

Matrices

Table of Content

1. Definition.
2. Order of a matrix.
3. Equality of matrices.
4. Types of matrices.
5. Addition and subtraction of matrices.
6. Scalar multiplication of matrices.
7. Multiplication of matrices.
8. Positive integral powers of a matrix.
9. Matrix polynomial.
10. Transpose of a matrix.
11. determinants of a matrix.
12. Special types of matrices.
13. Adjoint of a square matrix.
14. Inverse of a matrix.
15. Elementary transformation or Elementary operations of a matrix.
16. Elementary matrix.
17. Rank of matrix.
18. Echelon form of a matrix.

www.testprepkart.com
[20 info@testprepkart.com
(C) $+91-8800123492$
19. System of simultaneous linear equations.
20. Solution of a non-homogeneous system of linear equations.
21. Cayley-Hamilton theorem.
22. Geometrical transformations.
23. Matrices of rotations of axes.

1. Definition

A rectangular arrangement of numbers (which may be real or complex numbers) in rows and columns, is called a matrix. This arrangement is enclosed by small () or big [] brackets. The numbers are called the elements of the matrix or entries in the matrix. A matrix is represented by capital letters A, B, C etc. and its elements by small letters a, b, c, x, y etc. The following are some examples of matrices:

$$
A=\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right], B=\left[\begin{array}{ccc}
2+i & -3 & 2 \\
1 & -3+i & -5
\end{array}\right], C=[1,4,9], \quad D=\left[\begin{array}{l}
a \\
g \\
h
\end{array}\right], \quad E=[l]
$$

2. Order of a Matrix.

A matrix having m rows and n columns is called a matrix of order $m \times n$ or simply $m \times n$ matrix (read as 'an m by n matrix). A matrix A of order $m \times n$ is usually written in the following manner

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots a_{1 j} & \ldots a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots a_{2 j} & \ldots a_{2 n} \\
\ldots . . & \ldots . . & \ldots . . & \ldots . . & \ldots . . \\
a_{i 1} & a_{i 2} & a_{i 3} & \ldots a_{i j} & \ldots a_{i n} \\
\ldots . . & \ldots . . & \ldots . . & \ldots . & \ldots . . \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots a_{m j} & \ldots a_{m n}
\end{array}\right] \text { or } A=\left[a_{i j}\right]_{m \times n}, \text { where } \begin{aligned}
& i=1,2, \ldots . . m \\
& j=1,2, \ldots . . n
\end{aligned}
$$

Here $a_{i j}$ denotes the element of $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column. Example: order of matrix $\left[\begin{array}{ccc}3 & -1 & 5 \\ 6 & 2 & -7\end{array}\right]$ is 2×3
Note: A matrix of order $m \times n$ contains $m n$ elements. Every row of such a matrix contains n elements and every column contains m elements.

3. Equality of Matrices

Two matrix A and B are said to be equal matrix if they are of same order and their corresponding elements are equal Example. If $A=\left[\begin{array}{lll}1 & 6 & 3 \\ 5 & 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right]$ are equal matrices.

Then $a_{1}=1, a_{2}=6, a_{3}=3, b_{1}=5, b_{2}=2, b_{3}=1$

4. Types of Matrices.

(1) Row matrix: A matrix is said to be a row matrix or row vector if it has only one row and any number of columns. Example: [lllll $\left.\begin{array}{lll}0 & 3\end{array}\right]$ is a row matrix of order 1×3 and [2] is a row matrix of order 1×1.
(2) Column matrix: A matrix is said to be a column matrix or column vector if it has only one column and any number of rows. Example: $\left[\begin{array}{c}2 \\ 3 \\ -6\end{array}\right]$ is a column matrix of order 3×1 and [2] is a column matrix of order 1×1. Observe that [2] is both a row matrix as well as a column matrix.
(3) Singleton matrix: If in a matrix there is only one element then it is called singleton matrix. Thus, $A=[a i j]_{m \times n}$ is a singleton matrix if $m=n=1$ Example: [2], [3], [a], [-3] are singleton matrices.
(4) Null or zero matrix: If in a matrix all the elements are zero then it is called a zero matrix and it is generally denoted by O. Thus $A=\left[a_{i j}\right]_{m \times n}$ is a zero matrix if $a_{i j}=0$ for all i and j.

Example: $[0],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0\end{array}\right]$ are all zero matrices, but of different orders.
(5) Square matrix: If number of rows and number of columns in a matrix are equal, then it is called a square matrix. Thus $A=\left[a_{i j}\right]_{m \times n}$ is a square matrix if $m=n$. Example: $\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ is a square matrix of order 3×3

Online Test

Testprep Kart

(i) If $m \neq n$ then matrix is called a rectangular matrix.
(ii) The elements of a square matrix A for which $i=j$,i.e. $a_{11}, a_{22}, a_{33}, \ldots . . a_{n n}$ are called diagonal elements and the line joining these elements is called the principal diagonal or leading diagonal of matrix A.
(iii) Trace of a matrix: The sum of diagonal elements of a square matrix. A is called the trace of matrix A , which is denoted by $\operatorname{tr} \mathrm{A}$. $\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}=a_{11}+a_{22}+\ldots a_{n n}$

Properties of trace of a matrix: Let $A=\left[a_{i i}\right]_{n \times n}$ and $B=\left[b_{i j}\right]_{n \times n}$ and λ be a scalar
(i) $\operatorname{tr}(\lambda A)=\lambda \operatorname{tr}(A)$
(ii) $\operatorname{tr}(A-B)=\operatorname{tr}(A)-\operatorname{tr}(B)$
(iii) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
(iv) $\operatorname{tr}(A)=\operatorname{tr}\left(A^{\prime}\right)$ or $\operatorname{tr}\left(A^{T}\right)$
(v) $\operatorname{tr}\left(I_{n}\right)=n$
(vi) $\operatorname{tr}(0)=0$
(vii) $\operatorname{tr}(A B) \neq \operatorname{tr} A \cdot \operatorname{tr} B$
(6) Diagonal matrix: If all elements except the principal diagonal in a square matrix are zero, it is called a diagonal matrix. Thus a square matrix $A=\left[a_{i j}\right]$ is a diagonal matrix if $a_{i j}=0$, when $i \neq j$.

Example: $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$ is a diagonal matrix of order 3×3, which can be denoted by diag [2,3, and 4]

Note: No element of principal diagonal in a diagonal matrix is zero.
\square Number of zeros in a diagonal matrix is given by $n^{2}-n$ where n is the order of the matrix.
\square A diagonal matrix of order $n \times n$ having $d_{1}, d_{2}, \ldots, d_{n}$ as diagonal elements is denoted by diag $\left[d_{1}, d_{2}, \ldots, d_{n}\right]$.

Online Test
(7) Identity matrix: A square matrix in which elements in the main diagonal are all ' 1 ' and rest are all zero is called an identity matrix or unit matrix. Thus, the square matrix $A=\left[a_{i j}\right]$ is an identity matrix, if $a_{i j}=\left\{\begin{array}{l}1, \text { if } i=j \\ 0, \text { if } i \neq j\end{array}\right.$
We denote the identity matrix of order n by I_{n}.
Example. [1], $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ are identity matrices of order 1, 2 and 3 respectively.
(8) Scalar matrix : A square matrix whose all non-diagonal elements are zero and diagonal elements are equal is called a scalar matrix. Thus, if $A=\left[a_{i j}\right]$ is a square matrix and $a_{i j}=\left\{\begin{array}{l}\alpha, \text { if } i=j \\ 0, \text { if } i \neq j\end{array}\right.$, then A is a scalar matrix.
Example: [2], $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]$ are scalar matrices of order 1, 2 and 3 respectively.

Note: Unit matrix and null square matrices are also scalar matrices.
(9) Triangular Matrix: A square matrix $\left[a_{i j}\right]$ is said to be triangular matrix if each element above or below the principal diagonal is zero. It is of two types
(i) Upper Triangular matrix: A square matrix $\left[a_{i j}\right]$ is called the upper triangular matrix, if $a_{i j}=0$ when $i>j$.

Example. $\left[\begin{array}{lll}3 & 1 & 2 \\ 0 & 4 & 3 \\ 0 & 0 & 6\end{array}\right]$ is an upper triangular matrix of order 3×3.
(ii) Lower Triangular matrix: A square matrix $\left[a_{i j}\right]$ is called the lower triangular matrix, if $a_{i j}=0$ when $i<$ j.
Example: $\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 2\end{array}\right]$ is a lower triangular matrix of order 3×3.

Online Test

Note: Minimum number of zeros in a triangular matrix is given by $\frac{n(n-1)}{2}$ where n is order of matrix.Diagonal matrix is both upper and lower triangular.
\square A triangular matrix $a=\left[a_{i j}\right]_{n \times n}$ is called strictly triangular if $a_{i j}=0$ for $1 \leq i \leq n$

5. Addition and Subtraction of Matrices

If $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{m \times n}$ are two matrices of the same order then their sum $A+B$ is a matrix whose each element is the sum of corresponding elements. i.e. $A+B=\left[a_{i j}+b_{i j}\right]_{m \times n}$
Example: If $A=\left[\begin{array}{ll}5 & 2 \\ 1 & 3 \\ 4 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 5 \\ 2 & 2 \\ 3 & 3\end{array}\right]$, then $A+B=\left[\begin{array}{ll}5+1 & 2+5 \\ 1+2 & 3+2 \\ 4+3 & 1+3\end{array}\right]=\left[\begin{array}{ll}6 & 7 \\ 3 & 5 \\ 7 & 4\end{array}\right]$

Similarly, their subtraction $A-B$ is defined as $A-B=\left[a_{i j}-b_{i j}\right]_{m \times n}$
i.e. in above example $A-B=\left[\begin{array}{ll}5-1 & 2-5 \\ 1-2 & 3-2 \\ 4-3 & 1-3\end{array}\right]=\left[\begin{array}{rr}4 & -3 \\ -1 & 1 \\ 1 & -2\end{array}\right]$

Note: Matrix addition and subtraction can be possible only when matrices are of the same order.

Properties of matrix addition: If A, B and C are matrices of same order, then
(i) $A+B=B+A$ (Commutative law)
(ii) $(A+B)+C=A+(B+C)$ (Associative law)
(iii) $A+O=O+A=A$, Where O is zero matrix which is additive identity of the matrix.
(iv) $A+(-A)=0=(-A)+A$, where $(-A)$ is obtained by changing the sign of every element of A, which is additive inverse of the matrix.
(v) $\left.\begin{array}{c}A+B=A+C \\ B+A=C+A\end{array}\right\} \Rightarrow B=C$ (Cancellation law)

6. Scalar Multiplication of Matrices.

Let $A=\left[a_{i j}\right]_{m \times n}$ be a matrix and k be a number, then the matrix which is obtained by multiplying every element of A by k is called scalar multiplication of A by k and it is denoted by $k A$.
Thus, if $A=\left[a_{i j}\right]_{m \times n}$, then $k A=A k=\left[k a_{i j}\right]_{m \times n}$. Example. If $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 1 \\ 4 & 6\end{array}\right]$, then $5 A=\left[\begin{array}{cc}10 & 20 \\ 15 & 5 \\ 20 & 30\end{array}\right]$

Properties of scalar multiplication:

If A, B are matrices of the same order and λ, μ are any two scalars then
(i) $\lambda(A+B)=\lambda A+\lambda B$
(ii) $(\lambda+\mu) A=\lambda A+\mu A$
(iii) $\lambda(\mu A)=(\lambda \mu A)=\mu(\lambda A)$
(iv) $(-\lambda A)=-(\lambda A)=\lambda(-A)$

Note: All the laws of ordinary algebra hold for the addition or subtraction of matrices and their multiplication by scalars.

7. Multiplication of Matrices.

Two matrices A and B are conformable for the product $A B$ if the number of columns in A (pre-multiplier) is same as the number of rows in B (post multiplier).Thus, if $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{n \times p}$ are two matrices of order $m \times n$ and $n \times p$ respectively, then their product $A B$ is of order $m \times p$ and is defined as
$(A B)_{i j}=\sum_{r=1}^{n} a_{i r} b_{r j}$
$=\left[\begin{array}{lll}a_{i 1} & a_{i 2} & \ldots \\ i n\end{array}\right]\left[\begin{array}{c}b_{1 j} \\ b_{2 j} \\ \vdots \\ b_{n j}\end{array}\right]=\left(\boldsymbol{t}^{\text {th }}\right.$ row of A$)\left(\boldsymbol{j}^{\text {th }}\right.$ column of $\left.B\right)$(i), where $i=1,2, \ldots, m$ and $j=1,2, \ldots p$

Now we define the product of a row matrix and a column matrix.
Let $A=\left[a_{1} a_{2} \ldots a_{n}\right]$ be a row matrix and $B=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]$ be a column matrix.
Then $A B=\left[a_{1} b_{1}+a_{2} b_{2}+\ldots .+a_{n} b_{n}\right] \quad$...(ii). Thus, from (i),
$(A B)_{i j}=$ Sum of the product of elements of $t^{\text {th }}$ row of A with the corresponding elements of $t^{\text {th }}$ column of B.

Properties of matrix multiplication

If A, B and C are three matrices such that their product is defined, then
(i) $A B \neq B A$
(ii) $(A B) C=A(B C)$
(iii) $I A=A=A I$
(iv) $A(B+C)=A B+A C$
(v) If $A B=A C \nRightarrow B=C$
(Generally not commutative)
(Associative Law)
Where I is identity matrix for matrix multiplication
(Distributive law)
(Cancellation law is not applicable)
(vi) If $A B=0 \quad$ It does not mean that $A=0$ or $B=0$, again product of two non zero matrix may be a zero matrix.

Note: If A and B are two matrices such that $A B$ exists, then $B A$ may or may not exist.
\square The multiplication of two triangular matrices is a triangular matrix.
The multiplication of two diagonal matrices is also a diagonal matrix and
$\operatorname{diag}\left(a_{1}, a_{2}, \ldots . a_{n}\right) \times \operatorname{diag}\left(b_{1}, b_{2}, \ldots . b_{n}\right)=\operatorname{diag}\left(a_{1} b_{1}, a_{2} b_{2}, \ldots . a_{n} b_{n}\right)$
\square The multiplication of two scalar matrices is also a scalar matrix.
\square If A and B are two matrices of the same order, then
(i) $(A+B)^{2}=A^{2}+B^{2}+A B+B A$
(ii) $\left(A-B^{2}\right)=A^{2}+B^{2}-A B-B A$
(iii) $(A-B)(A+B)=A^{2}-B^{2}+A B-B A$
(iv) $(A+B)(A-B)=A^{2}-B^{2}-A B+B A$
(v) $A(-B)=(-A) B=-(A B)$

8. Positive Integral Powers of a Matrix.

The positive integral powers of a matrix A are defined only when A is a square matrix. Also then $A^{2}=A \cdot A, A^{3}=A \cdot A \cdot A=A^{2} A$. Also for any positive integers m, n.
(i) $A^{m} A^{n}=A^{m+n}$
(ii) $\left(A^{m}\right)^{n}=A^{m n}=\left(A^{n}\right)^{m}$
(iii) $I^{n}=I, I^{m}=I$
(iv) $A^{0}=I_{n}$ Where A is a square matrix of order n.

Testprep Kart

9. Matrix Polynomial.

Let $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}$ be a polynomial and let A be a square matrix of order n.
Then $f(A)=a_{0} A^{n}+a_{1} A^{n-1}+a_{2} A^{n-2}+\ldots+a_{n-1} A+a_{n} I_{n}$ is called a matrix polynomial.

Example:If $f(x)=x^{2}-3 x+2$ is a polynomial and A is a square matrix, then $A^{2}-3 A+2 I$ is a matrix polynomial.

10. Transpose of a Matrix.

The matrix obtained from a given matrix A by changing its rows into columns or columns into rows is called transpose of Matrix A and is denoted by A^{T} or A^{\prime}.
From the definition it is obvious that if order of A is $m \times n$, then order of A^{T} is $n \times m$
Example. Transpose of matrix $\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right]_{2 \times 3}$ is $\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right]_{3 \times 2}$

Properties of transpose: Let A and B be two matrices then
(i) $\left(A^{T}\right)^{T}=A$
(ii) $(A+B)^{T}=A^{T}+B^{T}, A$ and B being of the same order
(iii) $(k A)^{T}=k A^{T}, k$ be any scalar (real or complex)
(iv) $(A B)^{T}=B^{T} A^{T}, A$ and B being conformable for the product $A B$
(v) $\left(A_{1} A_{2} A_{3} \ldots . . . A_{n-1} A_{n}\right)^{T}=A_{n}{ }^{T} A_{n-1}{ }^{T} \ldots \ldots . . A_{3}{ }^{T} A_{2}{ }^{T} A_{1}{ }^{T}$
(vi) $I^{T}=I$
11. Determinant of a Matrix.

If $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ be a square matrix, then its determinant, denoted by $|A|$ or $\operatorname{Det}(\mathrm{A})$ is defined as
$|A|=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

Properties of determinant of a matrix

(i) $|A|$ Exists $\Leftrightarrow A$ is square matrix
(ii) $|A B| \neq A \| B \mid$
(iii) $\left|A^{T}\right|=|A|$
(iv) $|k A|=k^{n}|A|$, If A is a square matrix of order n
(v) If A and B are square matrices of same order then $|A B|=|B A|$
(vi) If A is a skew symmetric matrix of odd order then $|A|=0$
(vii) If $A=\operatorname{diag}\left(a_{1}, a_{2}, \ldots . . a_{n}\right)$ then $|A|=a_{1} a_{2} \ldots a_{n}$
(viii) $\left.A\right|^{n} \neq A^{n} \mid, n \in N$.

12. Special Types of Matrices.

(1) Symmetric and skew-symmetric matrix
(i) Symmetric matrix: A square matrix $A=\left[a_{i j}\right]$ is called symmetric matrix if $a_{i j}=a_{j i}$ for all i_{i} jor $A^{T}=A$

Example: $\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]$

Online Test

Note: Every unit matrix and square zero matrix are symmetric matrices.
Maximum number of different elements in a symmetric matrix is $\frac{n(n+1)}{2}$
(ii) Skew-symmetric matrix: A square matrix $A=\left[a_{i j}\right]$ is called skew- symmetric matrix if $a_{i j}=-a_{j i}$ for all i, j
or $A^{T}=-A$. Example. $\left[\begin{array}{ccc}0 & h & g \\ -h & 0 & f \\ -g & -f & 0\end{array}\right]$

Note: All principal diagonal elements of a skew- symmetric matrix are always zero because for any diagonal element. $a_{i j}=-a_{i j} \Rightarrow a_{i j}=0$
\square Trace of a skew symmetric matrix is always 0 .

Properties of symmetric and skew-symmetric matrices:
(i) If A is a square matrix, then $A+A^{T}, A A^{T}, A^{T} A$ are symmetric matrices, while $A-A^{T}$ is skew- symmetric matrix.
(ii) If A is a symmetric matrix, then $-A, K A, A^{T}, A^{n}, A^{-1}, B^{T} A B$ are also symmetric matrices, where $n \in N$, $K \in R$ and B is a square matrix of order that of A
(iii) If A is a skew-symmetric matrix, then
(a) $A^{2 n}$ is a symmetric matrix for $n \in N$,
(b) $A^{2 n+1}$ is a skew-symmetric matrix for $n \in N$,
(c) $k A$ is also skew-symmetric matrix, where $k \in R$,
(d) $B^{T} A B$ is also skew- symmetric matrix where B is a square matrix of order that of A.
(iv) If A, B are two symmetric matrices, then
(a) $A \pm B, A B+B A$ are also symmetric matrices,
(b) $A B-B A$ is a skew- symmetric matrix,
(c) $A B$ is a symmetric matrix, when $A B=B A$.
(v) If $A, B \quad$ are two skew-symmetric matrices, then
(a) $A \pm B, A B-B A$ are skew-symmetric matrices,
(b) $A B+B A$ is a symmetric matrix.

(vi) If A a skew-symmetric matrix and C is a column matrix, then $C^{T} A C$ is a zero matrix.
(vii) Every square matrix A can uniquelly be expressed as sum of a symmetric and skew-symmetric matrix i.e.
$A=\left[\frac{1}{2}\left(A+A^{T}\right)\right]+\left[\frac{1}{2}\left(A-A^{T}\right)\right]$.
(2) Singular and Non-singular matrix: Any square matrix A is said to be non-singular if $|A| \neq 0$, and a square matrix A is said to be singular if $|A|=0$. Here $|A|$ (or $\operatorname{det}(A)$ or simply $\operatorname{det}|A|$ means corresponding determinant of square matrix A.
Example: $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$ then $|A|=\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=10-12=-2 \Rightarrow A$ is a non-singular matrix.
(3) Hermitian and skew-Hermitian matrix: A square matrix $A=\left[a_{i j}\right]$ is said to be hermitian matrix if $a_{i j}=\bar{a}_{j i} \forall$ i.j i.e. $A=A^{\theta}$. Example: $\left[\begin{array}{cc}a & b+i c \\ b-i c & d\end{array}\right],\left[\begin{array}{ccc}3 & 3-4 i & 5+2 i \\ 3+4 i & 5 & -2+i \\ 5-2 i & -2-i & 2\end{array}\right]$ are Hermitian matrices.

Note: If A is a Hermitian matrix then $a_{i i}=\bar{a}_{i i} \Rightarrow a_{i i}$ is real $\forall i$, thus every diagonal element of a Hermitian matrix must be real.
\square A Hermitian matrix over the set of real numbers is actually a real symmetric matrix and a square matrix, $A=\left|a_{j j}\right|$ is said to be a skew-Hermitian if $a_{i j}=-\bar{a}_{j i}, \forall i$, ji.e. $A^{\theta}=-A$.
Example: $\left[\begin{array}{cc}0 & -2+i \\ 2-i & 0\end{array}\right],\left[\begin{array}{ccc}3 i & -3+2 i & -1-i \\ 3+2 i & -2 i & -2-4 i \\ 1-i & 2-4 i & 0\end{array}\right]$ are skew-Hermitian matrices.
\square If A is a skew-Hermitian matrix, then $a_{i i}=-\bar{a}_{i i} \Rightarrow a_{i i}+\bar{a}_{i i}=0$ i.e. $a_{i i}$ must be purely imaginary or zero.
\square A skew-Hermitian matrix over the set of real numbers is actually a real skew-symmetric matrix.
(4) Orthogonal matrix: A square matrix A is called orthogonal if $A A^{T}=I=A^{T} A$ i.e. if $A^{-1}=A^{T}$ Example. $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ is orthogonal because $A^{-1}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]=A^{T}$ In fact every unit matrix is orthogonal.
(5) Idempotent matrix: A square matrix A is called an idempotent matrix if $A^{2}=A$.

Example: $\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$ is an idempotent matrix, because $A^{2}=\left[\begin{array}{ll}1 / 4+1 / 4 & 1 / 4+1 / 4 \\ 1 / 4+1 / 4 & 1 / 4+1 / 4\end{array}\right]=\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]=A$.

Online Test

Also, $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ are idempotent matrices because $A^{2}=A$ and $B^{2}=B$.
In fact every unit matrix is indempotent.
(6) Involutory matrix: A square matrix A is called an involutory matrix if $A^{2}=I$ or $A^{-1}=A$

Example: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is an involutory matrix because $A^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
In fact every unit matrix is involutory.
(7) Nilpotent matrix: A square matrix A is called a nilpotent matrix if there exists a $p \in N$ such that $A^{p}=0$
Example: $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ is a nilpotent matrix because $A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0 \quad($ Here $P=2)$
(8) Unitary matrix: A square matrix is said to be unitary, if $\bar{A}^{\prime} A=I$ since $\left|\bar{A}^{\prime}\right|=|A|$ and $\left|\bar{A}^{\prime} A\right|=\bar{A}^{\prime}| | A \mid$ therefore if $\bar{A}^{\prime} A=\mathrm{I}$, we have $\left|\bar{A}^{\prime} \| A\right|=1$
Thus the determinant of unitary matrix is of unit modulus. For a matrix to be unitary it must be nonsingular.
Hence $\bar{A}^{\prime} A=I \Rightarrow A \bar{A}^{\prime}=I$
(9) Periodic matrix: A matrix A will be called a periodic matrix if $A^{k+1}=A$ where k is a positive integer. If, however k is the least positive integer for which $A^{k+1}=A$, then k is said to be the period of A.
(10) Differentiation of a matrix: If $A=\left[\begin{array}{ll}f(x) & g(x) \\ h(x) & l(x)\end{array}\right]$ then $\frac{d A}{d x}=\left[\begin{array}{ll}f^{\prime}(x) & g^{\prime}(x) \\ h^{\prime}(x) & l^{\prime}(x)\end{array}\right]$ is a differentiation of matrix A.

Example. If $A=\left[\begin{array}{cc}x^{2} & \sin x \\ 2 x & 2\end{array}\right]$ then $\frac{d A}{d x}=\left[\begin{array}{cc}2 x & \cos x \\ 2 & 0\end{array}\right]$
(11) Submatrix : Let A be $m \times n$ matrix, then a matrix obtained by leaving some rows or columns or both, of A is called a sub matrix of A. Example: If $A^{\prime}=\left[\begin{array}{lll}2 & 1 & 0 \\ 3 & 2 & 2 \\ 2 & 5 & 3\end{array}\right]$ and $\left[\begin{array}{ll}2 & 2 \\ 5 & 3\end{array}\right]$ are sub matrices of matrix $A=\left[\begin{array}{rrrr}2 & 1 & 0 & -1 \\ 3 & 2 & 2 & 4 \\ 2 & 5 & 3 & 1\end{array}\right]$
(12) Conjugate of a matrix: The matrix obtained from any given matrix A containing complex number as its elements, on replacing its elements by the corresponding conjugate complex numbers is called

Testprep Kart

conjugate of A and is denoted by \bar{A}. Example: $A=\left[\begin{array}{ccc}1+2 i & 2-3 i & 3+4 i \\ 4-5 i & 5+6 i & 6-7 i \\ 8 & 7+8 i & 7\end{array}\right]$ then $\bar{A}=\left[\begin{array}{ccc}1-2 i & 2+3 i & 3-4 i \\ 4+5 i & 5-6 i & 6+7 i \\ 8 & 7-8 i & 7\end{array}\right]$

Properties of conjugates:

(i) $(\bar{A})=A$
(ii) $\overline{(A+B)}=\bar{A}+\bar{B}$
(iii) $\overline{(\alpha A)}=\bar{\alpha} \bar{A}, \alpha$ being any number
(iv) $(\overline{A B})=\bar{A} \bar{B}, A$ and B being conformable for multiplication.
(13) Transpose conjugate of a matrix: The transpose of the conjugate of a matrix A is called transposed conjugate of A and is denoted by A^{θ}. The conjugate of the transpose of A is the same as the transpose of the conjugate of A i.e. $\overline{\left(A^{\prime}\right)}=(\bar{A})^{\prime}=A^{\theta}$.

If $A=\left[a_{i j}\right]_{m \times n}$ then $A^{\theta}=\left[b_{j i}\right]_{n \times m}$ where $b_{j i}=\bar{a}_{i j} i . e$. the $(j, i)^{\text {th }}$ element of $A^{\theta}=$ the conjugate of $(i, j)^{t h}$ element of A.

Example. If $A=\left[\begin{array}{ccc}1+2 i & 2-3 i & 3+4 i \\ 4-5 i & 5+6 i & 6-7 i \\ 8 & 7+8 i & 7\end{array}\right]$, then $A^{\theta}=\left[\begin{array}{ccc}1-2 i & 4+5 i & 8 \\ 2+3 i & 5-6 i & 7-8 i \\ 3-4 i & 6+7 i & 7\end{array}\right]$

Properties of transpose conjugate

(i) $\left(A^{\theta}\right)^{\theta}=A$
(ii) $(A+B)^{\theta}=A^{\theta}+B^{\theta}$
(iii) $(k A)^{\theta}=\bar{K} A^{\theta}, K$ being any number
(iv) $(A B)^{\theta}=B^{\theta} A^{\theta}$

13. Adjoint of a Square Matrix.

Let $A=\left[a_{i j}\right]$ be a square matrix of order n and let $C_{i j}$ be cofactor of $a_{i j}$ in A. Then the transpose of the matrix of cofactors of elements of A is called the adjoint of A and is denoted by $\operatorname{adj} \mathrm{A}$
Thus, adj $A=\left[C_{i j}\right]^{T} \Rightarrow(\operatorname{adj} A)_{i j}=C_{j i}=$ cofactor of $a_{j i}$ in A.
If $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then $\operatorname{adj} A=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}=\left[\begin{array}{lll}C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33}\end{array}\right]$;
Where $C_{i j}$ denotes the cofactor of $a_{i j}$ in A.
Example: $A=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right], C_{11}=s, C_{12}=-r, C_{21}=-q, C_{22}=p$
$\therefore \operatorname{adj} A=\left[\begin{array}{cc}s & -r \\ -q & p\end{array}\right]^{T}=\left[\begin{array}{cc}s & -q \\ -r & p\end{array}\right]$

Note: The adjoint of a square matrix of order 2 can be easily obtained by interchanging the diagonal elements and changing signs of off diagonal elements.

