

Knowledge... Everywhere

Continuity

Table of Content

1. Introduction.
2. Continuity of a Function at a Point.
3. Continuity from Left and Right.
4. Continuity of a Function in Open and Closed Interval.
5. Continuous Function.
6. Discontinuous Function.

www.testprepkart.com

1. Introduction.

The word 'Continuous' means without any break or gap. If the graph of a function has no break, or gap or jump, then it is said to be continuous.

A function which is not continuous is called a discontinuous function.
While studying graphs of functions, we see that graphs of functions $\sin x, \mathrm{x}, \cos x, \mathrm{e}^{\mathrm{x}}$ etc. are continuous but greatest integer function [x] has break at every integral point, so it is not continuous. Similarly $\tan x, \cot x, \sec x, \frac{1}{x}$ etc. are also discontinuous function.

2. Continuity of a Function at a Point.

A function $f(x)$ is said to be continuous at a point $x=a$ of its domain iff $\lim _{x \rightarrow a} f(x)=f(a)$. i.e. a function $f(x)$ is continuous at $x=a$ if and only if it satisfies the following three conditions:
(1) $f(a)$ exists. (' a ' lies in the domain of f)
(2) $\lim _{x \rightarrow a} f(x)$ exist i.e. $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$ or R.H.L. $=$ L.H.L.
(3) $\lim _{x \rightarrow a} f(x)=f(a)$ (limit equals the value of function).

Cauchy's definition of continuity: A function f is said to be continuous at a point a of its domain D if for every $\varepsilon>0$ there exists $\delta>0$ (dependent on ε) such that $|x-a|<\delta \Rightarrow|f(x)-f(a)|<\varepsilon$.

Testprep Kart

Comparing this definition with the definition of limit we find that $f(x)$ is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)$ exists and is equal to $f(a)$ i.e., if $\lim _{x \rightarrow a^{-}} f(x)=f(a)=\lim _{x \rightarrow a+} f(x)$.

Heine's definition of continuity: A function f is said to be continuous at a point a of its domain D , converging to a , the sequence $<a_{n}>$ of the points in D converging to a , the sequence $<f\left(a_{n}\right)>$ converges to $f(a)$ i.e. $\lim a_{n}=a \Rightarrow \lim f\left(a_{n}\right)=f(a)$. This definition is mainly used to prove the discontinuity to a function.

Note: Continuity of a function at a point, we find its limit and value at that point, if these two exist and are equal, then function is continuous at that point.

Formal definition of continuity: The function $f(x)$ is said to be continuous at $x=a$, in its domain if for any arbitrary chosen positive number $\in>0$, we can find a corresponding number δ depending on \in such that $|f(x)-f(a)|<\in \forall x$ for which $0 \triangleleft x-a \mid<\delta$.

3. Continuity from Left and Right.

Function $f(x)$ is said to be
(1) Left continuous at $\mathrm{x}=\mathrm{a}$ if $\lim _{x \rightarrow a-0} f(x)=f(a)$
(2) Right continuous at $x=a$ if $\operatorname{Lim}_{x \rightarrow a+0} f(x)=f(a)$.

Thus a function $f(x)$ is continuous at a point $x=a$ if it is left continuous as well as right continuous at $x=a$.

4. Continuity of a Function in Open and Closed Interval.

Open interval: A function $f(x)$ is said to be continuous in an open interval (a, b) iff it is continuous at every point in that interval.

Note: This definition implies the non-breakable behavior of the function $f(x)$ in the interval (a, b).

Closed interval: A function $f(x)$ is said to be continuous in a closed interval $[\mathrm{a}, \mathrm{b}] \mathrm{iff}$,
(1) f is continuous in (a, b)
(2) f is continuous from the right at 'a' i.e. $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
(3) f is continuous from the left at ' b^{\prime} i.e. $\lim _{x \rightarrow b^{-}} f(x)=f(b)$.

5. Continuous Function.

(1) A list of continuous functions:

Function $\mathbf{f}(\mathbf{x})$	Interval in which $\mathbf{f}(\mathbf{x})$ is continuous
(i) \quad Constant K	$(-\infty, \infty)$
(ii) $\quad \mathrm{x}^{\mathrm{n}}$, (n is a positive integer)	$(-\infty, \infty)$
(iii) $\quad \mathrm{x}^{-\mathrm{n}}$ (n is a positive integer)	$(-\infty, \infty)-\{0\}$
(iv) $\quad \mathrm{x}-\mathrm{a} \mid$	$(-\infty, \infty)$
(v) $\quad p(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots \ldots . .+a_{n}$	$(-\infty, \infty)$
(vi) $\quad \frac{p(x)}{q(x)}$, where $\mathrm{p}(\mathrm{x})$ and $\mathrm{q}(\mathrm{x})$ are polynomial in x	$(-\infty, \infty)-\{\mathrm{x}: \mathrm{q}(\mathrm{x})=0\}$
(vii) $\sin x$	$(-\infty, \infty)$
(viii) $\cos x$	$(-\infty, \infty)$
(ix) $\tan x$	$(-\infty, \infty)-\{(2 \mathrm{n}+1) \pi / 2: \mathrm{n} \in \mathrm{I}\}$
(x) $\cot x$	$(-\infty, \infty)-\{n \pi: n \in I\}$

Online Test

Knowledge... Everywhere

(xi) $\sec x$	$(-\infty, \infty)-\{(2 n+1) \pi / 2: n \in I\}$
(xii) $\operatorname{cosec} x$	$(-\infty, \infty)-\{n \pi: n \in I\}$
(xiii) e^{x}	$(-\infty, \infty)$
(xiv) $\log _{e} x$	$(0, \infty)$

(2) Properties of continuous functions: Let $f(x)$ and $g(x)$ be two continuous functions at $x=a$. Then
(i) $c f(x)$ is continuous at $\mathrm{x}=\mathrm{a}$, where c is any constant
(ii) $f(x) \pm g(x)$ is continuous at $x=a$.
(iii) $f(x) \cdot g(x)$ is continuous at $x=a$.
(iv) $f(x) / g(x)$ is continuous at $x=a$, provided $g(a) \neq 0$.

Important Tips

\leftrightarrow A function $f(x)$ is said to be continuous if it is continuous at each point of its domain.
A function $f(x)$ is said to be everywhere continuous if it is continuous on the entire real line R i.e. $(-\infty, \infty)$. Eg. Polynomial function $e^{x}, \sin x, \cos x$, constant, $x^{n},|x-a|$ etc.
(l) Integral function of a continuous function is a continuous function.
(-) If $\mathrm{g}(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{a}$ and $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{g}(\mathrm{a})$ then (fog g$)(\mathrm{x})$ is continuous at $x=a$.
If $f(x)$ is continuous in a closed interval $[a, b]$ then it is bounded on this interval.
If $f(x)$ is a continuous function defined on $[a, b]$ such that $f(a)$ and $f(b)$ are of opposite signs, then there is atleast one value of x for which $f(x)$ vanishes. i.e. if $f(a)>0, f(b)<0 \Rightarrow \exists c \in(a, b)$ such that $f(c)=0$.
(- If $f(x)$ is continuous on $[a, b]$ and maps $[a, b]$ into $[a, b]$ then for some $x \in[a, b]$ we have $f(x)=x$.
(3) Continuity of composite function: If the function $u=f(x)$ is continuous at the point $x=a$, and the function $y=g(u)$ is continuous at the point $u=f(a)$, then the composite function $y=(g \circ f)(x)=g(f(x))$ is continuous at the point $x=a$.

6. Discontinuous Function.

(1) Discontinuous function: A function ' f ' which is not continuous at a point $x=a$ in its domain is said to be discontinuous there at. The point ' a ' is called a point of discontinuity of the function.
The discontinuity may arise due to any of the following situations.
(i) $\lim _{x \rightarrow a^{+}} f(x)$ or $\lim _{x \rightarrow a^{-}} f(x)$ or both may not exist
(ii) $\lim _{x \rightarrow a^{+}} f(x)$ as well as $\lim _{x \rightarrow a^{-}} f(x)$ may exist, but are unequal.
(iii) $\lim _{x \rightarrow a^{+}} f(x)$ as well as $\lim _{x \rightarrow a^{-}} f(x)$ both may exist, but either of the two or both may not be equal to $f(a)$.

Important Tips

A function f is said to have removable discontinuity at $\mathrm{x}=\mathrm{a}$ if $\lim _{x+a^{+}} f(x)=\lim _{x+a^{-}} f(x)$ but their common value is not equal to $f(a)$.

Such a discontinuity can be removed by assigning a suitable value to the function f at $x=a$.
If $\lim _{x \rightarrow a} f(x)$ does not exist, then we cannot remove this discontinuity. So this become a non-removable discontinuity or essential discontinuity.
(a) If f is continuous at $x=c$ and g is discontinuous at $x=c$, then
(a) $f+g$ and $f-g$ are discontinuous
(b) f.g may be continuous

If If and g are discontinuous at $x=c$, then $f+g, f-g$ and $f g$ may still be continuous.
(raint functions (domain and range consists one value only) is not a continuous function.

