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1. Binomial Expression. 
 

An algebraic expression consisting of two terms with +ve or – ve sign between them is called a binomial 

expression. 

For example: 
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2. Binomial Theorem for Positive Integral Index. 
 

The rule by which any power of binomial can be expanded is called the binomial theorem. 

If n is a positive integer and x, Cy  then 
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Here n
nnnn CCCC ,......,, 210  are called binomial coefficients and 

!)(!

!

rnr

n
Cr

n


  for nr 0 . 

 

Important Tips 

 The number of terms in the expansion of nyx )(   are (n + 1). 

 The expansion contains decreasing power of x and increasing power of y. The sum of the powers 

of x and y in each term is equal to n. 

 The binomial coefficients ........,, 210 CCC nnn  equidistant from beginning and end are equal i.e., 

rn
n

r
n CC  . 

  nyx )(  Sum of odd terms + sum of even terms. 

 

 

 

 

 

 

 

 

 

 

 



 

 

  3 

 

 

3. Some Important Expansions. 
 

(1) Replacing y by – y in (i), we get, 

 yxCyxCyxCyxCyxCyx n
nnrrn

r
nrnnnnnnn .)1(.....)1(.......)( 022
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i.e., 



n

r

rrn
r

nrn yxCyx
0

.)1()(        .....(ii) 

The terms in the expansion of nyx )(   are alternatively positive and negative, the last term is positive or 

negative according as n is even or odd. 

 

 

(2) Replacing x by 1 and y by x in equation (i) we get, 

n
n

nr
r

nnnnn xCxCxCxCxCx  ............)1( 2
2
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0
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This is expansion of nx)1(   in ascending power of x. 

 

 

(3) Replacing x by 1 and y by – x in (i) we get, 

 n
n
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nrnnnn xCxCxCxCxCx )1(....)1(......)1( 2
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1
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0
0    i.e.,  
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(4) .......][2)()( 44
4
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0
0   yxCyxCyxCyxyx nnnnnnnn and 

.......][2)()( 55
5

33
3

11
1   yxCyxCyxCyxyx nnnnnnnn  

 

(5) The coefficient of thr )1(   term in the expansion of nx)1(   is r
nC . 

 

(6) The coefficient of rx  in the expansion of nx)1(   is r
nC . 
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Note:  If n is odd, then 
nn yxyx )()(   and

nn yxyx )()(  , both have the same number of terms equal to 

.
2

1







 n
 

 If n is even, then nn yxyx )()(   has 




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
1

2

n
 terms and 

nn yxyx )()(   has 
2

n
 terms. 

 

4. General Term. 
 

n
n

nrrn
r

nnnnnnnn yxCyxCyxCyxCyxCyx 022
2

11
1

0
0 .........)(    

The first term = 0
0 yxC nn  

The second term = 11
1 yxC nn  .  The third term = 22

2 yxC nn   and so on 

The term rrn
r

n yxC   is the thr )1(   term from beginning in the expansion of nyx )(  . 

Let 1rT  denote the (r + 1)th term  rrn
r

n
r yxCT 
 1  

This is called general term, because by giving different values to r, we can determine all terms of the 

expansion. 

In the binomial expansion of rrn
r

nr
r

n yxCTyx 
  )1(,)( 1  

In the binomial expansion of r
r

n
r

n xCTx  1,)1(  

In the binomial expansion of r
r

nr
r

n xCTx )1(,)1( 1    

 

Note:  In the binomial expansion of
nyx )(  , the pth term from the end is 

thpn )2(   term from beginning. 

 

Important Tips 

 In the expansion of Nnyx n  ,)(  

x
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 The coefficient of 1nx  in the expansion of 
2
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 The coefficient of 1nx  in the expansion of 
2
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)).....(2)(1(



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5. Independent Term or Constant Term. 
 

Independent term or constant term of a binomial expansion is the term in which exponent of the variable is 

zero. 

Condition: )( rn   [Power of x] + r. [Power of y] = 0, in the expansion of nyx ][  . 

 

 

6. Number of Terms in the Expansion of (a + b + c) n and (a + b + c + d) n. 
 

ncba )(   can be expanded as : nn cbacba }){()( 

 n
n

nnnnnn cCcbaCcbaCba   .....)()()()()( 22
2
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1

term1... term)1(  term term)1(  nnn  

 Total number of terms =
2

)2)(1(
1......)1()()1(



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Similarly, Number of terms in the expansion of 
6

)3)(2)(1(
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

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dcba n . 

 

 

7. Middle Term. 
 

The middle term depends upon the value of n. 

(1) When n is even, then total number of terms in the expansion of nyx )(   is 1n  (odd). So there is 

only one middle term i.e., 
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(2) When n is odd, then total number of terms in the expansion of nyx )(   is 1n  (even). So, there are 

two middle terms i.e.,
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Note:  When there are two middle terms in the expansion then their binomial coefficients are equal. 

Binomial coefficient of middle term is the greatest binomial coefficient. 

 

 

8. To Determine a Particular Term in the Expansion. 
 

In the expansion of

n

x
x 












 1
, if mx  occurs in 1rT , then r is given by mrn  )(    










mn
r  

Thus in above expansion if constant term which is independent of x, occurs in 1rT  then r is determined 

by 

0)(   rn  







n
r  

 

9. Greatest Term and Greatest Coefficient. 
 

(1) Greatest term: If rT  and 1rT  be the rth and thr )1(   terms in the expansion of nx)1(  , then 

x
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1 





  

Let numerically, 1rT  be the greatest term in the above expansion. Then rr TT 1  or 11 

r

r

T

T
 

  1||
1




x
r

rn
   or  ||

|)|1(

)1(
x

x

n
r




    ......(i) 

Now substituting values of n and x in (i), we get fmr   or mr   

 

Where m is a positive integer and f is a fraction such that 10  f . 

When n is even 1mT  is the greatest term, when n is odd mT  and 1mT  are the greatest terms and both are 

equal. 

 

 

 

 



 

 

  7 

 

 

Short cut method: To find the greatest term (numerically) in the expansion of nx)1(  . 

(i) Calculate m = 
1

)1(





x

nx
 

(ii) If m is integer, then mT  and 1mT  are equal and both are greatest term. 

(iii) If m is not integer, there 1][ mT  is the greatest term, where [.] denotes the greatest integral part. 

 

(2) Greatest coefficient 

(i) If n is even, then greatest coefficient is 2/n
nC  

(ii) If n is odd, then greatest coefficient are 

2

1n
nC  and 

2

3n
n C  

 

Important Tips 

 For finding the greatest term in the expansion of nyx )(  . we rewrite the expansion in this form 
n

nn

x

y
xyx 








 1)( . 

Greatest term in (x + y)n nx . Greatest term in 
n

x

y








1  

 

 

10. Properties of Binomial Coefficients. 
 

In the binomial expansion of ,)1( nx  n
n

nr
r

nnnnn xCxCxCxCCx  .........)1( 2
210 . 

Where n
nnnn CCCC ,......,,, 210  are the coefficients of various powers of x and called binomial 

coefficients, and they are written as nCCCC .....,,, 210 . 

 

Hence, n
n

r
r

n xCxCxCxCCx  ..........)1( 2
210   .....(i) 

 

(1) The sum of binomial coefficients in the expansion of nx)1(   is n2 . 

Putting 1x  in (i), we get n
n CCCC  .....2 210   .....(ii) 

(2) Sum of binomial coefficients with alternate signs : Putting 1x  in (i) 

 

We get, ......0 3210  CCCC       …..(iii) 
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(3) Sum of the coefficients of the odd terms in the expansion of nx)1(   is equal to sum of the 

coefficients of even terms and each is equal to 12 n . 

 

From (iii), we have ............. 531420  CCCCCC   ......(iv) 

i.e., sum of coefficients of even and odd terms are equal. 

 

From (ii) and (iv), 1
531420 2..........  nCCCCCC              ......(v) 

(4) 2
2

1
1

1

1
. 









 r

n
r

n
r

n C
r

n

r

n
C

r

n
C  and so on. 

 

(5) Sum of product of coefficients: Replacing x by 
x

1
 in (i) we get .......

1
1

2

21
0 










n

n

n

x

C

x

C

x

C
C

x
 

(vi) 

 

Multiplying (i) by (vi), we get 










...........)(

)1(
2

21
0

2
210

2

x

C

x

C
CxCxCC

x

x
n

n

 

Now comparing coefficient of rx  on both sides.  

 

We get, nrnrrrn
n CCCCCCC .......110

2
    .....(vii) 

 

(6) Sum of squares of coefficients: Putting 0r  in (vii), we get  22
1

2
0

2 ...... nn
n CCCC   

 

(7) r
n

r
n

r
n CCC 1

1


   
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11. An Important Theorem. 
 

If nBA )(  = fI   where I and n are positive integers, n being odd and 10  f  then nKffI  .)(  

where 2BA   = 0K  and 1 BA . 

 

Note: If n is even integer then ffIBABA nn  )()(  

 

Hence L.H.S. and I are integers. 

 ff   is also integer;   1 ff ;   )1( ff   

Hence ffIffI  )()1()(  = nn BABA )()(  = nBA )( 2  = nK . 

 

 

12. Multinomial Theorem (For positive integral index). 
 

If n is positive integer and Caaaa n ....,,, 321  then 

mn
m

nn

m

n
m aaa

nnnn

n
aaaa ...

!!...!!

!
)...( 21

21

321

321   

Where mnnnn ,.....,, 321  are all non-negative integers subject to the condition, nnnnn m  .....321 . 

(1) The coefficient of mn
m

nn
aaa ...... 21

21
 in the expansion of n

maaaa )....( 321   is  
!!....!!

!

321 mnnnn

n
 

 

(2) The greatest coefficient in the expansion of n
maaaa )....( 321   is 

rrm qq

n

])!1[()!(

!


 

Where q is the quotient and r is the remainder when n is divided by m. 

 

(3) If n is +ve integer and ,,....., 21 Caaa m  mn
m

nn
aaa .......... 21

21
then coefficient of rx  in the expansion of 

nm
m xaxaa ).....( 1

21
  is 

!!.....!!

!

321 mnnnn

n
 

Where mnnn ....., 21  are all non-negative integers subject to the condition: nnnn m  .....21  and 

rnmnnn m  )1(....32 432 . 

 

(4) The number of distinct or dissimilar terms in the multinomial expansion n
maaaa )....( 321   is 

1
1




m
mn C . 
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13. Binomial Theorem for any Index. 
 

Statement: 








   toup terms...
!

)1......()1(
....

!3

)2()1(

!2

)1(
1)1( 3

2
rn x

r

rnnn
x

nnnxnn
nxx  

When n is a negative integer or a fraction, where 11  x , otherwise expansion will not be possible. 

If 1x , the terms of the above expansion go on decreasing and if x be very small a stage may be 

reached when we may neglect the terms containing higher power of x in the expansion, then

nxx n  1)1( . 

Important Tips 

 

 Expansion is valid only when 11  x . 

 r
nC  cannot be used because it is defined only for natural number, so r

n C  will be written as 

!

)1)......(1()(

r

rnnn 
 

 The number of terms in the series is infinite. 

 If first term is not 1, then make first term unity in the following way, 
n

nn

x

y
xyx 








 1)( ,  if 1

x

y
. 

 

General term: r
r x

r

rnnnn
T

!

)1)......(2)(1(
1


  

Some important expansions: 

(i) ......
!

)1)......(2()1(
.......

!2

)1(
1)1( 2 





 rn x

r

rnnnn
x

nn
nxx  

(ii) .......)(
!

)1).....(2)(1(
.......

!2

)1(
1)1( 2 





 rn x

r

rnnnn
x

nn
nxx  

(iii) .....
!

)1)......(1(
.....

!3

)2()1(

!2

)1(
1)1( 32 








  rn x

r

rnnn
x

nnn
x

nn
nxx  

(iv) ......)(
!

)1)......(1(
.....

!3

)2)(1(

!2

)1(
1)1( 32 








  rn x

r

rnnn
x

nnn
x

nn
nxx  

(a) Replace n by 1 in (iii):   ...........1)1( 21 rxxxx , General term, r
r xT 1  

(b) Replace n by 1 in (iv):   ......)(.....1)1( 321 rxxxxx , General term, r
r xT )(1  . 

(c) Replace n by 2 in (iii):   .....)1(.....321)1( 22 rxrxxx , General term, r
r xrT )1(1  . 
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(d) Replace n by 2 in (iv):   .....)()1(......4321)1( 322 rxrxxxx  

General term, r
r xrT )()1(1  . 

(e) Replace n by 3 in (iii): rx
rr

xxxx
!2

)2()1(
.....10631)1( 323 

   ..........  

General term, r
r xrrT .!2/)2()1(1   

(f) Replace n by 3 in (iv): 


  .....)(
!2

)2()1(
.....10631)1( 323 rx

rr
xxxx  

General term, r
r x

rr
T )(

!2

)2()1(
1 


  

 

 

14. Three / Four Consecutive terms or Coefficients. 
 

(1) If consecutive coefficients are given: In this case divide consecutive coefficients pair wise. We get 

equations and then solve them. 

 

(2) If consecutive terms are given : In this case divide consecutive terms pair wise i.e. if four consecutive 

terms be 321 ,,,  rrrr TTTT  then find  
3

2

2

1

1

,,








 r

r

r

r

r

r

T

T

T

T

T

T
  321 ,,   (say) then divide 1  by 2  and 2  by 3  

and solve. 
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15. Some Important Points. 
 

(1) Pascal's Triangle: 

 

1   0)( yx   

1 1   1)( yx   

1 2 1   2)( yx   

1 3 3 1  3)( yx   

1 4 6 4 1  4)( yx   

1 5 10 10 5 1  5)( yx   

 

Pascal's triangle gives the direct binomial coefficients. 

Example: 4322344 4641)( yxyyxyxxyx   

 

(2) Method for finding terms free from radical or rational terms in the expansion of 

 ba,)b(a
Nqp /1/1  prime numbers: Find the general term q

r

p

rN

r
NrqrNp

r
N

r baCbaCT .)()( /1/1
1




   

Putting the values of Nr 0 , when indices of a and b are integers. 

 

Note:  Number of irrational terms = Total terms – Number of rational terms. 

 

 

16. First Principle of Mathematical Induction. 
 

The proof of proposition by mathematical induction consists of the following three steps: 

Step I: (Verification step): Actual verification of the proposition for the starting value “i” 

Step II: (Induction step): Assuming the proposition to be true for “k”, k  i and proving that it is true for 

the value (k + 1) which is next higher integer. 

Step III: (Generalization step): To combine the above two steps 

Let p(n) be a statement involving the natural number n such that 

(i) p(1) is true i.e. p(n) is true for n = 1. 

(ii) p(m + 1) is true, whenever p(m) is true i.e. p(m) is true  p(m + 1) is true. 

 

Then p(n) is true for all natural numbers n. 
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17. Second Principle of Mathematical Induction. 
 

The proof of proposition by mathematical induction consists of following steps: 

Step I: (Verification step): Actual verification of the proposition for the starting value i and (i + 1). 

Step II: (Induction step) : Assuming the proposition to be true for k – 1 and k and then proving that it is 

true for the value k + 1; k  i + 1. 

Step III: (Generalization step): Combining the above two steps. 

 

Let p(n) be a statement involving the natural number n such that 

(i) p(1) is true i.e. p(n) is true for n = 1 and 

(ii) p(m + 1) is true, whenever p(n) is true for all n, where mni   

 

Then p(n) is true for all natural numbers. 

 

For a  b, The expression nn ba   is divisible by 

(a) a + b if n is even.    

(b) a – b is n if odd or even. 

 

 

18. Some Formulae based on Principle of Induction. 
 

For any natural number n 

(i) 
2

)1(
.......321




nn
nn    (ii) 

6

)12)(1(
.......321 22222 


nnn

nn  

(iii)  2
22

33333

4

)1(
......321  


 n

nn
nn  
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19. Divisibility Problems. 
 

To show that an expression is divisible by an integer 

(i) If a, p, n, r are positive integers, then first of all we write ..)(. rnprpnrpn aaaaa   

(ii) If we have to show that the given expression is divisible by c.S 

Then express, ]1(1[  pp aa , if some power of )1( pa  has c as a factor. 

)]2(2[  pp aa , if some power of )2( pa  has c as a factor. 

)],([ KaKa pp  if some power of )( Ka p   has c as a factor. 


