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1. Introduction 

 

Translation is motion along a straight line but rotation is the motion of wheels, gears, 

motors, planets, and the hands of a clock, the rotor of jet 

engines and the blades of helicopters. First figure shows a 

skater gliding across the ice in a straight line with constant 

speed. Her motion is called translation but second figure 

shows her spinning at a constant rate about a vertical axis. 

Here motion is called rotation.  

Up to now we have studied translatory motion of a point 

mass. In this chapter we will study the rotatory motion of 

rigid body about a fixed axis.  

(1) Rigid body: A rigid body is a body that can rotate with all the parts locked together and 

without any change in its shape.  

(2) System: A collection of any number of particles interacting with one another and are 

under consideration during analysis of a situation are said to form a system.  

(3) Internal forces: All the forces exerted by various particles of the system on one another 

are called internal forces. These forces are alone enable the particles to form a well-defined 

system. Internal forces between two particles are mutual (equal and opposite). 

(4) External forces: To move or stop an object of finite size, we have to apply a force on 

the object from outside. This force exerted on a given system is called an external force. 
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2. Center of Mass. 

 

Center of mass of a system (body) is a point that moves as though all the mass were 

concentrated there and all external forces were applied there. 

(1) Position vector of center of mass for n particle system: If a system consists of n 

particles of masses nmmmm ......,, 321 , whose positions vectors are 



nrrrr ........,, 321  respectively then position vector of center of mass  

   n

nn

mmmm

rmrmrmrm
r

............

............

321

332211









 

Hence the center of mass of n particles is a weighted average of the position 

vectors of n particles making up the system. 

(2) Position vector of center of mass for two particle system: 21

2211

mm

rmrm
r









  

and the center of mass lies between the particles on the line joining them. 

If two masses are equal i.e. 21 mm  , then position vector of center of mass 2

21


 


rr
r

 

(3) Important points about center of mass  

(i) The position of center of mass is independent of the co-ordinate system chosen. 

(ii) The position of center of mass depends upon the shape of the body and distribution 

of mass. 

Example: The center of mass of a circular disc is within the material of the body while that 

of a circular ring is outside the material of the body. 

(iii) In symmetrical bodies in which the distribution of mass is homogenous, the center of 

mass coincides with the geometrical center or center of symmetry of the body.  

(iv) Position of center of mass for different bodies  

 

 

 

 

 

m1 

m2 

m3 

y 

x 
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S.No.  Body Position of center of mass 

(a) Uniform hollow sphere Center of sphere 

(b) Uniform solid sphere Center of sphere 

(c) Uniform circular ring Center of ring 

(d) Uniform circular disc Center of disc 

(e) Uniform rod Center of rod 

(f) A plane lamina (Square, Rectangle, 

Parallelogram) 

Point of inter section of diagonals 

(g) Triangular plane lamina Point of inter section of medians 

(h) Rectangular or cubical block Points of inter section of diagonals 

(i) Hollow cylinder Middle point of the axis of cylinder 

(j) Solid cylinder Middle point of the axis of cylinder 

(k) Cone or pyramid On the axis of the cone at point 

distance 4

3h

 from the vertex where 

h is the height of cone 

 

(v) The center of mass changes its position only under the translatory motion. There is no 

effect of rotatory motion on center of mass of the body. 

(vi) If the origin is at the center of mass, then the sum of the moments of the masses of 

the system about the center of mass is zero i.e. 0


ii rm . 

(vii) If a system of particles of masses ,......,, 321 mmm  move with velocities ,......,, 321 vvv   

Then the velocity of center of mass i

ii
cm

m

vm
v






. 

(viii) If a system of particles of masses ,......,, 321 mmm  move with accelerations 

,......,, 321 aaa   

Then the acceleration of center of mass i

ii
cm

m

am
A






 



 

 

  6 

 

 

(ix) If 


r  is a position vector of center of mass of a system  

Then velocity of center of mass 
























......

......

321

332211

mmm

rmrmrm

dt

d

dt

rd
v cm

 

(x) Acceleration of center of mass 
























.......

.......

321

2211

2

2

2

2

mmm

rmrm

dt

d

dt

rd

dt

vd
A

cm
cm

 

(xi) Force on a rigid body 
2

2

dt

rd
MAMF cm





 

(xii) For an isolated system external force on the body is zero  

   

0











cmv
dt

d
MF

 constant


cmv . 

i.e., center of mass of an isolated system moves with uniform velocity along a straight-line 

path. 
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3. Angular Displacement. 

 

It is the angle described by the position vector r  about the axis of rotation. 

Angular displacement )( Radius

)( ntdisplacemeLinear 
)(

r

s


 

(1) Unit: radian 

(2) Dimension: ][ 000 TLM  

(3) Vector form 



 rS   

 i.e., angular displacement is a vector quantity whose direction is given by right hand rule. 

It is also known as axial vector. For anti-clockwise sense of rotation direction of   is 

perpendicular to the plane, outward and along the axis of rotation and vice-versa. 

(4) .revolution 1360radian 2   

(5) If a body rotates about a fixed axis then all the particles will have same angular 

displacement (although linear displacement will differ from particle to particle in 

accordance with the distance of particles from the axis of rotation). 

 

 

4. Angular Velocity. 

 

The angular displacement per unit time is defined as angular velocity.  

If a particle moves from P to Q in time t , t







 where   is the angular displacement. 

(1) Instantaneous angular velocity dt

d

tt


 






 0
lim

    

(2) Average angular velocity total time

ntdisplacemeangular total 
av

12

12

tt 






 

(3) Unit: Radian/sec  

(4) Dimension: ][ 100 TLM  which is same as that of frequency. 

Q 

P 
 

Q 

P 

S 

 

r 
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(5) Vector form 



 rv     [where 


v = linear velocity, 


r = radius vector] 



  Is an axial vector, whose direction is normal to the rotational plane and its direction is 

given by right hand screw rule. 

(6) 
n

T



 2

2


  [where T = time period, n = frequency] 

(7) The magnitude of an angular velocity is called the angular speed which is also 

represented by . 

 

 

5. Angular Acceleration. 

 

The rate of change of angular velocity is defined as angular acceleration. 

If particle has angular velocity 1  at time 1t  and angular velocity 2  at time 2t  then,  

Angular acceleration 12

12

tt 





 


 

(1) Instantaneous angular acceleration
2

2

0
lim

dt

d

dt

d

tt
















. 

(2) Unit: 
2/secrad  

(3) Dimension: ][ 200 TLM . 

(4) If 0 , circular or rotational motion is said to be uniform. 

(5) Average angular acceleration 12

12

tt
av









. 

(6) Relation between angular acceleration and linear acceleration



 ra  . 

(7) It is an axial vector whose direction is along the change in direction of angular velocity 

i.e. normal to the rotational plane, outward or inward along the axis of rotation (depends 

upon the sense of rotation). 
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6. Equations of Linear Motion and Rotational Motion. 

 

Linear Motion Rotational Motion 

(

1

) 

If linear acceleration is 0, u = 

constant and s = u t. 

If angular acceleration is 0,  = 

constant and t   

(

2

) 

If linear acceleration a = constant, If angular acceleration  = 

constant then 

 

(i) 
t

vu
s

2

)( 


 (i) 
t

2

)( 21 





 

 

(ii) t

uv
a




 (ii) t

12 





 

 (iii) atuv   (iii) t  12   

 

(iv) 

2

2

1
atuts 

 (iv) 

2
1

2

1
tt  

 

 (v) asuv 222   (v)  22
1

2
2   

 

(vi) 
)12(

2

1
 nausnth

 (vi) 2
)12(1


  nnth

 

(

3

) 

If acceleration is not constant, the 

above equation will not be 

applicable. In this case 

If acceleration is not constant, the 

above equation will not be 

applicable. In this case 

 

(i) dt

dx
v 

 

(ii) 
2

2

dt

xd

dt

dv
a 

 

(iii) dsavdv   

(i) dt

d
 

 

(ii) 
2

2

dt

d

dt

d 
 

 

(iii)  dd   
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7. Moment of Inertia. 

 

Moment of inertia plays the same role in rotational motion as mass plays in linear motion. 

It is the property of a body due to which it opposes any change in its state of rest or of 

uniform rotation. 

(1) Moment of inertia of a particle
2mrI  ; where r is the perpendicular distance of particle 

from rotational axis. 

(2) Moment of inertia of a body made up of number of particles (discrete distribution)  

   .......2
33

2
22

2
11  rmrmrmI  

(3) Moment of inertia of a continuous distribution of mass, treating the element of mass 

dm  at position r  as particle  

  
2rdmdI    i.e.  dmrI 2

 

 

 

 

 

 

(4) Dimension: ][ 02TML  

(5) S.I. unit:  kgm2. 

(6) Moment of inertia depends on mass, distribution of mass and on the position of axis 

of rotation. 

(7) Moment of inertia does not depend on angular velocity, angular acceleration, torque, 

angular momentum and rotational kinetic energy. 

 (8) It is not a vector as direction (clockwise or anti-clockwise) is not to be specified and 

also not a scalar as it has different values in different directions. Actually it is a tensor 

quantity. 

(9) In case of a hollow and solid body of same mass, radius and shape for a given axis, 

moment of inertia of hollow body is greater than that for the solid body because it 

depends upon the mass distribution. 

 

r 
m 

r1 
m1 

r2 

r3 

m2 

m3 

r 

dm 
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8. Radius of Gyration. 

Radius of gyration of a body about a given axis is the perpendicular distance of a point 

from the axis, where if whole mass of the body were concentrated, the body shall have the 

same moment of inertia as it has with the actual distribution of mass. 

When square of radius of gyration is multiplied with the mass of the body gives the 

moment of inertia of the body about the given axis.  

  
2MkI   Or M

I
k  

.  

Here k is called radius of gyration. 

From the formula of discrete distribution  

  
22

3

2

2

2

1 ....... nmrmrmrmrI    

If m1 = m2 = m3 = ....... = m then  

             )..........( 22

3

2

2

2

1 nrrrrmI    ........(i) 

From the definition of Radius of gyration,  

  
2MkI       ........(ii) 

By equating (i) and (ii) 

   )............( 22

3

2

2

2

1
2

nrrrrmMk    

   )..........( 22

3

2

2

2

1
2

nrrrrmnmk   [As nmM  ] 

          n

rrrr
k n

22

3

2

2

2

1 ........... 


 

Hence radius of gyration of a body about a given axis is equal to root mean square distance 

of the constituent particles of the body from the given axis. 

(1) Radius of gyration )(k  depends on shape and size of the body, position and 

configuration of the axis of rotation, distribution of mass of the body w.r.t. the axis of 

rotation. 

(2) Radius of gyration )(k  does not depends on the mass of body. 

(3) Dimension ][ 010 TLM . 

(4) S.I. unit: Meter. 

(5) Significance of radius of gyration: Through this concept a real body (particularly 

irregular) is replaced by a point mass for dealing its rotational motion. 

r4 
m 

m 
r2 

m 
m 

m 

r3 

r5 

r1 

k 
M 
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Example: In case of a disc rotating about an axis through its center of mass and 

perpendicular to its plane  

   2

)21( 2
R

M

MR

M

I
k 

 

So instead of disc we can assume a point mass M  at a distance )2/(R  from the axis of 

rotation for dealing the rotational motion of the disc. 

Note: For a given body inertia is constant whereas moment of inertia is variable. 

 

 

9. Theorem of Parallel Axes. 

 

Moment of inertia of a body about a given axis I is equal to the sum of moment of inertia 

of the body about an axis parallel to given axis and passing through center of mass of the 

body Ig and 
2Ma  where M is the mass of the body and a is the perpendicular 

distance between the two axes. 

  
2MaII g 
 

Example: Moment of inertia of a disc about an axis through its center and 

perpendicular to the plane is

2

2

1
MR

, so moment of inertia about an axis 

through its tangent and perpendicular to the plane will be  

  
2MaII g 
 

   

22

2

1
MRMRI 

 

  

2

2

3
MRI 

  

 

 

 

 

 

 

 

I IG 

R 
G 

a 

I 

G 

IG 
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10. Theorem of Perpendicular Axes. 

 

According to this theorem the sum of moment of inertia of a plane lamina about two 

mutually perpendicular axes lying in its plane is equal to its moment of inertia about an 

axis perpendicular to the plane of lamina and passing through the point of intersection of 

first two axes. 

   yxz III 
   

 

 

 

 

 

Example: Moment of inertia of a disc about an axis through its center of mass and 

perpendicular to its plane is

2

2

1
MR

, so if the disc is in x–y plane then by theorem of 

perpendicular axes 

i.e.  y
I

x
I

z
I 

 

 
DIMR 2

2

1 2 
   [As ring is symmetrical body so

DI
y

I
x

I 
] 

  

2

4

1
MRID 

 

Note: In case of symmetrical two-dimensional bodies as moment of inertia for all axes passing 

through the center of mass and in the plane of body will be same so the two axes in the plane of 

body need not be perpendicular to each other. 

 

 

 

 

 

 

 

X 

Z 

Y 

X 

Z 

Y 

O 

ID 

ID 
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11. Moment of Inertia of Two Point Masses about Their Center of 

Mass. 

 

Let 1m  and 2m  be two masses distant r from each-other and 1r  and 2r  be the distances 

of their center of mass from 1m  and 2m  respectively, then      

(1) rrr  21  

(2) 2211 rmrm   

(3) 

r
mm

m
rr

mm

m
r

21

1
2

21

2
1 and







 

(4) 
2

22
2

11 rmrmI   

(5) 

22

21

21 rr
mm

mm
I 












  [where 21

21

mm

mm




 is known as reduced mass 1m  and

2m .] 

(6) In diatomic molecules like HClH ,2  etc. moment of inertia about their center of mass 

is derived from above formula. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m1 Centre of mass 

r1 r2 

m2 
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12.  Analogy between Translatory Motion and Rotational Motion. 

 

 

Translatory motion Rotatory motion 

Mass )(m  Moment of Inertia )(I  

Linear 

momentum 

mvP   

mEP 2  

Angular Momentum IL   

IEL 2  

Force maF   Torque  I  

Kinetic 

energy 

2

2

1
mvE 

 

m

P
E

2

2


 

 2

2

1
IE 

 

I

L
E

2

2


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13.  Moment of Inertia of Some Standard Bodies about Different 

Axes. 

 

Body Axis of Rotation Figure 
Moment of  

inertia 
k 

k

2

/

R

2 

Ring  

About an axis passing 

through C.G. and 

perpendicular to its 

plane 

 

 

 

 

 

2MR

 

 

R 

 

 

1 

 

Ring 
About its diameter 

 

 

 

 

 

2

2

1
MR

 

2

R

 

2

1

 

Ring 

About a tangential axis 

in its own plane 

  

 

 

 

 

 

2

2

3
MR

 

R
2

3

 

2

3

 

Ring 

About a tangential axis 

perpendicular to its 

own plane 

 

 

 

22MR

 

R2

 
2 



 

 

  17 

 

Body Axis of Rotation Figure 
Moment of  

inertia 
k 

k

2

/

R

2 

Disc 

About an axis passing 

through C.G. and 

perpendicular to its 

plane 

 

 

 

 

  

2

2

1
MR

 

2

R

 

2

1

 

Disc 

About its Diameter 

 

 

 

 

 

 

2

4

1
MR

 

2

R

 

4

1

 

Disc 
About a tangential axis 

in its own plane 

 

 

 

 

 

2

4

5
MR

 

R
2

5

 

4

5

 

Disc 

About a tangential axis 

perpendicular to its 

own plane 

 

 

 

 

2

2

3
MR

 

R
2

3

 

2

3

 

Annular disc 

inner radius 

= R1 and 

outer radius 

= R2  

Passing through the 

center and 

perpendicular to the 

plane  

 

 

 

 

 

][
2

2
2

2
1 RR

M


 

– – 

R2 

R1 



 

 

  18 

 

Body Axis of Rotation Figure 
Moment of  

inertia 
k 

k

2

/

R

2 

Annular disc  Diameter  

 

 

 

 

 

][
4

2
2

2
1 RR

M


 

– – 

Annular disc 
Tangential and Parallel 

to the diameter 

 

 

 

 

 

]5[
4

2
2

2
1 RR

M


 

– – 

Annular disc 

Tangential and 

perpendicular to the 

plane  

 

 

 

 

]3[
2

2
2

2
1 RR

M


 

– – 

Solid cylinder About its own axis 

 

 

 

 

 

 

2

2

1
MR

 

2

R

 

2

1

 

Solid cylinder 
Tangential  

(Generator) 

 

 

 

 

 

 

2

2

3
MR

 

R
2

3

 

2

3

 

L 

R 
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Body Axis of Rotation Figure 
Moment of  

inertia 
k 

k

2

/

R

2 

Solid cylinder 

About an axis passing 

through its C.G. and 

perpendicular to its 

own axis 

 

 

 

 

 














412

22 RL
M

 

412

22 RL


 

 

Solid cylinder 

About the diameter of 

one of faces of the 

cylinder 

 

 

 

 

 














43

22 RL
M

 

43

22 RL


 

 

Cylindrical 

shell 

 

About its own axis 

 

 

 

 

 

 

M

R

2 

R 1 

Cylindrical 

shell 

Tangential  

(Generator) 

 

 

 

 

 

 

 

2MR2 
R2

 
2 
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Body Axis of Rotation Figure 
Moment of  

inertia 
k 

k

2

/

R

2 

Cylindrical 

shell 

About an axis passing 

through its C.G. and 

perpendicular to its 

own axis 

 

 

 

 

 

 














212

22 RL
M

 

212

22 RL


 

 

Cylindrical 

shell 

About the diameter of 

one of faces of the 

cylinder 

 

 

 

 

 














23

22 RL
M

 

23

22 RL


 

 

Hollow 

cylinder with 

inner radius 

= R1 and 

outer radius 

= R2  

Axis of cylinder 

 

 

 

 

 

 

 

)(
2

2
2

2
1 RR

M


 
  

Hollow 

cylinder with 

inner radius 

= R1 and 

outer radius 

= R2 

Tangential 

 

 

 

 

 

 

 

)3(
2

2
2

2
1 RR

M


 
  

R2 R1 
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Body Axis of Rotation Figure 
Moment of  

inertia 
k 

k

2

/

R

2 

Solid Sphere 
About its diametric axis 

 

 

 

 

 

 

2

5

2
MR

 

R
5

2

 

5

2

 

Solid sphere About a tangential axis 

 

 

 

 

2

5

7
MR

 

R
5

7

 

5

7

 

Spherical 

shell 
About its diametric axis 

 

 

 

 

 

2

3

2
MR

 

R
3

2

 

3

2

 

Spherical 

shell 

About a tangential  

axis 
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Hollow 

sphere of 

inner radius 

R1 and outer 

radius R2 

 

 

About its diametric axis 
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
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







3

1
3

2

5
1

5
2

5

2

RR

RR
M

 
  



 

 

  22 

 

Body Axis of Rotation Figure 
Moment of  

inertia 
k 

k

2

/

R

2 

Hollow 

sphere 
Tangential  

 

 

 

 

2
23

1
3
2

5
1

5
2

)(5

][2
MR

RR

RRM






 

  

Long thin rod 

About on axis passing 

through its center of 

mass and perpendicular 

to the rod. 

 

12

2ML

 
12

L

 

 

Long thin rod 

About an axis passing 

through its edge and 

perpendicular to the 

rod 

 

3

2ML

 
3

L

 

 

Rectangular 

lamina of 

length l and 

breadth b 

Passing through the 

center of mass and 

perpendicular to the 

plane  

 

 

 

 

][
12

22 bl
M


 

  

Rectangular 

lamina  

Tangential 

perpendicular to the 

plane and at the mid-

point of breadth  

 

]4[
12

22 bl
M


 

  

Rectangular 

lamina 

Tangential 

perpendicular to the 

plane and at the mid-

point of length                                                                                                                                                                                                                 
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22 bl
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Body Axis of Rotation Figure 
Moment of  

inertia 
k 

k

2

/

R

2 

Rectangular 

parallelopipe

d length l, 

breadth b, 

thickness t 

Passing through center 

of mass and parallel to  

(i) Length (x) 

(ii) breadth (z) 

(iii) thickness (y) 

 

(i) 12

][ 22 tbM 

 

(ii) 12

][ 22 tlM 

 

(iii) 12

][ 22 lbM 

 

  

Rectangular 

parallelepipe

d length l, 

breath b, 

thickness t 

Tangential and parallel 

to  

(i) length (x) 

(ii) breadth (y) 

(iii) thickness(z) 

 (i) 

]3[
12

222 tbl
M



 

(ii) 

]3[
12

222 tbl
M


 

(iii) 

]3[
12

222 tbl
M


 

  

Elliptical  disc 

of semimajor 

axis = a and 

semiminor 

axis = b 

Passing through CM 

and perpendicular to 

the plane  

 

 

 

 

][
4

22 ba
M


 

  

Solid cone of 

radius R and 

height h 

Axis joining the vertex 

and center of the base 

 

 

 

 

 

2
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3
MR

 
  

ii 

iii 

i 

a a 
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Body Axis of Rotation Figure 
Moment of  

inertia 
k 

k

2

/

R

2 

Equilateral 

triangular 

lamina with 

side a 

Passing through CM 

and perpendicular to 

the plane  

 

 

 

 

 

6

2Ma

 
  

Right angled 

triangular 

lamina of 

sides a, b, c 

Along the edges 

 

(1) 6

2Mb

 

(2) 6

2Ma

 

(3) 













 22

22

6 ba

baM

 

  

 

 

14. Torque. 

 

If a pivoted, hinged or suspended body tends to rotate under the action of a force, it is said to be acted 

upon by a torque. or the turning effect of a force about the axis of rotation is called moment of force 

or torque due to the force. 

  

 

 

 

 

 

 

 

P F 

Rotation 

(A) 

O 

r 

(B) 

r F 
O 

Rotation 
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If the particle rotating in xy  plane about the origin under the effect of force 



F  and at any instant the position vector of the particle is 


r  then,  

   Torque 


 = 


 Fr  

    sinFr     

[Where  is the angle between the direction of 


r and


F ] 

(1) Torque is an axial vector. i.e., its direction is always perpendicular to the 

plane containing vector 


r  and 


F  in accordance with right hand screw rule. For a given figure the 

sense of rotation is anti-clockwise so the direction of torque is perpendicular to the plane, outward 

through the axis of rotation. 

 

(2) Rectangular components of force  

  forceof  componentradial cos 


FFr ,   forceof  component transversesin 


 FF  

As   sinFr   

or   Fr   

Thus the magnitude of torque is given by the product of transverse component of force and its 

perpendicular distance from the axis of rotation i.e., Torque is due to transverse component of force 

only. 

 

(3) As   sinFr   

or  )sin(  rF Fd  [As figure  thefrom   sinrd  ] 

 

Torque is also called as moment of force and d is called moment or lever arm. 

 

(4) Maximum and minimum torque:  As  sinor    FrFr 


 

 

rFm aximum  1maxsin  When   i.e.,  90  

F  is perpendicular to 


r  

0minimum    180or  0 .  0minsin  When  i.e  

F  is collinear to 


r  

 

 

 

 

 F cos  F sin  

X 

 

 

 

P 

d 
90o 

Y 
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(5) For a given force and angle, magnitude of torque depends on r. The more is the value of r, the 

more will be the torque and easier to rotate the body. 

Example: (i) Handles are provided near the free edge of the Planck of the door. 

   (ii) The handle of screw driver is taken thick. 

   (iii) In villages handle of flourmill is placed near the circumference. 

   (iv) The handle of hand-pump is kept long. 

   (v) The arm of wrench used for opening the tap, is kept long. 

 

(6) Unit: Newton-meter (M.K.S.) and Dyne-cm (C.G.S.) 

 

(7) Dimension: ][ 22 TML . 

 

(8) If a body is acted upon by more than one force, the total torque is the vector sum of each torque. 

          ........321 


  

 

(9) A body is said to be in rotational equilibrium if resultant torque acting on it is zero i.e. 0


 . 

 

(10) In case of beam balance or see-saw the system will be in 

rotational equilibrium if,  

021 


  or  02211  lFlF   2211 lFlF   

However if,


 21   L.H.S. will move downwards and if


 21  . 

R.H.S. will move downward. and the system will not be in rotational 

equilibrium. 

 

(11) On tilting, a body will restore its initial position due to torque of weight about the point O till the 

line of action of weight passes through its base on tilting, a body will topple due to torque of weight 

about O, if the line of action of weight does not pass through the base. 
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(12) Torque is the cause of rotatory motion and in rotational motion it plays same role as force plays 

in translatory motion i.e., torque is rotational analogue of force. This all is evident from the following 

correspondences between rotatory and translatory motion. 

 

Rotatory Motion Translatory Motion 



  I  


 amF  




  dW  


 dsFW  



 P  


 vFP  

dt

dL




  
dt

dP
F




  

 

 

15. Couple. 

 

A special combination of forces even when the entire body is free to move can rotate it. This 

combination of forces is called a couple.  

(1) A couple is defined as combination of two equal but oppositely directed force not acting along 

the same line. The effect of couple is known by its moment of couple or torque by a couple


 Frτ

. 

 

 

 

 

 

(2) Generally both couple and torque carry equal meaning. The basic difference between torque and 

couple is the fact that in case of couple both the forces are externally applied while in case of torque 

one force is externally applied and the other is reactionary. 

(3) Work done by torque in twisting the wire 2

2

1
CW  . 

Where  C ; C is known as twisting coefficient or couple per unit twist. 

 

F 

F 

r 
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16. Translatory and Rotatory Equilibrium.  

 

 

Forces are equal and act 

along the same line. 

 

 

 

0 F  and 

0  

Body will remain stationary 

if initially it was at rest. 

Forces are equal and 

does not act along the 

same line. 

 

 

 

0 F  and 

0  

Rotation i.e. spinning. 

Forces are unequal and 

act along the same line. 

 

 

 

0 F  and 

0  

Translation i.e. slipping or 

skidding. 

Forces are unequal and 

does not act along the 

same line. 

 

 

 

0 F  and 

0  

Rotation and translation 

both i.e. rolling. 

 

 

17. Angular Momentum. 

 

The turning momentum of particle about the axis of rotation is called the angular momentum of the 

particle. 

Or 

The moment of linear momentum of a body with respect to any axis of rotation is known as angular 

momentum. If 


P  is the linear momentum of particle and 


r  its position vector 

from the point of rotation then angular momentum. 

   


 PrL  

   nPrL ˆsin


  

Angular momentum is an axial vector i.e. always directed perpendicular to the plane of rotation and 

along the axis of rotation. 

F F 

F 

F 

F2 F1 

F2 

F1 

L 
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(1) S.I. Unit: kg-m2-s–1 or J-sec.  

(2) Dimension: ][ -12TML  and it is similar to Planck’s constant )(h . 

(3) In Cartesian co-ordinates if kPjPiPPkzjyixr zyx
ˆˆˆ  and  ˆˆˆ 



 

Then 

zyx PPP

zyx

kji

PrL

ˆˆˆ




= kyPxPjzPxPiPzP xyxzyz
ˆ)(ˆ)(ˆ)(y   

(4) As it is clear from the figure radial component of momentum cosPP r 


 

Transverse component of momentum  sinPP 


  

So magnitude of angular momentum sinPrL   

                      PrL   

 

 

 

 

 

i.e., The radial component of linear momentum has no role to play in angular momentum. 

 

(5) Magnitude of angular momentum PdLrPL  )sin(      [As sinrd   from the figure.] 

 Angular momentum = (Linear momentum)   (Perpendicular distance of line of action of force from the axis 

of rotation) 

 

(6) Maximum and minimum angular momentum: We know  


 PrL  

    sinsin][ rPrvmvrmL 


       [As


 vmP ] 

 

mvrLm aximum
 1maxsin  When   i.e.,  90  

v  is perpendicular to 


r  

0minimum L   180or  0 .  0minsin  When  i.e  

v  is parallel or anti-parallel to 



r  

 
P cos  

P sin  

X 

Y 

 

 

 

P 

d 
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(7) A particle in translatory motion always have an angular momentum unless it is a point on the line 

of motion because sinmvrL   and 1L  if    o0  or o180  

 

(8) In case of circular motion,  )(


 vrmPrL  = sinmvr   

   mvrL  2mr       [As 


 vr  and rv  ] 

or   IL         [As  mr2 = I] 

In vector form 


 IL  

(9) From  


 IL   
dt

d
I

dt

Ld





 = 


 I     [As 




 


dt

d
 and



  I ] 

I.e. the rate of change of angular momentum is equal to the net torque acting on the particle. 

[Rotational analogue of Newton's second law] 

 

(10) If a large torque acts on a particle for a small time then 'angular impulse' of torque is given by 

   



2

1

 
t

t
va dtdtJ   

or Angular impulse 


 LtJ av  

 Angular impulse = Change in angular momentum 

 

(11) The angular momentum of a system of particles is equal to the vector sum of angular momentum 

of each particle i.e.,


 nLLLLL .......321 . 

 

(12) According to Bohr Theory angular momentum of an electron in nth orbit of atom can be taken as, 

       
2

h
nL    [Where n is an integer used for number of orbit]  
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18. Law of Conservation of Angular Momentum. 

Newton’s second law for rotational motion 
dt

Ld




   

So if the net external torque on a particle (or system) is zero then 0



dt

Ld
 

i.e.   .......321 


LLLL = constant. 

Angular momentum of a system (may be particle or body) remains constant if resultant torque acting on 

it zero. 

As IL   so if 0


  then constantI    


1
I  

Since angular momentum I  remains constant so when I decreases, angular velocity   increases and 

vice-versa. 

 

Examples of law of conservation of angular momentum: 

(1) The angular velocity of revolution of a planet around the sun in an elliptical orbit increases when 

the planet come closer to the sun and vice-versa because when planet comes closer to the sun, its 

moment of inertia I decreases therefore  increases. 

 

(2) A circus acrobat performs feats involving spin by bringing his arms and legs closer to his body or 

vice-versa. On bringing the arms and legs closer to body, his moment of inertia I decreases. Hence  

increases. 

 

(3) A person-carrying heavy weight in his hands and standing on a rotating platform can change the 

speed of platform. When the person suddenly folds his arms. Its moment of inertia decreases and in 

accordance the angular speed increases. 
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(4) A diver performs somersaults by Jumping from a high diving board keeping his legs and arms out 

stretched first and then curling his body. 

 

(5) Effect of change in radius of earth on its time period  

Angular momentum of the earth  constant IL  

                  constant
2

5

2 2 
T

MRL


   

     2RT    

 

[If M remains constant] 

If R becomes half then time period will become one-fourth i.e. .6
4

24
hrs  

 

 

19. Work, Energy and Power for Rotating Body. 

 

(1) Work: If the body is initially at rest and angular displacement is d  due to torque then work done on 

the body. 

     dW    [Analogue to work in translatory motion  dxFW  ] 

(2) Kinetic energy: The energy, which a body has by virtue of its rotational motion is called rotational 

kinetic energy. A body rotating about a fixed axis possesses kinetic energy because its constituent 

particles are in motion, even though the body as a whole remains in place. 

 

Rotational kinetic energy Analogue to translatory kinetic energy 

2

2

1
IK R   2

2

1
mvKT   

LK R
2

1
  PvKT

2

1
  

I

L
K R

2

2

  
m

P
KT

2

2

  
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(3) Power: Rate of change of kinetic energy is defined as power 

   
dt

d
II

dt

d
K

dt

d
P R


 








 2

2

1
)(   II  

In vector form Power 


     [Analogue to power in translatory motion


 vFP ] 

 

 

 

20. Slipping, Spinning and Rolling. 

 

(1) Slipping: When the body slides on a surface without rotation then its motion is called slipping 

motion. 

In this condition friction between the body and surface 0F . 

Body possess only translatory kinetic energy 2

2

1
mvKT  . 

Example: Motion of a ball on a frictionless surface. 

 

(2) Spinning: When the body rotates in such a manner that its axis of rotation does not move then 

its motion is called spinning motion.    

In this condition axis of rotation of a body is fixed.  

Example: Motion of blades of a fan. 

In spinning, body possess only rotatory kinetic energy 2

2

1
IK R  . 

or  














2

2
2

2

2
2

2

1

2

1

R

K
mv

R

v
mKK R   

i.e., Rotatory kinetic energy = 













2

2

R

K
 times translatory kinetic energy. 

Here 
2

2

R

K
 is a constant for different bodies. Value of 1

2

2


R

K
 (ring), 

2

1
2

2


R

K
 (disc) and 

2

1
2

2


R

K
 (solid 

sphere) 

 

 

 

 

 = 0 

v 

 
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(3) Rolling: If in case of rotational motion of a body about a fixed axis, the axis of rotation also moves, 

the motion is called combined translatory and rotatory.   

Example: (i) Motion of a wheel of cycle on a road.  

   (ii) Motion of football rolling on a surface. 

In this condition friction between the body and surface 0F . 

Body possesses both translational and rotational kinetic energy. 

Net kinetic energy = (Translatory + Rotatory) kinetic energy. 

    RTN KKK 
22

2

1

2

1
Imv 

2

2
22

2

1

2

1

R

K
mvmv   

   














2

2
2 1

2

1

R

K
mvK N  

 

 

21. Rolling Without Slipping. 

 

In case of combined translatory and rotatory motion if the object rolls across a surface in such a way 

that there is no relative motion of object and surface at the point of contact, the motion is called 

rolling without slipping. 

Friction is responsible for this type of motion but work done or dissipation of energy against friction 

is zero as there is no relative motion between body and surface at the point of contact. 

Rolling motion of a body may be treated as a pure rotation about an axis through point of contact 

with same angular velocity.  

By the law of conservation of energy  

  22

2

1

2

1
ImvK N    [ As Rv  ] 

          222

2

1

2

1
 ImR      

         = ][
2

1 22 ImR   

         = 222

2

1
][

2

1
 PImRI   [As 2mRIIP  ]  

By theorem of parallel axis, where I = moment of inertia of rolling body about its center ‘O’ and IP = 

moment of inertia of rolling body about point of contact ‘P’. 

 

 

 

v 

 

v 

 

O 

P 
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(1) Linear velocity of different points in rolling: In case of rolling, all points of a rigid body have 

same angular speed but different linear speed.  

Let A, B, C and D are four points then their velocities are shown in the following figure. 

       

 

 

 

 

 

 

 

(2) Energy distribution table for different rolling bodies: 

Body 
2

2

R

K
 

Translato

ry (KT) 

2

2

1
mv  

Rotato

ry (KR) 

2

2
2

2

1

R

K
mv

 

Total  (KN) 
















2

2

1
2

2

1

R

K
mv

 

N

T

K

K
 (%) 

N

R

K

K
(%) 

Ring 

Cylindrica

l shell 

1 
2

2

1
mv  2

2

1
mv  2mv  

2

1
 (50%) 

2

1
(50%) 

Disc 

solid 

cylinder 
2

1
 2

2

1
mv  2

4

1
mv  2

4

3
mv  3

2
 

(66.6%) 

3

1
 

(33.3%) 

Solid 

sphere 5

2
 2

2

1
mv  2

5

1
mv  2

10

7
mv  7

5
 

(71.5%) 

7

2

(28.5%) 

Hollow 

sphere 3

2
 2

2

1
mv  2

3

1
mv  2

6

5
mv  

5

3
 (60%) %)40(

5

2
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Translation 

v 

v 

v 

v 

A 

B 

C D 

Rotation 

v 

v v 

v = 0 

A 

B 

C D 

Rolling 

2v 

v = 0 

 

B 

C 

D 

2 v 
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22. Rolling on an Inclined Plane. 

 

When a body of mass m and radius R rolls down on inclined plane of height ‘h’ and angle of inclination

 , it loses potential energy. However it acquires both linear and angular speeds and hence, gain 

kinetic energy of translation and that of rotation. 

By conservation of mechanical energy 














2

2
2 1

2

1

R

k
mvmgh   

(1) Velocity at the lowest point: 

2

2

1

2

R

k

gh
v



  

(2) Acceleration in motion: From equation aSuv 222   

By substituting 

2

2

1

2
   and  

sin
,0

R

k

gh
v

h
Su






 we get  

           

2

2

1

sin

R

k

g
a






 

(3) Time of descent: From equation atuv    

By substituting u = 0 and value of v and a from above expressions 

   









2

2

1
2

sin

1

R

k

g

h
t


 

From the above expressions it is clear that,  
2

2

2

2

2

2
1;

1

1
;

1

1

R

k
t

R

k
a

R

k
v 







  

Note: Here factor 













2

2

R

k
 is a measure of moment of inertia of a body and its value is constant for given shape 

of the body and it does not depend on the mass and radius of a body.  

 Velocity, acceleration and time of descent (for a given inclined plane) all depends on
2

2

R

k
. Lesser the moment 

of inertia of the rolling body lesser will be the value of
2

2

R

k
. So greater will be its velocity and acceleration and 

lesser will be the time of descent. 

 If a solid and hollow body of same shape are allowed to roll down on inclined plane then as 

,
2

2

2

2

HS
R

k

R

k



























 solid body will reach the bottom first with greater velocity. 

h 

B 

 

S 

Translation 

C 

Rotation 



 

 

  37 

 

 If a ring, cylinder, disc and sphere runs a race by rolling on an inclined plane then as minimum

sphere

2

2















R

k

while maximum

Ring

2

2















R

k
, the sphere will reach the bottom first with greatest velocity while ring at last with 

least velocity. 

 Angle of inclination has no effect on velocity, but time of descent and acceleration depends on it. 

    Velocity  , time of decent 
1  and acceleration  . 

 

 

 

23. Rolling Sliding and Falling of a Body. 

 

 

 Figure Velocity Acceleration Time 

Rolling 0
2

2


R

k
 

 

 

 

 

221

2

Rk

gh


 221

sin

RK

g




 
















2

2

1
2

sin

1

R

k

g

h


 

Sliding  0
2

2


R

k  

 

 

 

 

gh2  sing  
g

h2

sin

1


 

Falling 
0

2

2


R

k  

 = 90o 

 

 

 

 

gh2  g 
g

h2  

 

 

 

 

 

 

 

 

h 

 

 

 
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24. Velocity, Acceleration and Time for Different Bodies. 

 

Body 
2

2

R

k  Velocity 

2

2

1

2

R

k

gh
v



  

Acceleration 

2

2

1
R

k

gsin
a




θ

 

Time of descent 
















2

2

1
21

R

k

g

h

sin
t

θ
 

Ring or 

Hollow 

cylinder 

1 gh  sin
2

1
g  

g

h4

sin

1


 

Disc or solid 

cylinder 
5.0or

2

1
 

3

4 gh
 sin

3

2
g  

g

h3

sin

1


 

Solid sphere 
4.0or

5

2
 gh

7

10  sin
7

5
g  

g

h

5

14

sin

1


 

Hollow sphere 
66.0or

3

2
 gh

5

6
 sin

5

3
g  

g

h

3

10

sin

1


 

 

 

 

25. Motion of Connected Mass. 

 

A point mass is tied to one end of a string which is wound round the solid body [cylinder, pulley, disc]. 

When the mass is released, it falls vertically downwards and the solid body rotates unwinding the 

string  

m  = mass of point-mass, M = mass of a rigid body 

R  = radius of a rigid body, I  = moment of inertia of rotating body 

(1) Downwards acceleration of point mass  

2
1

mR

I

g
a



  

(2) Tension in string  












2mRI

I
mgT  

(3) Velocity of point mass  

2
1

2

mR

I

gh
v



  

(4) Angular velocity of rigid body 
2

2

mRI

mgh


  

m 

T h 
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26. Time Period of Compound Pendulum 

Time period of compound pendulum is given by, 
g

L
T 2  where 

l

kl
L

22 
  

Here l = distance of center of mass from point of suspension 

         k = radius of gyration about the parallel axis passing through center of mass. 

 

Body Axis of rotation Figure  

l 

 

k2 l

kl
L

22 
  

g

L
πT 2

 

Ring 

Tangent passing 

through the rim and 

perpendicular to the 

plane 

 

 

 

 

 

R 

 

2R  

 

R2  
g

R
T

2
2

 

Tangent parallel to 

the plane 

 

 

 

 

 

R 2

2R
 R

2

3
 

g

R
T

2

3
2

 

Disc  

Tangent, 

Perpendicular to 

plane 

 

 

 

 

 

R 2

2R
 R

2

3
 

g

R
T

2

3
2

 

Tangent parallel to 

the plane 

 

 

 

 

 

R 4

2R

 

R
4

5
 

g

R
T

4

5
2

 

Spherical 

shell 

Tangent   

 

 

 

 

R 

2

3

2
R

 

R
3

5
 

g

R
T

3

5
2

 

Solid 

sphere  

Tangent  

 

 

R 

2

5

2
R

 

R
5

7
 

g

R
T

5

7
2
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