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1. Binomial Expression

An algebraic expression consisting of two terms with + ve or — ve sign between them is called a binomial
expression.
1

For example: (a + b),(2x — ?,y),(ﬂ2 —%),(— +isj etc.
X© X X y

2. Binomial Theorem for Positive Integral Index

The rule by which any power of binomial can be expanded is called the binomial theorem.
If nis a positive integer and x, y € C then

(X+Y)" ="Cox"Py% +"C,x" Yyt +"C, X" ?y? 4., +"C X"y L 4"C xy " +"C X0y
e, (x+yy'=>"C.x""y" . (i)
r=0
!
Here "C,, "C;, "C,,...... "C, are called binomial coefficients and "C, = _ for0<r<n.

ri(n—rn)!

Important Tips

@ The number of terms in the expansion of (x +y)' are (n + 7).
= The expansion contains decreasing power of x and increasing power of y. The sum of the powers
of x and y in each term is equal to n.

@« The binomial coefficients "C,,"C,,"C,........ equidistant from beginning and end are equal i.e,
"C, ="C

n-r *

e« (x+y)' = Sum of odd terms + sum of even terms.
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3. Some Important Expansions

(1) Replacing y by — yin (i), we get,

(X=y)" ="Cy x"0y% —"Cox" Lyt +"Cox" 2yt (D) "C X"y L+ (D) "C x y”

e, x=y)' =Y (Drrexy (ii)
r=0

The terms in the expansion of (x —y)" are alternatively positive and negative, the last term is positive or

negative according as nis even or odd.

(2) Replacing xby 1 and y by xin equation (i) we get,
n

@ +%)" ="Cox® +"Cyx! +"Cox? 4.+ "C X" . +"C X" fe, LX) =D "CX]
r=0

This is expansion of (1+x)" in ascending power of x.

(3) Replacing xby 1 and y by — xin (i) we get,
A=x)" ="Cyx® ="Cx* +"C,x% —.o 4 (D) "C X" ...+ (D" "C X" e,

LX) =3 (1) "Cx’
r=0

@) X+y)"+(x=y)" =2["Cyx"y? +"C,x"?y? +"C,x"*y* +.....]and

X+Y)" —(x—y)" =2["C,x" Yyt +"Cyx" Py + "Cox" Y +...]
(5) The coefficient of (r + 1) term in the expansion of (1 +x)" is "C, .

(6) The coefficient of x" in the expansion of (L+x)" is "C,.
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Note: If nis odd, then (X +y)" +(x —y)" and (X +y)" —(Xx —y)", both have the same number of terms equal to
n+1
> |

If nis even, then (x +y)" +(x —y)" has (%+1) terms and (X +y)" —(x =y)" has g terms.

4. General Term

(X +y)" ="Cox"y? +"Cyx" Tyt +"Cox" Py 4+ "C X"y + .+ "C x "

The first term = "C,x"y°

The second term = "C,x"'y!. The third term = "C,x"2y? and so on

r

The term "C,x""y" is the (r + 1) term from beginning in the expansion of (x +y)".

Let T,,, denote the (r + 1)"term .. T,,, ="C x""y"

r+1 r+1 —

This is called general term, because by giving different values to r, we can determine all terms of the
expansion.

In the binomial expansion of (x —y)", T,,, =(-1)" "C,x""y"

In the binomial expansion of 1 +x)",T,,, ="C,x"

v ir+l T

In the binomial expansion of (1 —x)", T,,; =(-1)' "C,x"

Note: In the binomial expansion of (X +¥)", the pt" term from the end is (N — p + 2)™ term from beginning.

Important Tips
@ In the expansion of (x+y)",neN
T _ (n —r +1]l
T, B r X
+ The coefficient of x"* in the expansion of (x —1)(x - 2).....( x —n) = —_”(”2+ D)
@ The coefficient of x"* in the expansion of (x +1)(x +2)...(x +n) = n(n2+ )
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5. Independent Term or Constant Term

Independent term or constant term of a binomial expansion is the term in which exponent of the variable is
zero.
Condition: (n—r) [Power of x] + r. [Power of y] = 0, in the expansion of[x +y]".

6. Number of Terms in the Expansionof (a+b+c)"and(a+b+c+d)".

(@+b+c)" can be expanded as: (@+b +c)" ={(a+b)+c}"
=(a+h)" +"C,(a+hb)" ()" +"C,(@+b)"?()* +....+"C, c"
=(Mn+1)term+nterm+(h—Lterm—+... + 1term

_(M+D)0+2)

. Total number of terms =(n+1)+(N)+( —=1) +...... +1 >

Similarly, Number of terms in the expansion of (@a+b +c +d)" = (+D J(; 2)(0 +3) .

7. Middle Term

The middle term depends upon the value of n.

(1) When n is even, then total number of terms in the expansion of (x +y)" is n+1 (odd). So there is

th
only one middle term i.e,, (%-‘rlj term is the middle term. T[n J ="C,,x"2y"?
—+1

+
2

(2) When n is odd, then total number of terms in the expansion of (x +y)" is n+1 (even). So, there are
th th n+l n-1
two middle terms i.e,, (n_+1} and (Ej are two middle terms. T, ,, ="C,,x 2y 2 and
2 2 (W T
n1on+
T(ﬂj ="Cpux 2y ?
2 2
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Note: When there are two middle terms in the expansion then their binomial coefficients are equal.

Binomial coefficient of middle term is the greatest binomial coefficient.

8. To Determine a Particular Term in the Expansion

nNa—m

a+pf

n
In the expansion of(x“ J_rxiﬁ) ,if x™ occursinT,,,, thenris given by na—r(@+f)=m = r=

Thus in above expansion if constant term which is independent of x, occurs in T,,, then ris determined
by

Na

a+pf

na-rla+p)=0=r-=

9. Greatest Term and Greatest Coefficient

(1) Greatest term: If T, and T,,, be the r" and (r+1)™ terms in the expansion of (1 + x)", then
n r
w1 CXt on-r+1 «

T
T, "C,x" r

r+1 =

. . . T
Let numerically, T,,; be the greatest term in the above expansion. Then T,,; >T, or _lr_—*l >1
r

n—r+1| x|>1 or r§M| X|
@+ x])

Now substituting values of n and x in (i), we get r<m+f or r<m

Where m is a positive integer and f is a fraction such that 0 < f <1.
When nis even T, is the greatest term, when nisodd T, and T,,,; are the greatest terms and both are

equal.

wr v
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Short cut method: To find the greatest term (numerically) in the expansion of (1+x)".

x(h+1)

(i) Calculate m =
X+1

(i) If m is integer, then T, and T, are equal and both are greatest term.

(iii) If m is not integer, there Ty, is the greatest term, where [.] denotes the greatest integral part.

(2) Greatest coefficient
(i) If n is even, then greatest coefficient is "C,,,

(i) If n is odd, then greatest coefficient are "C,,; and "C,,;
2 2

Important Tips

= For finding the greatest term In the expansion of (x +y)". we rewrite the expansion In this form

x+y) = x"[l+l}n .
X

Greatest term in (x + y)" = x". Greatest term in [1 +1J
X

10. Properties of Binomial Coefficients

In the binomial expansion of @+x)", (L +X)" ="Cy +"C;x +"C,x? + ... + "C, X" + ...+ "C,x".
Where "C,, "C,, "C,,......, "C, are the coefficients of various powers of x and called binomial

coefficients, and they are written as C,,C,,C,,.....C,,.
Hence, 1 +x)" =Cy +C; X +C,x* +..... +C,x" +....+C x" .. (i)
(1) The sum of binomial coefficients in the expansion of (L+x)" is 2".

Putting x =1 in (i), we get 2" =C, +C, +C, +....+C, ... (ii)

(2) Sum of binomial coefficients with alternate signs : Putting x =-1 in (i)

Weget, 0=C,-C, +C, —C, +...... (1))
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(3) Sum of the coefficients of the odd terms in the expansion of (1 + x)" is equal to sum of the

coefficients of even terms and each is equal to 2"*.

From (i) and (iv), C; +C, +C, +.....=C; +C; +Cg +....=2""* . v)

En—l

"“2C,_, and so on.
rr-1

@ "C,=1"7C,, =

(5) Sum of product of coefficients: Replacing x by 1 in (i) we get (1 +lj =Cy +—
X X

(vi)

2n
Multiplying (i) by (vi), we get @+ )n() =(Cy +Cx +C,x% +...u. )(C0 Rt St
X X X

Now comparing coefficient of x" on both sides.

We get, *"C,,, =C,C, +C,C,,, +....C,_,.C, .. (vii)

n+r

(6) Sum of squares of coefficients: Putting r =0 in (vii), we get 2"C, =CZ2 + C?

(7) "C, +"C,, =""'C,

wr v
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11. An Important Theorem

If WA +B)'= I+f whereIand n are positive integers, n being odd and 0 < f <1 then (I +f). f = K"
where A—B? = K>0 and+A-B<L1.

Note: If n is even integer then (VA +B)" + WA —=B)" =1+ f + f'

Hence L.H.S. and I are integers.
. f+f"isalsointeger; =>f+f'=1; .. f'=1-f)

Hence (1+ f)l—f)=(1+ f)f' = (A +B)"(JA -B)"= (A-B?)" =K".

12. Multinomial Theorem (For positive integral index)

If n is positive integer and a,,a,,a,,....a, € C then

n!
atay’..ap

@ +a,+a; +..+a,)" =y — :
" Z:n1!n2!n3!...nm! ' "

Where n;,n,,n,,.....n, are all non-negative integers subject to the condition, n, +n, +n; +....n, =n.
- . . . n!
(1) The coefficient of a;*.ay’.....aq" in the expansion of (3, +a, +a; +....a,)" is
n'n,Ingt...n,!
h. .. . . n!
(2) The greatest coefficient in the expansion of (a, +a, +a, +....a,,)" is
’ i N O I R
Where q is the quotient and r is the remainder when n is divided by m.
(3)If nis +ve integer and a;,a,,....a, €C, a;* .2y ......... a;m then coefficient of x" in the expansion of

Where n,,n,.....n,, are all non-negative integers subject to the condition: n, +n, +....n, =n and

n, +2n; +3n, +...+M-n, =r.

(4) The number of distinct or dissimilar terms in the multinomial expansion (a; +a, +a; +....a,,)" is

n+m-1
C..i-
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13. Binomial Theorem for any Index

nh—-1x*> n(h-1)(nh—2) nn—1).....(n—r+1)
TR 2 X3 4o+ -

Statement: (1+x)" =1+nx +

When n is a negative integer or a fraction, where—1 < x <1, otherwise expansion will not be possible.

If x <1, the terms of the above expansion go on decreasing and if x be very small a stage may be
reached when we may neglect the terms containing higher power of x in the expansion, then
@L+x)"=1+nx.

x" +...termsup too

Important Tips
@ Expansion is valid only when-1<x <1.
& "C, cannot be used because it is defined only for natural number, so "C, will be written as

Mhnh-2)...(n-r+1)
r!
& The number of terms in the series is infinite.

y

& If first term is not 1, then make first term unity in the following way, (x +y)" = x“[1+l} . if
X X

<1.

_nn-Dn-2)...... (n—r+1)Xr

r+1 —

General term: T

r!
Some important expansions:
(i) (1+x)”=1+nx+mx2+ ....... +n(n—1)(n—2i; """ (=r+D) ey
(i) @ x)" =1-nx +$x2 M- _Zr). """ O D) v

(i) @=x)"=1+nx +

n(n +1)X2 N nn+1)(n+ 2)X3 .
[ 3! r!

nin +1) nin+1)n+2) nn+1)....n+r-1
> x? — Y X3 4+ -

(iv) @+x)"=1-nx+ =x)" +......

(a) Replace n by 1 in (jii):(1—x) " =1+ X +x* +..... + X" +......0, General term, T,,; = x"

(b) Replace n by 1in (iv):(1+x) " =1-x+x? —=x® +..... +(-X)" +......00, General term, T, =(-x)".

(c) Replace n by 2 in (iii):(1 —X)? =1+ 2x +3x? +.....+(r + )x" +.....0, General term, T

r+1 :(r + 1)Xr'

w v

10

.O 0‘ é\ k rt
g\ www.testprepkart.com
en Q" o]} |
info@testprepkart.com

€ +91-8800123492



e elEle] Kart

Knowledge.

(d) Replace n by 2 in (iv): 1+ x)? =1-2x+3x2 —4X* + ...+ (T +1)(=X)" +.....0

General term, T,,; =(r +1)(-x)".

(e) Replace n by 3 in (iii): (1 - x)® =1+3x +6x? +10x> +..... T

General term, T r+1)@r+2)/21.x"

r+1 =

(f) Replace n by 3 in (iv): (1 +x)° =1-3x +6x% -10x% +..... +W(—x)r + .00

General term, T,,, :W(—x)r

14. Three / Four Consecutive terms or Coefficients

(1) If consecutive coefficients are given: In this case divide consecutive coefficients pair wise. We get
equations and then solve them.

(2) If consecutive terms are given : In this case divide consecutive terms pair wise i.e. if four consecutive

termsbe T,,T,,;,T,,,, T,.3 then find Lhﬂ—” = A4, 4,, 4, (say) thendivide A, by 4, and A, by 4,

ro fr+ly Tr+20 'r43

r+1 Tr+2 Tr+3
and solve.
11
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15. Some Important Points

(1) Pascal’s Triangle:

1 (x +y)°

1 1 (X +y)

1 2 1 (x +y)*

1 3 31 (x +y)?

1 4 6 4 1 x+y)!

1 5 10 10 5 1 (X +y)

Pascal's triangle gives the direct binomial coefficients.

Example: (x +Yy)* =1x* +4x3y +6x2y? +4xy? +y*

(2) Method for finding terms free from radical or rational terms in the expansion of
N-r r

@''® +b*9)N v a, b e prime numbers: Find the general term T,,, =NC,(@"/?)" " (b*/%) =NC,a P b*?

Putting the values of 0 <r < N, when indices of a and b are integers.

Note: Number of irrational terms = Total terms — Number of rational terms.

16. First Principle of Mathematical Induction

The proof of proposition by mathematical induction consists of the following three steps:

Step I: (Verification step): Actual verification of the proposition for the starting value "/’

Step II: (Induction step): Assuming the proposition to be true for “K", k> /and proving that it is true for
the value (k + 1) which is next higher integer.

Step III: (Generalization step): To combine the above two steps

Let p(n) be a statement involving the natural number n such that

(i) p(1) is true Le. p(n) is true for n = 1.

(i) p(m + 1) is true, whenever p(m) is true i.e. p(m) is true = p(m + 1) is true.

Then p(n) is true for all natural numbers n.
12
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17. Second Principle of Mathematical Induction

The proof of proposition by mathematical induction consists of following steps:

Step I: (Verification step): Actual verification of the proposition for the starting value 7and (/ + 1).

Step II: (Induction step) : Assuming the proposition to be true for k-1 and kand then proving that it is

true for the value £+ 1; k> 7+ 1.
Step III: (Generalization step): Combining the above two steps.

Let p(n) be a statement involving the natural number 7 such that
(i) p(1) is true Le. p(n) is true for n=1 and

(i) p(m + 1) is true, whenever p(n) is true for all n, where i<n<m
Then p(n) is true for all natural numbers.

For a= b, The expression a" —b" is divisible by

(@) a + bif nis even.
(b) @a— bis nif odd or even.

18. Some Formulae based on Principle of Induction

For any natural number n

(i) Zn=1+2+3+ ....... +n (i)

Zn2=12+22+32+ ....... +n2:w

2 2
(i) D on®=1°+2%+3% + ... +n3=M=(Z:n)2
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19. Divisibility Problems

To show that an expression is divisible by an integer

(i) If a p, n, rare positive integers, then first of all we write aP™"" =aP".a" =(a")".a".
(ii) If we have to show that the given expression is divisible by ¢S

Then express, a? =[1+(@" —1], if some power of (@ —1) has cas a factor.

aP =[2+(@" —2)], if some power of (@’ —2) has cas a factor.

aP =[K + (@ —K)], if some power of (@’ — K) has cas a factor.
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