Mathematics

Binomial Theorem

Table of Content

1. Binomial theorem.
2. Binomial theorem for positive integral index.
3. Some important expansions.
4. General term.
5. Independent term or constant term.
6. Number of terms in the expansion of $(a+b+c) n$ and $(a$ $+b+c+d) n$.
7. Middle term.
8. To determine a particular term in the expansion.
9. Greatest term and greatest coefficient.
10. Properties of binomial coefficients.
11. An important theorem.
12. Multinomial theorem (For positive integral index).
13. Binomial theorem for any index.
14. Three/four consecutive terms or coefficients.
15. Some important points.
16. First principle of mathematical induction.

(0) www.testprepkart.com
20 info@testprepkart.com

1. Binomial Expression.

An algebraic expression consisting of two terms with $+v e$ or $-v e$ sign between them is called a binomial expression.
For example: $(a+b),(2 x-3 y),\left(\frac{p}{x^{2}}-\frac{q}{x^{4}}\right),\left(\frac{1}{x}+\frac{4}{y^{3}}\right)$ etc.

2. Binomial Theorem for Positive Integral Index.

The rule by which any power of binomial can be expanded is called the binomial theorem.
If n is a positive integer and $x, y \in C$ then

$$
\begin{equation*}
(x+y)^{n}={ }^{n} C_{0} x^{n-0} y^{0}+{ }^{n} C_{1} x^{n-1} y^{1}+{ }^{n} C_{2} x^{n-2} y^{2}+\ldots \ldots \ldots+{ }^{n} C_{r} x^{n-r} y^{r}+\ldots \ldots .+{ }^{n} C_{n-1} x y^{n-1}+{ }^{n} C_{n} x^{0} y^{n} \tag{i}
\end{equation*}
$$

i.e., $(x+y)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} \cdot x^{n-r} \cdot y^{r}$

Here ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2}, \ldots \ldots . .{ }^{n} C_{n}$ are called binomial coefficients and ${ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$ for $0 \leq r \leq n$.

Important Tips

$\sigma \quad$ The number of terms in the expansion of $(x+y)^{n}$ are $(n+1)$.
The expansion contains decreasing power of x and increasing power of y. The sum of the powers of x and y in each term is equal to n.
${ }^{\sigma}$ The binomial coefficients ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2} \ldots \ldots .$. equidistant from beginning and end are equal i.e.,
${ }^{n} C_{r}={ }^{n} C_{n-r}$.

- $(x+y)^{n}=$ Sum of odd terms + sum of even terms.

3. Some Important Expansions.

(1) Replacing y by $-y$ in (i), we get,

$$
\begin{equation*}
(x-y)^{n}={ }^{n} C_{0} x^{n-0} \cdot y^{0}-{ }^{n} C_{1} x^{n-1} \cdot y^{1}+{ }^{n} C_{2} x^{n-2} \cdot y^{2} \ldots .+(-1)^{r}{ }^{n} C_{r} x^{n-r} \cdot y^{r}+\ldots .+(-1)^{n}{ }^{n} C_{n} x^{0} \cdot y^{\eta} \tag{ii}
\end{equation*}
$$

i.e., $(x-y)^{n}=\sum_{r=0}^{n}(-1)^{r}{ }^{n} C_{r} x^{n-r} . y^{r}$

The terms in the expansion of $(x-y)^{n}$ are alternatively positive and negative, the last term is positive or negative according as n is even or odd.
(2) Replacing x by 1 and y by x in equation (i) we get,

$$
(1+x)^{n}={ }^{n} C_{0} x^{0}+{ }^{n} C_{1} x^{1}+{ }^{n} C_{2} x^{2}+\ldots \ldots+{ }^{n} C_{r} x^{r}+\ldots \ldots+{ }^{n} C_{n} x^{n} \text { i.e., }(1+x)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{r}
$$

This is expansion of $(1+x)^{n}$ in ascending power of x.
(3) Replacing x by 1 and y by $-x$ in (i) we get,

$$
\begin{aligned}
& \quad(1-x)^{n}={ }^{n} C_{0} x^{0}-{ }^{n} C_{1} x^{1}+{ }^{n} C_{2} x^{2}-\ldots \ldots+(-1)^{r}{ }^{n} C_{r} x^{r}+\ldots .+(-1)^{n}{ }^{n} C_{n} x^{n} \text { i.e., } \\
& (1-x)^{n}=\sum_{r=0}^{n}(-1)^{r}{ }^{n} C_{r} x^{r}
\end{aligned}
$$

(4) $(x+y)^{n}+(x-y)^{n}=2\left[{ }^{n} C_{0} x^{n} y^{0}+{ }^{n} C_{2} x^{n-2} y^{2}+{ }^{n} C_{4} x^{n-4} y^{4}+\ldots \ldots.\right]$ and
$(x+y)^{n}-(x-y)^{n}=2\left[{ }^{n} C_{1} x^{n-1} y^{1}+{ }^{n} C_{3} x^{n-3} y^{3}+{ }^{n} C_{5} x^{n-5} y^{5}+\ldots \ldots.\right]$
(5) The coefficient of $(r+1)^{t h}$ term in the expansion of $(1+x)^{n}$ is ${ }^{n} C_{r}$.
(6) The coefficient of x^{r} in the expansion of $(1+x)^{n}$ is ${ }^{n} C_{r}$.

Note: If n is odd, then $(x+y)^{n}+(x-y)^{n}$ and $(x+y)^{n}-(x-y)^{n}$, both have the same number of terms equal to $\left(\frac{n+1}{2}\right)$.

If n is even, then $(x+y)^{n}+(x-y)^{n}$ has $\left(\frac{n}{2}+1\right)$ terms and $(x+y)^{n}-(x-y)^{n}$ has $\frac{n}{2}$ terms.

4. General Term.

$(x+y)^{n}={ }^{n} C_{0} x^{n} y^{0}+{ }^{n} C_{1} x^{n-1} y^{1}+{ }^{n} C_{2} x^{n-2} y^{2}+\ldots . .+{ }^{n} C_{r} x^{n-r} y^{r}+\ldots .+{ }^{n} C_{n} x^{0} y^{n}$
The first term $={ }^{n} C_{0} x^{n} y^{0}$
The second term $={ }^{n} C_{1} x^{n-1} y^{1}$. The third term $={ }^{n} C_{2} x^{n-2} y^{2}$ and so on
The term ${ }^{n} C_{r} x^{n-r} y^{r}$ is the $(r+1)^{\text {th }}$ term from beginning in the expansion of $(x+y)^{n}$.
Let T_{r+1} denote the $(r+1)^{\text {th }}$ term $\therefore T_{r+1}={ }^{n} C_{r} x^{n-r} y^{r}$
This is called general term, because by giving different values to r, we can determine all terms of the expansion.
In the binomial expansion of $(x-y)^{n}, T_{r+1}=(-1)^{r}{ }^{n} C_{r} x^{n-r} y^{r}$
In the binomial expansion of $(1+x)^{n}, T_{r+1}={ }^{n} C_{r} x^{r}$
In the binomial expansion of $(1-x)^{n}, T_{r+1}=(-1)^{r}{ }^{n} C_{r} x^{r}$

Note: In the binomial expansion of $(x+y)^{n}$, the $p^{\text {th }}$ term from the end is $(n-p+2)^{\text {th }}$ term from beginning.

Important Tips

σ In the expansion of $(x+y)^{n}, n \in N$

$$
\frac{T_{r+1}}{T_{r}}=\left(\frac{n-r+1}{r}\right) \frac{y}{x}
$$

- The coefficient of x^{n-1} in the expansion of $(x-1)(x-2) \ldots \ldots .(x-n)=-\frac{n(n+1)}{2}$

The coefficient of x^{n-1} in the expansion of $(x+1)(x+2) \ldots . .(x+n)=\frac{n(n+1)}{2}$

5. Independent Term or Constant Term.

Independent term or constant term of a binomial expansion is the term in which exponent of the variable is zero.
Condition: $(n-r)[$ Power of x$]+\mathrm{r}$. [Power of y$]=0$, in the expansion of $[x+y]^{n}$.
6. Number of Terms in the Expansion of $(a+b+c)^{n}$ and $(a+b+c+d)^{n}$.
$(a+b+c)^{n}$ can be expanded as: $(a+b+c)^{n}=\{(a+b)+c\}^{n}$
$=(a+b)^{n}+{ }^{n} C_{1}(a+b)^{n-1}(c)^{1}+{ }^{n} C_{2}(a+b)^{n-2}(c)^{2}+\ldots . .+{ }^{n} C_{n} c^{n}$
$=(n+1)$ term $+n$ term $+(n-1)$ term $+\ldots+1$ term
\therefore Total number of terms $=(n+1)+(n)+(n-1)+\ldots \ldots+1=\frac{(n+1)(n+2)}{2}$.
Similarly, Number of terms in the expansion of $(a+b+c+d)^{n}=\frac{(n+1)(n+2)(n+3)}{6}$.

7. Middle Term.

The middle term depends upon the value of n.
(1) When \mathbf{n} is even, then total number of terms in the expansion of $(x+y)^{n}$ is $n+1$ (odd). So there is only one middle term i.e., $\left(\frac{n}{2}+1\right)^{\text {th }}$ term is the middle term. $T_{\left[\frac{n}{2}+1\right]}={ }^{n} C_{n / 2} x^{n / 2} y^{n / 2}$
(2) When \mathbf{n} is odd, then total number of terms in the expansion of $(x+y)^{n}$ is $n+1$ (even). So, there are two middle terms i.e., $\left(\frac{n+1}{2}\right)^{\text {th }}$ and $\left(\frac{n+3}{2}\right)^{\text {th }}$ are two middle terms. $T_{\left(\frac{n+1}{2}\right)}={ }^{n} C_{\frac{n-1}{2}} x^{\frac{n+1}{2}} y^{\frac{n-1}{2}}$ and $T_{\left(\frac{n+3}{2}\right)}={ }^{n} C_{\frac{n+1}{2}} x^{\frac{n-1}{2}} y^{\frac{n+1}{2}}$

Online Test

Note: When there are two middle terms in the expansion then their binomial coefficients are equal.
Binomial coefficient of middle term is the greatest binomial coefficient.

8. To Determine a Particular Term in the Expansion.

In the expansion of $\left(x^{\alpha} \pm \frac{1}{x^{\beta}}\right)^{n}$, if x^{m} occurs in T_{r+1}, then r is given by $n \alpha-r(\alpha+\beta)=m \Rightarrow r=\frac{n \alpha-m}{\alpha+\beta}$
Thus in above expansion if constant term which is independent of x , occurs in T_{r+1} then r is determined by
$n \alpha-r(\alpha+\beta)=0 \Rightarrow r=\frac{n \alpha}{\alpha+\beta}$

9. Greatest Term and Greatest Coefficient.

(1) Greatest term: If T_{r} and T_{r+1} be the $r^{\text {th }}$ and $(r+1)^{\text {th }}$ terms in the expansion of $(1+x)^{n}$, then
$\frac{T_{r+1}}{T_{r}}=\frac{{ }^{n} C_{r} x^{r}}{{ }^{n} C_{r-1} x{ }^{r-1}}=\frac{n-r+1}{r} x$
Let numerically, T_{r+1} be the greatest term in the above expansion. Then $T_{r+1} \geq T_{r}$ or $\frac{T_{r+1}}{T_{r}} \geq 1$

$$
\begin{equation*}
\therefore \frac{n-r+1}{r}|x| \geq 1 \quad \text { or } r \leq \frac{(n+1)}{(1+|x|)}|x| \tag{i}
\end{equation*}
$$

Now substituting values of n and x in (i), we get $r \leq m+f$ or $r \leq m$

Where m is a positive integer and f is a fraction such that $0<f<1$.
When n is even T_{m+1} is the greatest term, when n is odd T_{m} and T_{m+1} are the greatest terms and both are equal.

Online Test

Short cut method: To find the greatest term (numerically) in the expansion of $(1+x)^{n}$.
(i) Calculate $\mathrm{m}=\left|\frac{x(n+1)}{x+1}\right|$
(ii) If m is integer, then T_{m} and T_{m+1} are equal and both are greatest term.
(iii) If m is not integer, there $T_{[m]+1}$ is the greatest term, where [.] denotes the greatest integral part.
(2) Greatest coefficient
(i) If n is even, then greatest coefficient is ${ }^{n} C_{n / 2}$
(ii) If n is odd, then greatest coefficient are ${ }^{n} C_{\frac{n+1}{2}}$ and ${ }^{n} C_{\frac{n+3}{2}}$

Important Tips

G For finding the greatest term in the expansion of $(x+y)^{n}$. we rewrite the expansion in this form $(x+y)^{n}=x^{n}\left[1+\frac{y}{x}\right]^{n}$.

Greatest term in $(\mathrm{x}+\mathrm{y})^{\mathrm{n}}=x^{n}$. Greatest term in $\left(1+\frac{y}{x}\right)^{n}$

10. Properties of Binomial Coefficients

In the binomial expansion of $(1+x)^{n},(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots .+{ }^{n} C_{r} x^{r}+\ldots .+{ }^{n} C_{n} x^{n}$. Where ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2}, \ldots \ldots,{ }^{n} C_{n}$ are the coefficients of various powers of x and called binomial coefficients, and they are written as $C_{0}, C_{1}, C_{2}, \ldots . . C_{n}$.

Hence, $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots . .+C_{r} x^{r}+\ldots . .+C_{n} x^{n}$
(1) The sum of binomial coefficients in the expansion of $(1+x)^{n}$ is 2^{n}.

Putting $x=1$ in (i), we get $2^{n}=C_{0}+C_{1}+C_{2}+\ldots . .+C_{n}$
(2) Sum of binomial coefficients with alternate signs: Putting $x=-1$ in (i)

We get, $0=C_{0}-C_{1}+C_{2}-C_{3}+\ldots \ldots$

Testprep Kart

(3) Sum of the coefficients of the odd terms in the expansion of $(1+x)^{n}$ is equal to sum of the coefficients of even terms and each is equal to 2^{n-1}.

From (iii), we have $C_{0}+C_{2}+C_{4}+\ldots . .=C_{1}+C_{3}+C_{5}+\ldots \ldots .$.
i.e., sum of coefficients of even and odd terms are equal.

From (ii) and (iv), $C_{0}+C_{2}+C_{4}+\ldots . .=C_{1}+C_{3}+C_{5}+\ldots . .=2^{n-1}$
(4) ${ }^{n} C_{r}=\frac{n}{r}{ }^{n-1} C_{r-1}=\frac{n}{r} \cdot \frac{n-1}{r-1}{ }^{n-2} C_{r-2}$ and so on.
(5) Sum of product of coefficients: Replacing x by $\frac{1}{x}$ in (i) we get $\left(1+\frac{1}{x}\right)^{n}=C_{0}+\frac{C_{1}}{x}+\frac{C_{2}}{x^{2}}+\ldots \frac{C_{n}}{x^{n}}+\ldots$. (vi)

Multiplying (i) by (vi), we get $\frac{(1+x)^{2 n}}{x^{n}}=\left(C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots\right)\left(C_{0}+\frac{C_{1}}{x}+\frac{C_{2}}{x^{2}}+\ldots ..\right)$
Now comparing coefficient of x^{r} on both sides.

We get, ${ }^{2 n} C_{n+r}=C_{0} C_{r}+C_{1} C_{r+1}+\ldots \ldots C_{n-r} \cdot C_{n}$
(6) Sum of squares of coefficients: Putting $r=0$ in (vii), we get ${ }^{2 n} C_{n}=C_{0}^{2}+C_{1}^{2}+\ldots \ldots C_{n}^{2}$
(7) ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$

11. An Important Theorem.

If $(\sqrt{A}+B)^{n}=I+f$ where I and n are positive integers, n being odd and $0 \leq f<1$ then $(I+f) \cdot f=K^{n}$ where $A-B^{2}=K>0$ and $\sqrt{A}-B<1$.

Note: If n is even integer then $(\sqrt{A}+B)^{n}+(\sqrt{A}-B)^{n}=I+f+f^{\prime}$

Hence L.H.S. and I are integers.
$\therefore f+f^{\prime}$ is also integer; $\Rightarrow f+f^{\prime}=1 ; ~ \therefore f^{\prime}=(1-f)$
Hence $(I+f)(1-f)=(I+f) f^{\prime}=(\sqrt{A}+B)^{n}(\sqrt{A}-B)^{n}=\left(A-B^{2}\right)^{n}=K^{n}$.

12. Multinomial Theorem (For positive integral index).

If n is positive integer and $a_{1}, a_{2}, a_{3}, \ldots . a_{n} \in C$ then

$$
\left(a_{1}+a_{2}+a_{3}+\ldots+a_{m}\right)^{n}=\sum \frac{n!}{n_{1}!n_{2}!n_{3}!\ldots n_{m}!} a_{1}^{n_{1}} a_{2}^{n_{2}} \ldots a_{m}^{n_{m}}
$$

Where $n_{1}, n_{2}, n_{3}, \ldots . . n_{m}$ are all non-negative integers subject to the condition, $n_{1}+n_{2}+n_{3}+\ldots . . n_{m}=n$.
(1) The coefficient of $a_{1}^{n_{1}} \cdot a_{2}^{n_{2}} \ldots . . a_{m}^{n_{m}}$ in the expansion of $\left(a_{1}+a_{2}+a_{3}+\ldots . a_{m}\right)^{n}$ is $\frac{n!}{n_{1}!n_{2}!n_{3}!\ldots . n_{m}!}$
(2) The greatest coefficient in the expansion of $\left(a_{1}+a_{2}+a_{3}+\ldots a_{m}\right)^{n}$ is $\frac{n!}{(q!)^{m-r}[(q+1)!]^{r}}$

Where q is the quotient and r is the remainder when n is divided by m .
(3) If n is +ve integer and $a_{1}, a_{2}, \ldots . . a_{m} \in C, a_{1}^{n_{1}} \cdot a_{2}^{n_{2}}$ \qquad .$a_{m}^{n_{m}}$ then coefficient of x^{r} in the expansion of $\left(a_{1}+a_{2} x+\ldots . . a_{m} x^{m-1}\right)^{n}$ is $\sum \frac{n!}{n_{1}!n_{2}!n_{3}!\ldots . . n_{m}!}$
Where $n_{1}, n_{2} \ldots . . n_{m}$ are all non-negative integers subject to the condition: $n_{1}+n_{2}+\ldots . . n_{m}=n$ and $n_{2}+2 n_{3}+3 n_{4}+\ldots+(m-1) n_{m}=r$.
(4) The number of distinct or dissimilar terms in the multinomial expansion $\left(a_{1}+a_{2}+a_{3}+\ldots . a_{m}\right)^{n}$ is ${ }^{n+m-1} C_{m-1}$.

13. Binomial Theorem for any Index.

Statement: $(1+x)^{n}=1+n x+\frac{n(n-1) x^{2}}{2!}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots .+\frac{n(n-1) \ldots \ldots .(n-r+1)}{r!} x^{r}+\ldots$ terms up to ∞
When n is a negative integer or a fraction, where $-1<x<1$, otherwise expansion will not be possible.
If $x<1$, the terms of the above expansion go on decreasing and if x be very small a stage may be reached when we may neglect the terms containing higher power of x in the expansion, then $(1+x)^{n}=1+n x$.

Important Tips

Expansion is valid only when $-1<x<1$.

- $\quad{ }^{n} C_{r}$ cannot be used because it is defined only for natural number, so ${ }^{n} C_{r}$ will be written as $\frac{(n)(n-1) \ldots \ldots(n-r+1)}{r!}$
๑ The number of terms in the series is infinite.
If first term is not 1 , then make first term unity in the following way, $(x+y)^{n}=x^{n}\left[1+\frac{y}{x}\right]^{n}$, if $\left|\frac{y}{x}\right|<1$.

General term: $T_{r+1}=\frac{n(n-1)(n-2) \ldots \ldots .(n-r+1)}{r!} x^{r}$

Some important expansions:

(i) $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\ldots \ldots .+\frac{n(n-1)(n-2) \ldots \ldots .(n-r+1)}{r!} x^{r}+\ldots \ldots$.
(ii) $(1-x)^{n}=1-n x+\frac{n(n-1)}{2!} x^{2}-\ldots \ldots .+\frac{n(n-1)(n-2) \ldots \ldots .(n-r+1)}{r!}(-x)^{r}+\ldots \ldots$.
(iii) $(1-x)^{-n}=1+n x+\frac{n(n+1)}{2!} x^{2}+\frac{n(n+1)(n+2)}{3!} x^{3}+\ldots \ldots+\frac{n(n+1) \ldots \ldots(n+r-1)}{r!} x^{r}+\ldots \ldots$
(iv) $(1+x)^{-n}=1-n x+\frac{n(n+1)}{2!} x^{2}-\frac{n(n+1)(n+2)}{3!} x^{3}+\ldots . .+\frac{n(n+1) \ldots \ldots .(n+r-1)}{r!}(-x)^{r}+\ldots \ldots$
(a) Replace \mathbf{n} by 1 in (iii): $(1-x)^{-1}=1+x+x^{2}+\ldots . .+x^{r}+\ldots \ldots \infty$, General term, $T_{r+1}=x^{r}$
(b) Replace \mathbf{n} by $\mathbf{1}$ in (iv): $(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots . .+(-x)^{r}+\ldots \ldots \infty$, General term, $T_{r+1}=(-x)^{r}$.
(c) Replace \mathbf{n} by $\mathbf{2}$ in (iii): $(1-x)^{-2}=1+2 x+3 x^{2}+\ldots . .+(r+1) x^{r}+\ldots . \infty$, General term, $T_{r+1}=(r+1) x^{r}$.

(d) Replace \mathbf{n} by $\mathbf{2}$ in (iv): $(1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+\ldots \ldots+(r+1)(-x)^{r}+\ldots \ldots \infty$

General term, $T_{r+1}=(r+1)(-x)^{r}$.
(e) Replace \mathbf{n} by 3 in (iii): $(1-x)^{-3}=1+3 x+6 x^{2}+10 x^{3}+\ldots . .+\frac{(r+1)(r+2)}{2!} x^{r}+\ldots \ldots \ldots \ldots$

General term, $T_{r+1}=(r+1)(r+2) / 2!\cdot x^{r}$
(f) Replace \mathbf{n} by 3 in (iv): $(1+x)^{-3}=1-3 x+6 x^{2}-10 x^{3}+\ldots .+\frac{(r+1)(r+2)}{2!}(-x)^{r}+\ldots \ldots \infty$

General term, $T_{r+1}=\frac{(r+1)(r+2)}{2!}(-x)^{r}$

14. Three / Four Consecutive terms or Coefficients

(1) If consecutive coefficients are given: In this case divide consecutive coefficients pair wise. We get equations and then solve them.
(2) If consecutive terms are given : In this case divide consecutive terms pair wise i.e. if four consecutive terms be $T_{r}, T_{r+1}, T_{r+2}, T_{r+3}$ then find $\frac{T_{r}}{T_{r+1}}, \frac{T_{r+1}}{T_{r+2}}, \frac{T_{r+2}}{T_{r+3}} \Rightarrow \lambda_{1}, \lambda_{2}, \lambda_{3}$ (say) then divide λ_{1} by λ_{2} and λ_{2} by λ_{3} and solve.

Online Test

15. Some Important Points.

(1) Pascal's Triangle:

1

$$
(x+y)^{0}
$$

11

$$
\begin{aligned}
& (x+y)^{1} \\
& (x+y)^{2} \\
& (x+y)^{3} \\
& \quad(x+y)^{4} \\
& \quad(x+y)^{5}
\end{aligned}
$$

Pascal's triangle gives the direct binomial coefficients.
Example: $(x+y)^{4}=1 x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}$

(2) Method for finding terms free from radical or rational terms in the expansion of

$\left(\boldsymbol{a}^{1 / p}+\boldsymbol{b}^{1 / q}\right)^{N} \forall \boldsymbol{a}, \boldsymbol{b} \in$ prime numbers: Find the general term $T_{r+1}={ }^{N} C_{r}\left(a^{1 / p}\right)^{N-r}\left(b^{1 / q}\right)^{r}={ }^{N} C_{r} a^{\frac{N-r}{p}} \cdot b^{\frac{r}{q}}$ Putting the values of $0 \leq r \leq N$, when indices of a and b are integers.

Note: Number of irrational terms $=$ Total terms - Number of rational terms.

16. First Principle of Mathematical Induction.

The proof of proposition by mathematical induction consists of the following three steps:
Step I: (Verification step): Actual verification of the proposition for the starting value " l "
Step II: (Induction step): Assuming the proposition to be true for " k ", $k \geq i$ and proving that it is true for the value $(k+1)$ which is next higher integer.
Step III: (Generalization step): To combine the above two steps
Let $p(n)$ be a statement involving the natural number n such that
(i) $p(1)$ is true i.e. $p(n)$ is true for $n=1$.
(ii) $p(m+1)$ is true, whenever $p(m)$ is true i.e. $p(m)$ is true $\Rightarrow p(m+1)$ is true.

Then $p(n)$ is true for all natural numbers n.

17. Second Principle of Mathematical Induction.

The proof of proposition by mathematical induction consists of following steps:
Step I: (Verification step): Actual verification of the proposition for the starting value i and $(i+1)$.
Step II: (Induction step) : Assuming the proposition to be true for $k-1$ and k and then proving that it is true for the value $k+1 ; k \geq i+1$.
Step III: (Generalization step): Combining the above two steps.

Let $p(n)$ be a statement involving the natural number n such that (i) $p(1)$ is true i.e. $p(n)$ is true for $n=1$ and
(ii) $p(m+1)$ is true, whenever $p(n)$ is true for all n, where $i \leq n \leq m$

Then $p(n)$ is true for all natural numbers.

For $a \neq b$, The expression $a^{n}-b^{n}$ is divisible by
(a) $a+b$ if n is even.
(b) $a-b$ is n if odd or even.

18. Some Formulae based on Principle of Induction.

For any natural number n
(i) $\sum n=1+2+3+\ldots \ldots+n=\frac{n(n+1)}{2}$
$\sum n^{2}=1^{2}+2^{2}+3^{2}+\ldots \ldots .+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
(iii) $\sum n^{3}=1^{3}+2^{3}+3^{3}+\ldots \ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}=\left(\sum n\right)^{2}$

Testprep Kart

19. Divisibility Problems.

To show that an expression is divisible by an integer
(i) If a, p, n, r are positive integers, then first of all we write $a^{p n+r}=a^{p n} \cdot a^{r}=\left(a^{p}\right)^{n} \cdot a^{r}$.
(ii) If we have to show that the given expression is divisible by c.S

Then express, $a^{p}=\left[1+\left(a^{p}-1\right]\right.$, if some power of $\left(a^{p}-1\right)$ has c as a factor.
$a^{p}=\left[2+\left(a^{p}-2\right)\right]$, if some power of $\left(a^{p}-2\right)$ has c as a factor.
$a^{p}=\left[K+\left(a^{p}-K\right)\right]$, if some power of $\left(a^{p}-K\right)$ has c as a factor.

www.testprepkart.com

20 info@testprepkart.com

