

Knowledge... Everywhere

Mathematics

Continuity

www.testprepkart.com

Table of Content

- 1. Introduction.
- 2. Continuity of a Function at a Point.
- 3. Continuity from Left and Right.
- 4. Continuity of a Function in Open and Closed Interval.
- 5. Continuous Function.
- 6. Discontinuous Function.

1. Introduction.

The word 'Continuous' means without any break or gap. If the graph of a function has no break, or gap or jump, then it is said to be continuous.

A function which is not continuous is called a discontinuous function.

While studying graphs of functions, we see that graphs of functions $\sin x$, x, $\cos x$, e^x etc. are continuous but greatest integer function [x] has break at every integral point, so it is not continuous. Similarly

tan x, cot x, sec x, $\frac{1}{x}$ etc. are also discontinuous function.

2. Continuity of a Function at a Point.

A function f(x) is said to be continuous at a point x = a of its domain iff $\lim_{x \to a} f(x) = f(a)$. *i.e.* a function

- f(x) is continuous at x = a if and only if it satisfies the following three conditions:
- (1) f(a) exists. ('a' lies in the domain of f)
- (2) $\lim_{x \to a} f(x)$ exist *i.e.* $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$ or R.H.L. = L.H.L.
- (3) $\lim_{x \to a} f(x) = f(a)$ (limit equals the value of function).

Cauchy's definition of continuity: A function f is said to be continuous at a point a of its domain D if for every $\varepsilon > 0$ there exists $\delta > 0$ (dependent on ε) such that $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$.

 (\mathbf{C})

Comparing this definition with the definition of limit we find that f(x) is continuous at x = a if $\lim_{x \to a} f(x)$ exists and is equal to f(a) *i.e.*, if $\lim_{x \to a} f(x) = f(a) = \lim_{x \to a} f(x)$.

Heine's definition of continuity: A function f is said to be continuous at a point a of its domain D_i converging to a_i the sequence $\langle a_n \rangle$ of the points in D converging to a_i the sequence $\langle f(a_n) \rangle$ converges to f(a)i.e. $\lim a_n = a \Rightarrow \lim f(a_n) = f(a)$. This definition is mainly used to prove the discontinuity to a function.

Note: Continuity of a function at a point, we find its limit and value at that point, if these two exist and are equal, then function is continuous at that point.

Formal definition of continuity: The function f(x) is said to be continuous at x = a, in its domain if for any arbitrary chosen positive number $\in > 0$, we can find a corresponding number δ depending on \in such that $|f(x) - f(a)| < \epsilon \quad \forall x$ for which $0 < |x - a| < \delta$.

3. Continuity from Left and Right.

Function f(x) is said to be

(1) Left continuous at x = a if $\lim_{x \to a^{-0}} f(x) = f(a)$

(2) Right continuous at x = a if $\lim_{x \to a+0} f(x) = f(a)$.

Thus a function f(x) is continuous at a point x = a if it is left continuous as well as right continuous at x = a.

4. Continuity of a Function in Open and Closed Interval.

Open interval: A function f(x) is said to be continuous in an open interval (*a*, *b*) iff it is continuous at every point in that interval.

Note: This definition implies the non-breakable behavior of the function f(x) in the interval (*a*, *b*).

Closed interval: A function f(x) is said to be continuous in a closed interval [a, b] iff,

- (1) f is continuous in (a, b)
- (2) *f* is continuous from the right at 'a' i.e. $\lim_{x \to a} f(x) = f(a)$
- (3) *f* is continuous from the left at 'b' i.e. $\lim_{x\to b^-} f(x) = f(b)$.

5. Continuous Function.

(1) A list of continuous functions:

Function f(x)		Interval in which <i>f</i> (<i>x</i>) is continuous
(i)	Constant K	(-∞, ∞)
(ii)	x ⁿ , (<i>n</i> is a positive integer)	(-∞, ∞)
(iii)	x^{-n} (<i>n</i> is a positive integer)	$(-\infty, \infty) - \{0\}$
(iv)	x-a	$(-\infty, \infty)$
(v)	$p(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$	(−∞, ∞)
(vi)	$\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomial in x	$(-\infty, \infty) - \{x : q(x) = 0\}$
(vii)	$\sin x$	(-∞, ∞)
(viii)	$\cos x$	(-∞, ∞)
(ix)	tan x	$(-\infty, \infty) - \{(2n + 1)\pi/2 : n \in I\}$
(x)	cot x	$(-\infty, \infty) - \{n\pi : n \in I\}$

www.testprepkart.com
info@testprepkart.com
+91 - 9999001864

Testprep Kart

(xi) $\sec x$	$(-\infty, \infty) - \{(2n+1)\pi/2 : n \in I\}$
(xii) $\operatorname{cosec} x$	$(-\infty, \infty) - \{n\pi : n \in I\}$
(Xiii) e^x	(-∞, ∞)
(XiV) $\log_e x$	(0, ∞)

(2) **Properties of continuous functions:** Let f(x) and g(x) be two continuous functions at x = a. Then

(i) cf(x) is continuous at x = a, where c is any constant

(ii) $f(x) \pm g(x)$ is continuous at x = a.

(iii) f(x). g(x) is continuous at x = a.

(iv) f(x) / g(x) is continuous at x = a, provided $g(a) \neq 0$.

Important Tips

• A function f(x) is said to be continuous if it is continuous at each point of its domain.

 $\overset{\circ}{=}$ A function f(x) is said to be everywhere continuous if it is continuous on the entire real line R i.e.

 $(-\infty,\infty)$. Eg. Polynomial function e^x , $\sin x$, $\cos x$, constant, x^n , |x-a| etc.

Integral function of a continuous function is a continuous function.

- The function of the function
- If f(x) is continuous in a closed interval [a, b] then it is bounded on this interval.

☞ If f(x) is a continuous function defined on [a, b] such that f(a) and f(b) are of opposite signs, then there is atleast one value of x for which f(x) vanishes. i.e. if f(a) > 0, $f(b) < 0 \Rightarrow \exists c \in (a, b)$ such that f(c) = 0.

The function of the function

(3) **Continuity of composite function:** If the function u = f(x) is continuous at the point x = a, and the function y = g(u) is continuous at the point u = f(a), then the composite function y = (gof)(x) = g(f(x)) is continuous at the point x = a.

6. Discontinuous Function.

(1) **Discontinuous function:** A function 'f' which is not continuous at a point x = a in its domain is said to be discontinuous there at. The point 'a' is called a point of discontinuity of the function.

The discontinuity may arise due to any of the following situations.

- (i) $\lim_{x \to a^+} f(x)$ or $\lim_{x \to a^-} f(x)$ or both may not exist
- (ii) $\lim_{x \to \infty} f(x)$ as well as $\lim_{x \to \infty} f(x)$ may exist, but are unequal.
- (iii) $\lim_{x \to a^+} f(x)$ as well as $\lim_{x \to a^-} f(x)$ both may exist, but either of the two or both may not be equal to f(a).

Important Tips

☞ A function f is said to have removable discontinuity at x = a if $\lim_{x \to a} f(x) = \lim_{x \to a} f(x)$ but their common

value is not equal to f (a).

Such a discontinuity can be removed by assigning a suitable value to the function f at x = a.

 \mathcal{F} If $\lim_{x \to \infty} f(x)$ does not exist, then we cannot remove this discontinuity. So this become a non-removable

discontinuity or essential discontinuity.

- The f is continuous at x = c and g is discontinuous at x = c, then
- (a) f + g and f g are discontinuous (b) $f \cdot g$ may be continuous
- The f and g are discontinuous at x = c, then f + g, f g and fg may still be continuous.
- *The second seco*

