., but if r is positive and less than 1, i.e. $0<r<1$, then it is a decreasing G.P.
σ Let the first term of a G.P. be negative, then if $r>1$, then it is a decreasing G.P., but if $0<r<1$, then it is an increasing G.P.
If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \ldots$ are in G.P., then they are also in continued proportion i.e. $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\ldots . .=\frac{1}{r}$

9. Sum of First ' n ' Terms of a G.P.

If a be the first term, r the common ratio, then sum S_{n} of first n terms of a G.P. is given by

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}, \quad|r|<1
$$

$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}, \quad|r|>1$
$S_{n}=n a, \quad r=1$

Testprep Kart

10. Selection of Terms in a G.P.

(1) When the product is given, the following way is adopted in selecting certain number of terms:

Number of terms	Terms to be taken
3	$\frac{a}{r}, a, a r$
4	$\frac{a}{r^{3}}, \frac{a}{r}, a r, a r^{3}$
5	$\frac{a}{r^{2}}, \frac{a}{r}, a, a r, a r^{2}$

(2) When the product is not given, then the following way is adopted in selection of terms

Number of terms	Terms to be taken
3	$a, a r, a r^{2}$
4	$a, a r, a r^{2}, a r^{3}$
5	$a, a r, a r^{2}, a r^{3}, a r^{4}$

11. Sum of Infinite Terms of a G.P.
(1) When $|r|<1$, (or $-1<r<1)$
$S_{\infty}=\frac{a}{1-r}$
(2) If $r \geq 1$, then S_{∞} doesn't exist

Online Test

www.testprepkart.com
20 info@testprepkart.com

12. Geometric Mean.

(1) Definition: (i) If three quantities are in G.P., then the middle quantity is called geometric mean (G.M.) between the other two. If $\mathrm{a}, \mathrm{G}, \mathrm{b}$ are in G.P., then G is called G.M. between a and b .
(ii) If $a, G_{1}, G_{2}, G_{3}, \ldots . G_{n}, b$ are in G.P. then $G_{1}, G_{2}, G_{3}, \ldots . G_{n}$ are called n G.M.'s between a and b .
(2) Insertion of geometric means: (i) Single G.M. between \mathbf{a} and b: If a and b are two real numbers then single G.M. between a and $\mathrm{b}=\sqrt{a b}$
(ii) \mathbf{n} G.M.'s between \mathbf{a} and \mathbf{b} : If $G_{1}, G_{2}, G_{3}, \ldots \ldots, G_{n}$ are n G.M.'s between a and b, then
$G_{1}=a r=a\left(\frac{b}{a}\right)^{\frac{1}{n+1}}, G_{2}=a r^{2}=a\left(\frac{b}{a}\right)^{\frac{2}{n+1}}, G_{3}=a r^{3}=a\left(\frac{b}{a}\right)^{\frac{3}{n+1}}, \ldots \ldots \ldots \ldots \ldots \ldots, G_{n}=a r^{n}=a\left(\frac{b}{a}\right)^{\frac{n}{n+1}}$

Important Tips

- Product of n G.M.'s between a and b is equal to n nth power of single geometric mean between a and b .
i.e. $G_{1} G_{2} G_{3} \ldots \ldots . G_{n}=(\sqrt{a b})^{n}$
- G.M. of $a_{1} a_{2} a_{3} \ldots \ldots a_{n}$ is $\left(a_{1} a_{2} a_{3} \ldots . a_{n}\right)^{1 / n}$
- If G_{1} and G_{2} are two G.M.'s between two numbers a and b is $G_{1}=\left(a^{2} b\right)^{1 / 3}, G_{2}=\left(a b^{2}\right)^{1 / 3}$.
σ The product of n geometric means between a and $\frac{1}{a}$ is 1 .
ه- If n G.M.'s inserted between a and b then $r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$

13. Properties of G.P.

(1) If all the terms of a G.P. be multiplied or divided by the same non-zero constant, then it remains a G.P., with the same common ratio.
(2) The reciprocal of the terms of a given G.P. form a G.P. with common ratio as reciprocal of the common ratio of the original G.P.
(3) If each term of a G.P. with common ratio r be raised to the same power k, the resulting sequence also forms a G.P. with common ratio r^{k}.
(4) In a finite G.P., the product of terms equidistant from the beginning and the end is always the same and is equal to the product of the first and last term.
i.e., if $a_{1}, a_{2}, a_{3}, \ldots \ldots a_{n}$ be in G.P. Then $a_{1} a_{n}=a_{2} a_{n-1}=a_{3} a_{n-2}=a_{n} a_{n-3}=\ldots \ldots \ldots . .=a_{r} \cdot a_{n-r+1}$
(5) If the terms of a given G.P. are chosen at regular intervals, then the new sequence so formed also forms a G.P.
(6) If $a_{1}, a_{2}, a_{3}, \ldots . ., a_{n} \ldots \ldots$ is a G.P. of non-zero, non-negative terms, then $\log a_{1}, \log a_{2}, \log a_{3}, \ldots . . \log a_{n}, \ldots \ldots$. is an A.P. and vice-versa.
(7) Three non-zero numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P. iff $b^{2}=a c$.
(8) Every term (except first term) of a G.P. is the square root of terms equidistant from it.
i.e. $T_{r}=\sqrt{T_{r-p} \cdot T_{r+p}} ;[r>p]$
(9) If first term of a G.P. of n terms is a and last term is I, then the product of all terms of the G.P. is $(a l)^{n / 2}$.
(10) If there be n quantities in G.P. whose common ratio is r and S_{m} denotes the sum of the first m terms, then the sum of their product taken two by two is $\frac{r}{r+1} S_{n} S_{n-1}$.

www.testprepkart.com

Testprep Kart

Harmonic Progression (H.P.)

14. Definition.

A progression is called a harmonic progression (H.P.) if the reciprocals of its terms are in A.P.
Standard form: $\frac{1}{a}+\frac{1}{a+d}+\frac{1}{a+2 d}+\ldots$.
Example: The sequence $1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9} \ldots$ is a H.P., because the sequence $1,3,5,7,9, \ldots .$. is an A.P.

15. General Term of an H.P.

If the H.P. be as $\frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2 d}, \ldots$. then corresponding A.P. is $a, a+d, a+2 d, \ldots \ldots$
T_{n} of A.P. is $a+(n-1) d$
$\therefore T_{n}$ of H.P. is $\frac{1}{a+(n-1) d}$
In order to solve the question on H.P., we should form the corresponding A.P.
Thus, General term: $T_{n}=\frac{1}{a+(n-1) d}$ or T_{n} of H.P. $=\frac{1}{T_{n} \text { of A.P. }}$

Online Test

www.testprepkart.com [20 info@testprepkart.com

Knowledge... Everywhere

16. Harmonic Mean.

(1) Definition: If three or more numbers are in H.P., then the numbers lying between the first and last are called harmonic means (H.M.'s) between them. For example $1,1 / 3,1 / 5,1 / 7,1 / 9$ are in H.P. So $1 / 3$, $1 / 5$ and $1 / 7$ are three H.M.'s between 1 and $1 / 9$.
Also, if a, H, b are in H.P., then H is called harmonic mean between a and b.
(2) Insertion of harmonic means:
(i) Single H.M. between a and $\mathrm{b}=\frac{2 a b}{a+b}$
(ii) H, H.M. of n non-zero numbers $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is given by $\frac{1}{H}=\frac{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots .+\frac{1}{a_{n}}}{n}$.
(iii) Let a, b be two given numbers. If n numbers $H_{1}, H_{2}, \ldots \ldots . H_{n}$ are inserted between a and b such that the sequence $a, H_{1}, H_{2}, H_{3} \ldots \ldots H_{n}, b$ is an H.P., then $H_{1}, H_{2}, \ldots \ldots H_{n}$ are called n harmonic means between a and b .

Now, $a, H_{1}, H_{2}, \ldots \ldots H_{n}, b$ are in H.P. $\Rightarrow \frac{1}{a}, \frac{1}{H_{1}}, \frac{1}{H_{2}}, \ldots \ldots \frac{1}{H_{n}}, \frac{1}{b}$ are in A.P.
Let D be the common difference of this A.P. Then,
$\frac{1}{b}=(n+2)^{\text {th }}$ term $=T_{n+2}$
$\frac{1}{b}=\frac{1}{a}+(n+1) D \Rightarrow D=\frac{a-b}{(n+1) a b}$
Thus, if n harmonic means are inserted between two given numbers a and b , then the common difference of the corresponding A.P. is given by $D=\frac{a-b}{(n+1) a b}$
Also, $\frac{1}{H_{1}}=\frac{1}{a}+D, \frac{1}{H_{2}}=\frac{1}{a}+2 D, \ldots \ldots \ldots, \frac{1}{H_{n}}=\frac{1}{a}+n D$ where $D=\frac{a-b}{(n+1) a b}$

Important Tips

- If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P. then $b=\frac{2 a c}{a+c}$.
- If H_{1} and H_{2} are two H.M.'s between a and b, then $H_{1}=\frac{3 a b}{a+2 b}$ and $H_{2}=\frac{3 a b}{2 a+b}$

Testprep Kart

17. Properties of H.P.

(1) No term of H.P. can be zero.
(2) If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P., then $\frac{a-b}{b-c}=\frac{a}{c}$.
(3) If H is the $\mathrm{H} . \mathrm{M}$. between a and b , then
(i) $\frac{1}{H-a}+\frac{1}{H-b}=\frac{1}{a}+\frac{1}{b}$
(ii) $(H-2 a)(H-2 b)=H^{2}$
(iii) $\frac{H+a}{H-a}+\frac{H+b}{H-b}=2$

Arithmetico-Geometric Progression (A.G.P.)

18. $\mathrm{n}^{\text {th }}$ Term of A.G.P.

If $a_{1}, a_{2}, a_{3}, \ldots \ldots, a_{n}, \ldots \ldots$ is an A.P. and $b_{1}, b_{2}, \ldots \ldots ., b_{n}, \ldots .$. is a G.P., then the sequence $a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3}$, $\ldots . . ., a_{n} b_{n}, \ldots .$. is said to be an arithmetico-geometric sequence.

Thus, the general form of an arithmetico geometric sequence is $a,(a+d) r,(a+2 d) r^{2},(a+3 d) r^{3}, \ldots \ldots$.
From the symmetry we obtain that the nth term of this sequence is $[a+(n-1) d] r^{n-1}$
Also, let $a,(a+d) r,(a+2 d) r^{2},(a+3 d) r^{3}, \ldots \ldots$ be an arithmetico-geometric sequence. Then, $a+(a+d) r$ $+(a+2 d) r^{2}+(a+3 d) r^{3}+\ldots$ is an arithmetico-geometric series.

Testprep Kart

19. Sum of A.G.P.

(1) Sum of \boldsymbol{n} terms: The sum of n terms of an arithmetico-geometric sequence $a,(a+d) r,(a+2 d) r^{2}$,
$(a+3 d) r^{3}, \ldots .$. is given by
$S_{n}=\left\{\begin{array}{l}\frac{a}{1-r}+d r \frac{\left(1-r^{n-1}\right)}{(1-r)^{2}}-\frac{\{a+(n-1) d\} r^{n}}{1-r}, \text { when } r \neq 1 \\ \frac{\mathrm{n}}{2}[2 a+(n-1) d], \text { when } r=1\end{array}\right.$
(2) Sum of infinite sequence: Let $|\mathrm{r}|<1$. Then $r^{n}, r^{n-1} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ and it can also be shown that $n . r^{n} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$. So, we obtain that $S_{n} \rightarrow \frac{a}{1-r}+\frac{d r}{(1-r)^{2}}$, as $\mathrm{n} \rightarrow \infty$.

In other words, when $|r|<1$ the sum to infinity of an arithmetico-geometric series is $S_{\infty}=\frac{a}{1-r}+\frac{d r}{(1-r)^{2}}$

20. Method for Finding Sum.

This method is applicable for both sum of n terms and sum of infinite number of terms.
First suppose that sum of the series is S, then multiply it by common ratio of the G.P. and subtract. In this way, we shall get a G.P., whose sum can be easily obtained.

21. Method of Difference.

If the differences of the successive terms of a series are in A.P. or G.P., we can find $\mathrm{n}^{\text {th }}$ term of the series by the following steps:
Step I: Denote the $\mathrm{n}^{\text {th }}$ term by T_{n} and the sum of the series upto n terms by S_{n}.
Step II: Rewrite the given series with each term shifted by one place to the right.
Step III: By subtracting the later series from the former, find T_{n}.
Step IV: From T_{n}, S_{n} can be found by appropriate summation.

www.testprepkart.com

Miscellaneous series

22. Special Series.

There are some series in which $\mathrm{n}^{\text {th }}$ term can be predicted easily just by looking at the series.
If $T_{n}=\alpha n^{3}+\beta n^{2}+\gamma n+\delta$
Then $S_{n}=\sum_{n=1}^{n} T_{n}=\sum_{n=1}^{n}\left(\alpha n^{3}+\beta n^{2}+\gamma n+\delta\right)=\alpha \sum_{n=1}^{n} n^{3}+\beta \sum_{n=1}^{n} n^{2}+\gamma \sum_{n=1}^{n} n+\delta \sum_{n=1}^{n} 1$
$=\alpha\left(\frac{n(n+1)}{2}\right)^{2}+\beta\left(\frac{n(n+1)(2 n+1)}{6}\right)+\gamma\left(\frac{n(n+1)}{2}\right)+\delta n$

Note: Sum of squares of first n natural numbers $=1^{2}+2^{2}+3^{2}+\ldots \ldots .+n^{2}=\sum_{r=1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6}$
\square Sum of cubes of first n natural numbers $=1^{3}+2^{3}+3^{3}+4^{3}+\ldots \ldots .+n^{3}=\sum_{r=1}^{n} r^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

23. V_{n} Method

(1) To find the sum of the series $\frac{1}{a_{1} a_{2} a_{3} \ldots . . a_{r}}+\frac{1}{a_{2} a_{3} \ldots . . a_{r+1}}+\ldots . .+\frac{1}{a_{n} a_{n+1} \ldots . . a_{n+r-1}}$

Let d be the common difference of A.P. Then $a_{n}=a_{1}+(n-1) d$.
Let S_{n} and T_{n} denote the sum to n terms of the series and $\mathrm{n}^{\text {th }}$ term respectively.
$S_{n}=\frac{1}{a_{1} a_{2} \ldots . a_{r}}+\frac{1}{a_{2} a_{3} \ldots . . a_{r+1}}+\ldots . .+\frac{1}{a_{n} a_{n+1} \ldots . . a_{n+r-1}}$
$\therefore T_{n}=\frac{1}{a_{n} a_{n+1} \ldots . . a_{n+r-1}}$
Let $V_{n}=\frac{1}{a_{n+1} a_{n+2} \ldots . . a_{n+r-1}} ; \quad V_{n-1}=\frac{1}{a_{n} a_{n+1} \ldots . . a_{n+r-2}}$
$\Rightarrow V_{n}-V_{n-1}=\frac{1}{a_{n+1} a_{n+2} \ldots . . a_{n+r-1}}-\frac{1}{a_{n} a_{n+1} \cdots . . a_{n+r-2}}=\frac{a_{n}-a_{n+r-1}}{a_{n} a_{n+1} \ldots . a_{n+r-1}}$
$=\frac{\left[a_{1}+(n-1) d\right]-\left[a_{1}+\{(n+r-1)-1\} d\right]}{a_{n} a_{n+1} \cdots . . a_{n+r-1}}=d(1-r) T_{n}$

www.testprepkart.com [20 info@testprepkart.com

$$
\begin{aligned}
& \therefore T_{n}=\frac{1}{d(r-1)}\left\{V_{n-1}-V_{n}\right\}, \quad \therefore S_{n}=\sum_{n=1}^{n} T_{n}=\frac{1}{d(r-1)}\left(V_{0}-V_{n}\right) \\
& S_{n}=\frac{1}{(r-1)\left(a_{2}-a_{1}\right)}\left\{\frac{1}{a_{1} a_{2} \ldots . a_{r-1}}-\frac{1}{a_{n+1} a_{n+2} \ldots . . a_{n+r-1}}\right\}
\end{aligned}
$$

Example: If $a_{1}, a_{2}, \ldots . . a_{n}$ are in A.P., then $\frac{1}{a_{1} a_{2} a_{3}}+\frac{1}{a_{2} a_{3} a_{4}}+\ldots+\frac{1}{a_{n} a_{n+1} a_{n+2}}=\frac{1}{2\left(a_{2}-a_{1}\right)}\left\{\frac{1}{a_{1} a_{2}}-\frac{1}{a_{n+1} a_{n+2}}\right\}$
(2) If $S_{n}=a_{1} a_{2} \ldots . . a_{r}+a_{2} a_{3} \ldots . . a_{r+1} \ldots+a_{n} a_{n+1} \ldots a_{n+r-1}$
$T_{n}=a_{n} a_{n+1} \cdots . . a_{n+r-1}$
Let $V_{n}=a_{n} a_{n+1} \ldots a_{n+r-1} a_{n+r}, \therefore V_{n-1}=a_{n-1} a_{n+1} \ldots \ldots a_{n+r-1}$
$\Rightarrow V_{n}-V_{n-1}=a_{n} a_{n+1} a_{n+2} \ldots . . a_{n+r-1}\left(a_{n+r}-a_{n-1}\right)=T_{n}\left\{\left[a_{1}+(n+r-1) d\right]-\left[a_{1}+(n-2) d\right]\right\}=T_{n}(r+1) d$
$\therefore T_{n}=\frac{V_{n}-V_{n-1}}{(r+1) d}$
$S_{n}=\sum_{n=1}^{n} T_{n}=\frac{1}{(r+1) d} \sum_{n=1}^{n}\left(V_{n}-V_{n-1}\right)=\frac{1}{(r+1) d}\left(V_{n}-V_{0}\right)=\frac{1}{(r+1) d}\left\{\left(a_{n} a_{n+1} \ldots a_{n+r}\right)-\left(a_{0} a_{1} \ldots a_{r}\right)\right\}$
$=\frac{1}{(r+1)\left(a_{2}-a_{1}\right)}\left\{a_{n} a_{n+1} \ldots a_{n+r}-a_{0} a_{1} \ldots . a_{r}\right\}$
Example: 1.2.3.4 +2.3.4.5 $+\ldots \ldots+n(n+1)(n+2)(n+3)=\frac{1}{5.1}\{n(n+1)(n+2)(n+3)-0.1 .2 .3\}$

$$
=\frac{1}{5}\{n(n+1)(n+2)(n+3)\}
$$

24. Properties of Arithmetic, Geometric and Harmonic means between Two given Numbers

Let A, G and H be arithmetic, geometric and harmonic means of two numbers a and b . Then,

$$
A=\frac{a+b}{2}, G=\sqrt{a b} \text { and } H=\frac{2 a b}{a+b}
$$

These three means possess the following properties:
(1) $A \geq G \geq H$

$$
\begin{aligned}
& A=\frac{a+b}{2}, G=\sqrt{a b} \text { and } H=\frac{2 a b}{a+b} \\
\therefore & A-G=\frac{a+b}{2}-\sqrt{a b}=\frac{(\sqrt{a}-\sqrt{b})^{2}}{2} \geq 0
\end{aligned}
$$

Testprep Kart

$\Rightarrow A \geq G$
$G-H=\sqrt{a b}-\frac{2 a b}{a+b}=\sqrt{a b}\left(\frac{a+b-2 \sqrt{a b}}{a+b}\right)=\frac{\sqrt{a b}}{a+b}(\sqrt{a}-\sqrt{b})^{2} \geq 0$
$\Rightarrow G \geq H$
From (i) and (ii), we get $A \geq G \geq H$
Note that the equality holds only when $\mathrm{a}=\mathrm{b}$
(2) A, G, H from a G.P., i.e. $G^{2}=A H$
$A H=\frac{a+b}{2} \times \frac{2 a b}{a+b}=a b=(\sqrt{a b})^{2}=G^{2}$
Hence, $G^{2}=A H$
(3) The equation having a and b as its roots is $x^{2}-2 A x+G^{2}=0$

The equation having a and b its roots is $x^{2}-(a+b) x+a b=0$
$\Rightarrow x^{2}-2 A x+G^{2}=0$

$$
\left[\because A=\frac{a+b}{2} \text { and } G=\sqrt{a b}\right]
$$

The roots a, b are given by $A \pm \sqrt{A^{2}-G^{2}}$
(4) If A, G, H are arithmetic, geometric and harmonic means between three given numbers a, b and c, then the equation having $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as its roots is $x^{3}-3 A x^{2}+\frac{3 G^{3}}{H} x-G^{3}=0$
$A=\frac{a+b+c}{3}, G=(a b c)^{1 / 3}$ and $\frac{1}{H}=\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{3}$
$\Rightarrow a+b+c=3 A, a b c=G^{3}$ and $\frac{3 G^{3}}{H}=a b+b c+c a$
The equation having $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as its roots is $x^{3}-(a+b+c) x^{2}+(a b+b c+c a) x-a b c=0$
$\Rightarrow x^{3}-3 A x^{2}+\frac{3 G^{3}}{H} x-G^{3}=0$

Testprep Kart

25. Relation between A.P., G.P. and H.P.
(1) If A, G, H be A.M., G.M., H.M. between a and b, then $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=\left\{\begin{array}{l}A \text { when } n=0 \\ G \text { when } n=-1 / 2 \\ H \text { when } n=-1\end{array}\right.$
(2) If A_{1}, A_{2} be two A.M.'s; G_{1}, G_{2} be two G.M.'s and H_{1}, H_{2} be two H.M.'s between two numbers a and b then $\frac{G_{1} G_{2}}{H_{1} H_{2}}=\frac{A_{1}+A_{2}}{H_{1}+H_{2}}$
(3) Recognization of A.P., G.P., H.P.: If a, b, c are three successive terms of a sequence.

Then if, $\frac{a-b}{b-c}=\frac{a}{a}$, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P.
If, $\frac{a-b}{b-c}=\frac{a}{b}$, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P.
If, $\frac{a-b}{b-c}=\frac{a}{c}$, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P.
(4) If number of terms of any A.P./G.P./H.P. is odd, then A.M./G.M./H.M. of first and last terms is middle term of series.
(5) If number of terms of any A.P./G.P./H.P. is even, then A.M./G.M./H.M. of middle two terms is A.M./G.M./H.M. of first and last terms respectively.
(6) If $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of a G.P. are in G.P. Then p, q, r are in A.P.
(7) If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. as well as in G.P. then $a=b=c$.
(8) If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., then x^{a}, x^{b}, x^{c} will be in G.P. $(x \neq \pm 1)$

Testprep Kart

26. Applications of Progressions.

There are many applications of progressions is applied in science and engineering. Properties of progressions are applied to solve problems of inequality and maximum or minimum values of some expression can be found by the relation among A.M., G.M. and H.M.

