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1. Electric Charge 

 

(1) Definition: Charge is the property associated with matter due to which it produces and experiences 

electrical and magnetic effects. 

(2) Origin of electric charge: It is known that every atom is electrically neutral, containing as many 

electrons as the number of protons in the nucleus.  

Charged particles can be created by disturbing neutrality of an atom. Loss of electrons gives positive 

charge (as then np > ne) and gain of electrons gives negative charge (as then ne > np) to a particle. When 

an object is negatively charged it gains electrons and therefore its mass increases negligibly. Similarly, on 

charging a body with positive electricity its mass decreases. Change in mass of object is equal to n  me. 

Where, n is the number of electrons transferred and em  is the mass of electron Kg31101.9  . 

 

 

 

 

 

 

 

 

(3) Type: There exists two types of charges in nature (I) Positive charge (ii) Negative charge 

Charges with the same electrical sign repel each other, and charges with opposite electrical sign attract 

each other. 

 

 

 

 

 

(4) Unit and dimensional formula: Rate of flow of electric charge is called electric current i.e., dt

dQ
i 

  

idtdQ  , hence S.I. unit of charge is – Ampere  sec = coulomb (C), smaller S.I. units are mC, C, nC   
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)101,101,101( 963 CnCCCCmC    . C.G.S. unit of charge is – Stat coulomb or e.s.u. Electromagnetic 

unit of charge is – ab coulomb
coulombabcoulombstatC

10

1
1031 9 

. Dimensional formula  ATQ ][  

 

Note: Benjamin Franklin was the first to assign positive and negative sign of charge. 

 The existence of two type of charges was discovered by Dufog. 

 Franklin (i.e., e.s.u. of charge) is the smallest unit of charge while faraday is largest (1 Faraday = 96500 C). 

 The e.s.u. of charge is also called stat coulomb or Franklin (Fr) and is related to e.m.u. of charge through the 

relation 

10103
chargeof  esu

chargeof  emu


  

 

(5) Point charge: A finite size body may behave like a point charge if it produces an inverse square electric 

field. For example an isolated charged sphere behave like a point charge at very large distance as well as 

very small distance close to its surface. 

 

(6) Properties of charge  

(i) Charge is transferable: If a charged body is put in contact with an uncharged body, uncharged body 

becomes charged due to transfer of electrons from one body to the other.  

(ii) Charge is always associated with mass, i.e., charge cannot exist without mass though mass can exist 

without charge. 

(iii) Charge is conserved: Charge can neither be created nor be destroyed. E.g. In radioactive decay the 

uranium nucleus (charge e92 ) is converted into a thorium nucleus (charge e90 ) and emits an  -

particle (charge e2 )  

4
2

234
90

238
92 HeThU  . Thus the total charge is e92  both before and after the decay. 

(iv) Invariance of charge: The numerical value of an elementary charge is independent of velocity. It is 

proved by the fact that an atom is neutral. The difference in masses on an electron and a proton suggests 

that electrons move much faster in an atom than protons. If the charges were dependent on velocity, the 

neutrality of atoms would be violated. 

(v) Charge produces electric field and magnetic field: A charged particle at rest produces only electric 

field in the space surrounding it. However, if the charged particle is in unaccelerated motion it produces 

both electric and magnetic fields. And if the motion of charged particle is accelerated it not only produces 

electric and magnetic fields but also radiates energy in the space surrounding the charge in the form of 

electromagnetic waves.  
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(vi) Charge resides on the surface of conductor: Charge resides on the outer surface of a conductor 

because like charges repel and try to get as far away as possible from one another and stay at the farthest 

distance from each other which is outer surface of the conductor. This is why a solid and hollow conducting 

sphere of same outer radius will hold maximum equal charge and a soap bubble expands on charging.  

 

(vii) Charge leaks from sharp points : In case of conducting body no doubt charge resides on its outer 

surface, if surface is uniform the charge distributes uniformly on the surface and for irregular surface the 

distribution of charge, i.e., charge density is not uniform. It is maximum where the radius of curvature is 

minimum and vice versa. i.e., σ   /R1 . This is why charge leaks from sharp points. 

 

 

 

 

 

 

(viii) Quantization of charge: When a physical quantity can have only discrete values rather than any 

value, the quantity is said to be quantized. The smallest charge that can exist in nature is the charge of an 

electron. If the charge of an electron ( C19106.1  ) is taken as elementary unit i.e. quanta of charge the 

charge on anybody will be some integral multiple of e i.e.  

neQ 
 With ....3,2,1n  

Charge on a body can never be
e

3

2


, e2.17  or e510  etc. 

 

Note: Recently it has been discovered that elementary particles such as proton or neutron are composed of quarks 

having charge 
 3/1

e and 
 3/2

e. However, as quarks do not exist in Free State, the quanta of charge is still e. 

 Quantization of charge implies that there is a maximum permissible magnitude of charge. 
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2.  Comparison of Charge and Mass. 

 

We are familiar with role of mass in gravitation, and we have just studied some features of electric charge. 

We can compare the two as shown below 

 

Charge Mass 

(1) Electric charge can be positive, negative or zero. (1) Mass of a body is a positive quantity. 

(2) Charge carried by a body does not depend upon 

velocity of the body. 

(2) Mass of a body increases with its velocity as 

22

0

/1 cv

m
m





 where c is velocity of light in 

vacuum, m is the mass of the body moving with 

velocity v and 0m  is rest mass of the body. 

(3) Charge is quantized. (3) The quantization of mass is yet to be established. 

(4) Electric charge is always conserved. (4) Mass is not conserved as it can be changed into 

energy and vice-versa. 

(5) Force between charges can be attractive or 

repulsive, according as charges are unlike or like 

charges. 

(5) The gravitational force between two masses is 

always attractive. 

 

 

 

3. Methods of Charging.  

 

A body can be charged by following methods:  

(1) By friction: In friction when two bodies are rubbed together, electrons are transferred from one body 

to the other. As a result of this one body becomes positively charged while the other negatively charged, 

e.g., when a glass rod is rubbed with silk, the rod becomes positively charged while the silk negatively. 

However, ebonite on rubbing with wool becomes negatively charged making the wool positively charged. 

Clouds also become charged by friction. In charging by friction in accordance with conservation of charge, 

both positive and negative charges in equal amounts appear simultaneously due to transfer of electrons 

from one body to the other. 
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(2) By electrostatic induction: If a charged body is brought near an uncharged body, the charged body 

will attract opposite charge and repel similar charge present in the uncharged body. As a result of this one 

side of neutral body (closer to charged body) becomes oppositely charged while the other is similarly 

charged. This process is called electrostatic induction. 

 

 

 

 

 

 

Note: Inducting body neither gains nor loses charge. 

Induced charge can be lesser or equal to inducing charge (but never greater) and its maximum value is given by 











K
QQ'

1
1

 where Q is the inducing charge and K is the dielectric constant of the material of the uncharged 

body. Dielectric constant of different media are shown below  

 

Medium K 

Vacuum / air 

Water 

Mica 

Glass 

Metal 

1 

80 

6 

5–10 

 

 

Dielectric constant of an insulator cannot be    

For metals in electrostatics K  and so 
;QQ' 
 i.e. in metals induced charge is equal and opposite to inducing 

charge. 
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(3) Charging by conduction: Take two conductors, one charged and other uncharged. Bring the 

conductors in contact with each other. The charge (whether ve or ve ) under its own repulsion will 

spread over both the conductors. Thus the conductors will be charged with the same sign. This is called 

as charging by conduction (through contact). 

 

 

 

 

 

 

 

Note: A truck carrying explosives has a metal chain touching the ground, to conduct away the charge produced by 

friction. 

 

 

4.  Electroscope.  

It is a simple apparatus with which the presence of electric charge on a body is detected (see figure). When 

metal knob is touched with a charged body, some charge is transferred to the gold leaves, which then 

diverges due to repulsion. The separation gives a rough idea of the amount of charge on the body. If a 

charged body brought near a charged electroscope the leaves will further diverge. If the charge on body 

is similar to that on electroscope and will usually converge if opposite. If the induction effect is strong 

enough leaves after converging may again diverge. 

(1) Uncharged electroscope 
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(2) Charged electroscope  

 

 

 

 

 

 

 

 

Concepts 

 After earthing a positively charged conductor electrons flow from earth to conductor and if a negatively 

charged conductor is earthed then electrons flows from conductor to earth. 

 

 

 

 

 

 

 When a charged spherical conductor placed inside a hollow insulated conductor and connected if 

through a fine conducting wire the charge will be completely transferred from the inner conductor to 

the outer conductor. 

 

 

 

 

 

 Lightening-rods arrestors are made up of conductors with one of their ends earthed while the other 

sharp, and protects a building from lightening either by neutralizing or conducting the charge of the 

cloud to the ground. 

 With rise in temperature dielectric constant of liquid decreases. 

 Induction takes place only in bodies (either conducting or non-conducting) and not in particles. 
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 If X-rays are incident on a charged electroscope, due to ionisation of air by X-rays the electroscope will 

get discharged and hence its leaves will collapse. However, if the electroscope is evacuated. X-rays will 

cause photoelectric effect with gold and so the leaves will further diverge if it is positively charged (or 

uncharged) and will converge if it is negatively charged. 

 If only one charge is available than by repeating the induction process, it can be used to obtain a charge 

many times greater than its equilibrium. (High voltage generator) 

 

 

 

5.  Coulomb’s Law. 

 

If two stationary and point charges 1Q  and 2Q  are kept at a distance r, then it is found that force of 

attraction  

 

 

 

or repulsion between them is 
2

21

r

QQ
F 

 i.e., 
2

21

r

QkQ
F 

 ; (k = Proportionality constant) 

(1) Dependence of k: Constant k depends upon system of units and medium between the two charges. 

(i) Effect of units   

(a) In C.G.S. for air ,1k  
2

21

r

QQ
F 

 Dyne 

(b) In S.I. for air
2

2
9

0

109
4

1

C

mN
k





, 

2

21

0

.
4

1

r

QQ
F




Newton (1 Newton = 105 Dyne) 

 

 

 

 

Note: 
0 Absolute permittivity of air or free space =

2

2
121085.8

mN

C


  










m

Farad

. Its Dimension is 
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0 Relates with absolute magnetic permeability ( 0 ) and velocity of light (c) according to the following relation 

00

1


c

 

 

 

(ii) Effect of medium  

(a) When a dielectric medium is completely filled in between charges rearrangement of the charges inside 

the dielectric medium takes place and the force between the same two charges decreases by a factor of K 

known as dielectric constant or specific inductive capacity (SIC) of the medium, K is also called relative 

permittivity r of the medium (relative means with respect to free space). 

Hence in the presence of medium 
2

21

0

.
4

1

r

QQ

KK

F
F air

m




 

Here   rK 00  (permittivity of medium)   

(b) If a dielectric medium (dielectric constant K, thickness t) is partially filled between the charges then 

effective air separation between the charges becomes )( Kttr   

Hence force 
2

21

0 )(4

1

Kttr

QQ
F





 

 

(2) Vector form of coulomb’s law: Vector form of Coulomb’s law is 
,ˆ.. 122

21
123

21
12

r
r

qq
Kr

r

qq
KF 

 

where 12r̂  is the unit vector from first charge to second charge along the line joining the two charges. 

 

(3) A comparative study of fundamental forces of nature 

 

S.No. Force Nature and formula Range Relative 

strength 

(i) Force of gravitation 

between two masses 

Attractive F = Gm1m2/r2, 

obey’s Newton’s third law of 

motion, it’s a conservative 

force 

Long range (between 

planets and between 

electron and proton) 

1 

Q2 Q1 

r 

K 

Q2 Q1 
K 

r 
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(ii) Electromagnetic 

force (for stationary 

and moving charges) 

Attractive as well as 

repulsive, obey’s Newton’s 

third law of motion, it’s a 

conservative force 

Long (up to few 

kelometers) 

3710  

(iii) Nuclear force 

(between  nucleons) 

Exact expression is not 

known till date. However in 

some cases empirical 

formula 
0/

0
rr

eU  can be 

utilized for nuclear potential 

energy 0U  and 0r  are 

constant. 

Short (of the order of 

nuclear size 10–15 m) 

1039 

(strongest) 

(iv) Weak force (for 

processes like  

decay) 

Formula not known Short (upto 10–15m) 1024  

 

Note:  Coulombs law is not valid for moving charges because moving charges produces magnetic field also. 

Coulombs law is valid at a distance greater than .10 15 m
 

A charge 1Q
exert some force on a second charge 2Q

. If third charge 3Q
 is brought near, the force of 1Q

 

exerted on 2Q
 remains unchanged. 

Ratio of gravitational force and electrostatic force between (i) Two electrons is 10–43/1. (ii) Two protons is 

10–36/1 (iii) One proton and one electron 10–39/1.  

Decreasing order to fundamental forces nalGravitatioWeakneticElectromagNuclear FFFF 
 

 

 

(4) Principle of superposition: According to the principle of super position, total force acting on a given 

charge due to number of charges is the vector sum of the individual forces 

acting on that charge due to all the charges. 

Consider number of charge 1Q , 2Q , 3Q …are applying force on a charge Q  

Net force on Q will be  

nnnet FFFFF


 121 ..........   
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Concepts 

 Two point charges separated by a distance r in vacuum and a force F acting between them. After filling 

a dielectric medium having dielectric constant K completely between the charges, force between them 

decreases. To maintain the force as before separation between them changes to Kr . This distance 

known as effective air separation. 

 

 

 

6. Electrical Field. 

 

A positive charge or a negative charge is said to create its field around itself. If a charge 1Q  exerts a force 

on charge 2Q placed near it, it may be stated that since 2Q  is in the field of 1Q , it experiences some force, 

or it may also be said that since charge 1Q is inside the field of 2Q , it experience some force. Thus space 

around a charge in which another charged particle experiences a force is said to have electrical field in it. 

(1) Electric field intensity )(E


: The electric field intensity at any point is defined as the force experienced 

by a unit positive charge placed at that point. 0q

F
  E





 

 

Where 00 q so that presence of this charge may not affect the source charge Q and its electric field is 

not changed, therefore expression for electric field intensity can be better written as 0
0q q

F
LimE

0







 

 

 

(2) Unit and Dimensional formula: its S.I. unit – metercoulomb

Joule

meter

volt

coulomb

Newton




 and  

  C.G.S. unit – Dyne/stat coulomb.  

    Dimension: [ E ] = [
13  AMLT ] 
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(3) Direction of electric field: Electric field (intensity) E


 is a vector quantity. Electric field due to a positive 

charge is always away from the charge and that due to a negative charge is always towards the charge 

 

 

 

 

(4) Relation between electric force and electric field: In an electric field E


 a charge (Q) experiences a 

force QEF  . If charge is positive then force is directed in the direction of field while if charge is negative 

force acts on it in the opposite direction of field  

 

 

 

 

(5) Super position of electric field (electric field at a point due to various charges): The resultant electric 

field at any point is equal to the vector sum of electric fields at that point due to various charges.  

  ...321  EEEE


 

The magnitude of the resultant of two electric fields is given by 

 
cos2 21

2
2

2
1 EEEEE 

 and the direction is given by 






cos

sin
tan

21

2

EE

E




 

 

(6) Electric field due to continuous distribution of charge: A system of closely spaced electric charges 

forms a continuous charge distribution 
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Continuous charge distribution 

Linear charge distribution Surface charge distribution Volume charge distribution 

In this distribution charge 

distributed on a line. 

For example: charge on a wire, 

charge on a ring etc.  Relevant 

parameter is   which is called 

linear charge density i.e., 

length

charge


 

R

Q




2


 

In this distribution charge 

distributed on the surface. 

For example: Charge on a 

conducting sphere, charge on a 

sheet etc. Relevant parameter is 

 which is called surface charge 

density i.e., 

area

charge


 

24 R

Q


 

 

In this distribution charge 

distributed in the whole volume 

of the body. 

For example: Non conducting 

charged sphere. Relevant 

parameter is   which is called 

volume charge density i.e., 

volume

charge


 

3

3

4
R

Q



 

 

 

To find the field of a continuous charge distribution, we divide the charge into infinitesimal charge 

elements. Each infinitesimal charge element is then considered, as a point charge and electric field dE  is 

determined due to this charge at given point. The Net field at the given point is the summation of fields 

of all the elements. i.e.,    dEE
  

 

 

7.  Electric Potential. 

 

(1) Definition: Potential at a point in a field is defined as the amount of work done in bringing a unit 

positive test charge, from infinity to that point along any arbitrary path (infinity is point of zero potential). 

Electric potential is a scalar quantity, it is denoted by V;   0q

W
V 

     

 

(2) Unit and dimensional formula: S. I. unit – 
volt

Coulomb

Joule


 C.G.S. unit – Stat volt (e.s.u.); 1 volt 300

1


 

Stat volt Dimension – ][][ 132  ATMLV  
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(3) Types of electric potential: According to the nature of charge potential is of two types 

(i) Positive potential: Due to positive charge.     

(ii) Negative potential: Due to negative charge. 

 

(4) Potential of a system of point charges: Consider P is a point at which net electric potential is to be 

determined due to several charges. So net potential at P  
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 In general 




X

i i

i

r

kQ
V

1  

 

Note: At the center of two equal and opposite charge V = 0 but 0E  

At the center of the line joining two equal and similar charge
0,0  EV

 

 

 

(5) Electric potential due to a continuous charge distribution : The potential due to a continuous charge 

distribution is the sum of potentials of all the infinitesimal charge elements in which the distribution may 

be divided i.e.,  
 

r0

dQ
dVV

πε4
,

  

 

(6) Graphical representation of potential: When we move from a positive charge towards an equal 

negative charge along the line joining the two then initially potential decreases in magnitude and at center 

become zero, but this potential is throughout positive because when we are nearer to positive charge, 

overall potential must be positive. When we move from center towards the negative charge then though 

potential remain always negative but increases in magnitude fig. (A). As one move from one charge to 

other when both charges are like, the potential first decreases, at center become minimum and then 

increases Fig. (B). 
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(7) Potential difference : In an electric field potential difference between two points A and B is defined 

as equal to the amount of work done (by external agent) in moving a unit positive charge from point A to 

point B.  

i.e., 0q

W
VV AB 

 in general VQW  . ; V Potential difference through which charge Q moves. 

 

 

(8)  Electric Field and Potential Due to Various Charge Distribution. 

(1) Point charge: Electric field and potential at point P due to a point charge Q is  
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Note: Electric field intensity and electric potential due to a point charge q, at a distance t1 + t2 where t1 is thickness 

of medium of dielectric constant K1 and t2 is thickness of medium of dielectric constant K2 are: 
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(2) Line charge   

(i) Straight conductor: Electric field and potential due to a charged straight conducting wire of length l 

and charge density    

(a) Electric field: 
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(b) Potential: 
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(ii) Charged circular ring: Suppose we have a charged circular ring of radius R and charge Q. On its axis 

electric field and potential is to be determined, at a point ‘x’ away from the center of the ring. 

 

 

 

 

 

 

(a) Electric field: Consider an element carrying charge dQ . Its electric field  22 xR

KdQ
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 directed as 
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(3) Surface charge: 

(i) Infinite sheet of charge: Electric field and potential at a point P as shown 
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  and  
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(ii) Electric field due to two parallel plane sheet of charge: Consider two large, uniformly charged 

parallel. Plates A and B, having surface charge densities are 

A  and B  respectively. Suppose net electric field at 

points P, Q and R is to be calculated. 

At P,  
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;    At R, 
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Note: If 
 A  and 

 B  then 

0,,0
0

 RQp EEE




. Thus in case of two infinite plane sheets of charges 

having equal and opposite surface charge densities, the field is non-zero only in the space between 

the two sheets and is independent of the distance between them i.e., field is uniform in this region. 

It should be noted that this result will hold good for finite plane sheet also, if they are held at a 

distance much smaller than the dimensions of sheets i.e., parallel plate capacitor. 

 

(iii) Conducting sheet of charge:  
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(iv) Charged conducting sphere: If charge on a conducting sphere of radius R is Q as shown in figure 

then electric field and potential in different situation are –  
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(a) Outside the sphere: P is a point outside the sphere at a distance r from the center at which electric 

field and potential is to be determined. 

Electric field at P 
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(b) At the surface of sphere: At surface Rr   
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(c) Inside the sphere: Inside the conducting charge sphere electric field is zero and potential remains 

constant everywhere and equals to the potential at the surface. 

  0inE  and inV = constant sV  

 

 

Note:  Graphical variation of electric field and potential of a charged spherical conductor with distance  

   

 

 

 

 

 

 

 

 

(4) Volume charge (charged non-conducting sphere):  

Charge given to a non-conducting spheres spreads uniformly throughout its volume.  

(i) Outside the sphere at P   
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(ii) At the surface of sphere: At surface Rr   
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(iii) Inside the sphere: At a distance r from the center 

  
3

0

.
4

1

R

Qr
Ein




 03

r


  rEin       and     0

22

3

22

0 6

)3(

2

]3[

4

1







rR

R

rRQ
Vin







 

 

Note: At center 0r   So,               
sV

R

Q
V

2

3
.

4

1

2

3

0

centre 


               i.e.,   outsurfacecentre VVV 
 

Graphical variation of electric field and potential with distance 

      

 

 

 

 

 

 

 

 

(5) Electric field and potential in some other cases  

(i) Uniformly charged semicircular ring : length

charge

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(iii) Charged cylinder of infinite length  

(a) Conducting                 (b) Non-conducting  
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For both type of cylindrical charge distribution
r
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(ii) Hemispherical charged body : 
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(iv) Uniformly charged disc  

At a distance x from center O on its axis 
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Note: Total charge on disc Q = R2  

If x  0, 02
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 i.e. for points situated near the disc, it behaves as an infinite sheet of charge. 

 

Concepts 

 

 No point charge produces electric field at its own position. 

 Since charge given to a conductor resides on its surface hence electric field inside it is zero. 

 

 

 

 

 

 The electric field on the surface of a conductor is directly proportional to the surface charge density at 

that point i.e, E  
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 Two charged spheres having radii 1r  and 2r  charge densities 1  and 2  respectively, then the ratio of 

electric field on their surfaces will be 
2
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r

r
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          
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Q
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 In air if intensity of electric field exceeds the value CN/103 6  air ionizes.  

 A small ball is suspended in a uniform electric field with the help of an insulated thread. If a high energy 

x–ray bean falls on the ball, x-rays knock out electrons from the ball so the ball is positively charged 

and therefore the ball is deflected in the direction of electric field. 

 Electric field is always directed from higher potential to lower potential. 

 A positive charge if left free in electric field always moves from higher potential to lower potential while 

a negative charge moves from lower potential to higher potential. 

 The practical zero of electric potential is taken as the potential of earth and theoretical zero is taken at 

infinity. 

 An electric potential exists at a point in a region where the electric field is zero and it’s vice versa. 

 A point charge +Q lying inside a closed conducting shell does not exert force another point charge q 

placed outside the shell as shown in figure 

Actually the point charge +Q is unable to exert force on the charge +q because it cannot produce electric 

field at the position of +q. All the field lines emerging from the point charge +Q terminate inside as these 

lines cannot penetrate the conducting medium (properties of lines of force). 

The charge q however experiences a force not because of charge +Q but due to charge induced on the 

outer surface of the shell. 

 

 

 

8.  Potential Due to Concentric Spheres. 

 

To find potential at a point due to concentric sphere following guideline are to be considered  

Guideline 1: Identity the point (P) at which potential is to be determined. 

Guideline 2: Start from inner most sphere, you should know where point (P) lies w.r.t. concerning 

sphere/shell (i.e. outside, at surface or inside)  

Guideline 3: Then find the potential at the point (P) due to inner most sphere and then due to next and 

so on. 

Guideline 4: Using the principle of superposition find net potential at required shell/sphere. 
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Standard cases  

 

Case (i): If two concentric conducting shells of radii r1 and r2(r2 > r1) carrying uniformly distributed 

charges Q1 and Q2 respectively. What will be the potential of each shell 

To find the solution following guidelines are to be taken. 

Here after following the above guideline potential at the surface of inner shell is 
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and potential at the surface of outer shell  
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Case (ii) : The figure shows three conducting concentric shell of radii a, b and c (a < b < c) having 

charges Qa, Qb and Qc respectively what will be the potential of each shell 

After following the guidelines discussed above 

 Potential at A; 
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Case (iii): The figure shows two concentric spheres having radii r1 and r2 respectively (r2 > r1). If 

charge on inner sphere is +Q and outer sphere is earthed then determine. 

(a) The charge on the outer sphere 

(b) Potential of the inner sphere 

(i) Potential at the surface of outer sphere 
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(ii) Potential of the inner sphere 2010
1

)(

4

1
.

4

1

r

Q

r

Q
V















210

11

4 rr

Q


 

Q1 

r1 

r2 

Q2 

Q 
+Q 

r1 

r2 

Qc 

Qb 
Qa 

c 

b a B A 



 

 

  25 

 

Case (iv) : In the case III if outer sphere is given a charge +Q and inner sphere is earthed then 

(a) What will be the charge on the inner sphere 

(b) What will be the potential of the outer sphere 

(i) In this case potential at the surface of inner sphere is zero, so if Q'  is the charge induced on inner 

sphere 

 then 
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 (Charge on inner sphere is less than that of the outer sphere.) 

(ii) Potential at the surface of outer sphere 
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9. Electric Lines of Force. 

 

(1) Definition: The electric field in a region is represented by continuous lines (also called lines of force). 

Field line is an imaginary line along which a positive test charge will move if left free. 

Electric lines of force due to an isolated positive charge, isolated negative charge and due to a pair of 

charge are shown below 
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(2) Properties of electric lines of force 

(i) Electric field lines come out of positive charge and go into the negative charge. 

(ii) Tangent to the field line at any point gives the direction of the field at that point. 

    

 

 

 

(iii) Field lines never cross each other. 

(iv) Field lines are always normal to conducting surface. 

 

 

 

 

 

 

(v) Field lines do not exist inside a conductor. 

(vi) The electric field lines never form closed loops. (While magnetic lines of forces form closed loop) 

 

 

 

 

 

 

(vii) The number of lines originating or terminating on a charge is proportional to the magnitude of charge. 

In the following figure electric lines of force are originating from A and terminating at B hence QA is positive 

while QB is negative, also number of electric lines at force linked with QA are more than those linked  with 

QB hence |Q||Q| BA   
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(viii) Number of lines of force per unit area normal to the area at a point represents magnitude of intensity 

(concept of electric flux i.e. EA ) 

(ix) If the lines of forces are equidistant and parallel straight lines the field is uniform and if either lines of 

force are not equidistant or straight line or both the field will be non-uniform, also the density of field lines 

is proportional to the strength of the electric field. For example see the following figures. 

 

    

 

 

 

 

    

            

 

(3) Electrostatic shielding: Electrostatic shielding/screening is the phenomenon of protecting a certain 

region of space from external electric field. Sensitive instruments and 

appliances are affected seriously with strong external electrostatic fields. 

Their working suffers and they may start misbehaving under the effect of 

unwanted fields. 

The electrostatic shielding can be achieved by protecting and enclosing the 

sensitive instruments inside a hollow conductor because inside hollow 

conductors, electric fields is zero. 

(i) It is for this reason that it is safer to sit in a car or a bus during lightening rather than to stand under a 

tree or on the open ground. 

(ii) A high voltage generator is usually enclosed in such a cage which is earthen. This would prevent the 

electrostatic field of the generator from spreading out of the cage. 

(iii) An earthed conductor also acts as a screen against the electric field. When conductor is not earthed 

field of the charged body C due to electrostatic 

induction continues beyond AB. If AB is earthed, 

induced positive charge neutralizes and the field in the 

region beyond AB disappears. 
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10. Equipotential Surface or Lines. 

 

If every point of a surface is at same potential, then it is said to be an equipotential surface  

     or 

For a given charge distribution, locus of all points having same potential is called “equipotential surface” 

regarding equipotential surface following points should keep in mind: 

(1) The density of the equipotential lines gives an idea about the magnitude of electric field. Higher the 

density larger the field strength.  

(2) The direction of electric field is perpendicular to the equipotential surfaces or lines.  

(3) The equipotential surfaces produced by a point charge or a spherically charge distribution are a family 

of concentric spheres.  

 

 

 

 

 

 

 

 

(4) For a uniform electric field, the equipotential surfaces are a family of plane perpendicular to the field 

lines. 

(5) A metallic surface of any shape is an equipotential surface e.g. When a charge is given to a metallic 

surface, it distributes itself in a manner such that its every point comes at same potential even if the object 

is of irregular shape and has sharp points on it. 
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surface 
V1 > V2 > V3 > V4 > V5 

+ 

+ + 

+ 

+ 
+ 

+ 

+ 
+ 

+ 

+ 
+ 

+ 

+ 
+ 

+ 

 
V = const. 

O 

Metallic charged sphere 

+ 

+ 

+ 
+ + 

+ + 

+ 

+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 

V = const. 

Charged metallic body of irregular shape 
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If it is not so, that is say if the sharp points are at higher potential then due to potential difference between 

these points connected through metallic portion, charge will flow from points of higher potential to points 

of lower potential until the potential of all points become same.  

(6) Equipotential surfaces can never cross each other. 

(7) Equipotential surface for pair of charges 

 

 

 

 

 

 

 

Concepts 

 Unit field i.e. 1N/C is defined arbitrarily as corresponding to unit density of lines of force. 

 Number of lines originating from a unit charge is 0

1

  

 It is a common misconception that the path traced by a positive test charge is a field line but actually 

the path traced by a unit positive test charge represents a field full line only when it moves along a 

straight line. 

 Both the equipotential surfaces and the lines of force can be used to depict electric field in a certain 

region of space. The advantage of using equipotential surfaces over the lines of force is that they give 

a visual picture of both the magnitude and direction of the electric field. 

 

 

 

 

 

 

 

 

 

 

 

– + + + 

Pair of two equal and opposite charges Pair of two equal and similar charges 
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11.  Relation between Electric Field and Potential. 

 

In an electric field rate of change of potential with distance is known as potential gradient. It is a vector 

quantity and its direction is opposite to that of electric field. Potential 

gradient relates with electric field according to the following relation

;
dr

dV
E 

 this relation gives another unit of electric field is meter

volt

. In the 

above relation negative sign indicates that in the direction of electric field 

potential decreases. 

In space around a charge distribution we can also write 

kEjEiEE zyx
ˆˆˆ 



  

Where 
,

dx

dV
Ex 

 dy

dV
Ey 

 and dz

dV
Ez 

 

With the help of formula 
,

dr

dV
E 

potential difference between any two points in an electric field can be 

determined by knowing the boundary conditions
 

2

1

2

1

cos..
r

r

r

r
drEdrEdV 

. 

For example: Suppose A, B and C are three points in a uniform electric field as shown in figure. 

(i) Potential difference between point A and B is  

    
B

A
AB drEVV

  

Since displacement is in the direction of electric field, hence  = 0o   

So,    
B

A

B

A
AB EddrEdrEVV 0cos

 

 

In general we can say that in an uniform electric field d

V
E 

 or d

V
E ||

 

    

Another example                     d

V
E 

 

 

 

 

(ii) Potential difference between points A and C is: 

+Q 
A B 

dr 

 

  

 

C 

B A 

d 

 

+ 
+ 

+ 

+ 

+ 

+ 

– 
– 

– 

– 

– 

– 

 

V1 = V V2 = 0 
d 
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)(cos)(cos ABEACEdrEVV

C

A
AC   

= – Ed 

Above relation proves that potential difference between A and B is equal to the potential difference 

between A and C i.e. points B and C are at same potential. 

Concept 

 Negative of the slope of the V-r graph denotes intensity of electric field i.e. 
E

r

V
tan

 

 

 

 

12. Work Done in Displacing a Charge.  

 

(1) Definition : If a charge Q displaced from one point to another point in electric field then work done in 

this process is  VQW    where V = Potential difference between the two position of charge Q. (

cos. rErEV   where  is the angle between direction of electric field and direction of motion 

of charge). 

 

(2) Work done in terms of rectangular component of E  and r  :  If charge Q is given a displacement 

)ˆˆˆ( 321 krjrirr   in an electric field ).ˆˆˆ( 321 kEjEiEE   The work done is

)().( 332211 rErErEQrEQW  . 

 

 

13. Conservation of Electric Field. 

 

As electric field is conservation, work done and hence potential difference between two points is path 

independent and depends only on the position of points between. Which the charge is moved.  

 

 

 

 

 

 

A B 

I 

II 

III 

WI = WII = WIII 
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Concept 

 

 No work is done in moving a charge on an equipotential surface. 

 

 

 

14. Equilibrium of Charge. 

 

(1) Definition: A charge is said to be in equilibrium, if net force acting on it is zero. A system of charges is 

said to be in equilibrium if each charge is separately in equilibrium.  

(2) Type of equilibrium: Equilibrium can be divided in following type: 

(i) Stable equilibrium: After displacing a charged particle from its equilibrium position, if it returns back 

then it is said to be in stable equilibrium. If U is the potential energy then in case of stable equilibrium 

2

2

dx

Ud

 is positive i.e., U is minimum. 

(ii) Unstable equilibrium : After displacing a charged particle from its equilibrium position, if it never 

returns back then it is said to be in unstable equilibrium and in unstable equilibrium 
2

2

dx

Ud

 is negative i.e., 

U is maximum. 

(iii) Neutral equilibrium : After displacing a charged particle from its equilibrium position if it neither 

comes back, nor moves away but remains in the position in which it was kept it is said to be in neutral 

equilibrium and in neutral equilibrium 
2

2

dx

Ud

 is zero i.e., U is constant 

(3) Guidelines to check the equilibrium  

(i) Identify the charge for which equilibrium is to be analyzed. 

(ii) Check, how many forces acting on that particular charge. 

(iii) There should be at least two forces acts oppositely on that charge. 

(iv) If magnitude of these forces are equal then charge is said to be in equilibrium then identify the nature 

of equilibrium. 

(v) If all the charges of system are in equilibrium then system is said to be in equilibrium  
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(4) Different cases of equilibrium of charge  

Case – 1 : Suppose three similar charge qQ ,1  

and 2Q  are placed along a straight line as shown 

below 

 

 

 

 

Charge q will be in equilibrium if |||| 21 FF 

   

i.e., 

2

2

1

2

1













x

x

Q

Q

 ; This is the condition of 

equilibrium of charge q. After following the 

guidelines we can say that charge q is in stable 

equilibrium and this system is not in equilibrium  

Note : 12

1
1 /QQ

x
x




 

and      21

2
1 /QQ

x
x




 

e.g. if two charges +4C and +16 C are separated 

by a distance of 30 cm from each other then for 

equilibrium a third charge should be placed 

between them at a distance 

cmx 10
4/161

30
1 




 or cmx 202   

 

Case – 2 : Two similar charge 1Q  and 2Q  are 

placed along a straight line at a distance x from 

each other and a third dissimilar charge q is placed 

in between them as shown below 

 

 

 

Charge q will be in equilibrium if |||| 21 FF    

i.e.,    

2

2

1

2

1













x

x

Q

Q

 . 

Note  :  Same short trick can be used here 

to find the position of charge q as we discussed in 

Case–1 i.e.,  

 12

1
1 /QQ

x
x




 and 21

2
1 /QQ

x
x




 

  It is very important to know that magnitude of 

charge q can be determined if one of the extreme 

charge (either 1Q  or )2Q  is in equilibrium i.e. if 2Q  

is in equilibrium then 

2

2
1|| 










x

x
Qq

 and if 1Q  is 

in equilibrium then 

2

1
2|| 










x

x
Qq

(It should be 

remember that sign of q is opposite to that of 

)or( 21 QQ ) 

x 

x1 x2 

q 

Q2 

A B 
O F1 F2 Q1 

x 

x1 x2 

q 

Q1 Q2 

A B 
O F2 F1 
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Case – 3: Two dissimilar charge 1Q  and 2Q  are placed along a straight line at a distance x from 

each other, a third charge q should be placed outside the line joining 1Q  and 2Q  for it to experience 

zero net force. 

 

          (Let |Q2| < |Q1|) 

Short Trick :  

For its equilibrium. Charge q lies on the side of charge which is smallest in magnitude and 

121 


/QQ

x
d

 

 

(5) Equilibrium of suspended charge in an electric field 

(i) Freely suspended charged particle : To suspend a charged a particle freely in air under the influence 

of electric field it’s downward weight should be balanced by upward electric force for example if a positive 

charge is suspended freely in an electric field as shown then     

 

        

 

                          

 

   

In equilibrium mgQE   Q

mg
E 

 

 

Note: In the above case if direction of electric field is suddenly reversed in any figure then acceleration of charge 

particle at that instant will be a = 2g.    

 

(ii) Charged particle suspended by a massless insulated string (like simple pendulum): Consider a 

charged particle (like Bob) of mass m, having charge Q is suspended in an electric field as shown under 

the influence of electric field. It turned through an angle (say) and comes in equilibrium. 

So, in the position of equilibrium (O position) 

QET sin     ….(i) 

mgT cos     ….(ii) 

By squaring and adding equation (i) and (ii) 
   22

mgQET 
  

x d 

Q1 – Q2 q 

+Q 

F = QE 

mg 

 

 

+Q 

F = QE 

mg 

+ + + + + + + + + 

– – – – –  – – – – 
F = QE 

mg 

+Q 
d V 

 

or or 

QE 

 

 

l 

mg 

T sin  

T cos  

T 

O 

O 
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Dividing equation (i) by (ii) mg

QE
tan

   mg

QE
θ 1tan 

 

(iii) Equilibrium of suspended point charge system: Suppose two small balls having charge +Q on each 

are suspended by two strings of equal length l. Then for equilibrium position as shown in figure. 

 

eFT sin   ….(I) 

mgT cos   ….(ii) 

   222 mgFT e   

and mg

Fetan

 ; here 
2

2

04

1

x

Q
Fe




 and 
sin

2
l

x


 

 

(iv) Equilibrium of suspended point charge system in a liquid: In the previous discussion if point charge 

system is taken into a liquid of density  such that  remain same then  

In equilibrium sin'TFe'   and  cos)( 'TgVmg   

 
2

0

2

)(4)(
tan

xgVmgK

Q

gVmg

Fe'










 

When this system was in air 
2

0

2

4
tan

mgx

Q

mg

Fe


 

 

 

 So equating these two gives us 





















m

VVm

m
K

Vmkm
1

1

)(

11

 

If   is the density of material of ball then 












σ

ρ
K

1

1

 

 

 

 

 

 

 

 

 

T sin  

T cos  
T 

Fe 

 

mg 

+Q 

l l 
  

x 
+Q 

T sin  

T cos  
T 

Fe 

 

(mg – Vg) 

+Q 

l l 
  

x 
+Q 
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15. Time Period of Oscillation of a Charged Body. 

 

(1) Simple pendulum based: If a simple pendulum having length l and mass of bob m oscillates about its 

mean position than its time period of oscillation 
g

l
T π2  

 

  

 

Case – 1  : If some charge say +Q is given to bob 

and an electric field E is applied in the direction as 

shown in figure then equilibrium position of 

charged bob (point charge) changes from O to O. 

 

 

 

 

 

 

 

On displacing the bob from its equilibrium position 

0. It will oscillate under the effective acceleration g, 

where 

    22
QEmgmg'    

 22 / mQEgg'   

Hence the new time period is  
g'

l
T 21   

  

  2
1

22

1 2

QE/mg

l
T



 π  

Since g' >g, hence T1 < T  

i.e. time period of pendulum will decrease. 

 

Case – 2  : If electric field is applied in the downward 

direction then. 

Effective acceleration 

mQEgg' /  

So new time period 

 QE/mg

l
T


 π22  

T2 < T 

Case – 3  : In case 2 if electric field is applied in 

upward direction then, effective acceleration. 

 mQEgg' /  

So new time period 

 
 QE/mg

l
T


 π23  

 T3 > T  

 

Case – 4  : In the case 3,  

if 
2

3

T
T   i.e., 

 mQEg

l

/
2


  

g

l
2

2

1
   QE = 3 mg 

 

 

i.e., effective vertical force (gravity + electric) on the 

bob = mg – 3 mg = – 2 mg, hence the equilibrium 

l 

O 

QE 

mg 
mg 

O 

 

 
d 

l 

O 

mg + QE 

 T l 

 

mg  

 

l 

QE 

 

mg 

QE 

O 
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position O of the bob will be above the point of 

suspension and bob will oscillate under on effective 

acceleration 2g directed upward. 

Hence new time period 
g

l
T

2
24 π ,   T4 < T 

 

(2) Charged circular ring: A thin stationary ring of radius R has a positive charge +Q unit. If a negative 

charge – q (mass m) is placed at a small distance x from the center. Then motion of the particle will be 

simple harmonic motion. 

Electric field at the location of – q charge 

 2

3
220

.
4

1

Rx

Qx
E






 

Since x<< R, So 2x  neglected hence 
3

0

.
4

1

R

Qx
E


    

Force experienced by charge – q is
3

0

.
4

1

R

Qx
qF


   

xF   Hence motion is simple harmonic  

Having time period 
qQ

mRπε
πT 0

3
4

2   

(3) Spring mass system: A block of mass m containing a negative charge – Q is placed on a frictionless 

horizontal table and is connected to a wall through an upstretched spring of spring 

constant k as shown. If electric field E applied as shown in figure the block 

experiences an electric force, hence spring compress and block comes in new 

position. This is called the equilibrium position of block under the influence of 

electric field. If block compressed further or stretched, it execute oscillation having 

time period
k

m
πT 2 . Maximum compression in the spring due to electric field 

= 
k

QE
 

 

 

 

 

 

 

x O 

R 
– q 

+Q + 
+ 

+ 

+ 

+ 

+ 

+ 
+ 

+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ + 

m, – Q 

E 

k 
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16.  Neutral Point. 

 

A neutral point is a point where resultant electrical field is zero. It is obtained where two electrical field are 

equal and opposite. Thus neutral points can be obtained only at those points where the resultant field is 

subtractive. Thus it can be obtained. 

 

(1) At an internal point along the line 

joining two like charges (Due to a system of two 

like point charge): Suppose two like charges. 1Q  

and 2Q  are separated by a distance x from each 

other along a line as shown in following figure. 

 

 

 

 

 

If N is the neutral point at a distance 1x from 1Q  and 

at a distance  12 xxx   from 2Q  then – 

At N ||| 21 toduetodue QE.F.QE.F.|   

i.e.,  
2
1

1

0

.
4

1

x

Q


=

2
2

2

0

.
4

1

x

Q



2

2

1

2

1















x

x

Q

Q
 

Short rick : 
12

1
1 /QQ

x
x


  and 

21

2
1 /QQ

x
x


   

 

Note: In the above formula if 21 QQ  , neutral point lies at 

the center so remember that resultant field at the 

midpoint of two equal and like charges is zero. 

(2) At an external point along the line 

joining two like charges (Due to a system of two 

unlike point charge): Suppose two unlike charge 

1Q and 2Q  separated by a distance x from each other. 

 

 

 

 

 

Here neutral point lies outside the line joining two 

unlike charges and also it lies nearer to charge which is 

smaller in magnitude. 

If 21 QQ   then neutral point will be obtained on 

the side of 1Q , suppose it is at a distance l from 1Q  

Hence at neutral point ; 
 2

2
2

1

lx

kQ

l

kQ




2

2

1 











lx

l

Q

Q
 

Short rick :   112 


/QQ

x
l   

 

 

Note: In the above discussion if |||| 21 QQ   neutral point 

will be at infinity. 

 

 

 

 

 

x 

x1 x2 

Q1 
N 

Q2 

l 

N 
Q1 

Q2 

x 



 

 

  39 

 

 

17.  Zero Potential Due to a System of Two Point Charge. 

 

If both charges are like then resultant potential is not zero at any finite point because potentials due to 

like charges will have same sign and can therefore never add up to zero. Such a point can be therefore 

obtained only at infinity. 

If the charges are unequal and unlike then all such points where resultant potential is zero lies on a closed 

curve, but we are interested only in those points where potential is zero along the line joining the two 

charges. 

Two such points exist, one lies inside and one lies outside the charges on the line joining the charges. Both 

the above points lie nearer the smaller charge, as potential created by the charge larger in magnitude will 

become equal to the potential created by smaller charge at the desired point at larger distance from it. 

 

I. For internal point : 

 

 

 

 

 

(It is assumed that 21 QQ  ). 

 
 1

2

1

1

xx

Q

x

Q


       

 112
1




/QQ

x
x  

II. For External point : 

 

 

 

 

 

 
 1

2

1

1

xx

Q

x

Q


        

 112
1




/QQ

x
x  

 

 

 

18.  Electric Potential Energy. 

 

(1) Potential energy of a charge: Work done in bringing the given charge from infinity to a point in the 

electric field is known as potential energy of the charge. Potential can also be written as potential energy 

per unit charge. i.e.  
Q

U

Q

W
V  . 

(2) Potential energy of a system of two charges: Since work done in bringing charge Q2 from  to point 

B is ,2 BVQW   where VB is potential of point B due to charge Q1 i.e. 
r

Q
VB

1

04

1


    

   

x 

x1 x2 

Q1 
P 

Q2 

x1 

Q1 Q2 

x 

P 
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So,   
r

QQ
UW 21

0

2 .
4

1


  

 

This is the potential energy of charge Q2, similarly potential energy of charge Q1 will be 
r

QQ
U 21

0

1 .
4

1


  

Hence potential energy of Q1 = Potential energy of Q2 = potential energy of system 
r

QQ
kU 21 (in C.G.S.  

r

QQ
U 21

) 

 

Note: Electric potential energy is a scalar quantity so in the above formula take sign of Q1 and Q2. 

 

(3) Potential energy of a system of n charges: In a system of n charges electric potential energy is 

calculated for each pair and then all energies so obtained are added algebraically. i.e.  









 .........

4

1

23

32

12

21

0 r

QQ

r

QQ
U


 and in case of continuous distribution of charge. As  VdQdU .     

 dQVU  

 

E.g. Electric potential energy for a system of three charges  

Potential energy 









31

13

23

32

12

21

04

1

r

QQ

r

QQ

r

QQ


  

While potential energy of any of the charge say Q1 is 









31

13

12

21

04

1

r

QQ

r

QQ


 

Note: For the expression of total potential energy of a system of n charges consider 
2

)1( nn
 number of pair of charges. 

 

(4) Electron volt (eV): It is the smallest practical unit of energy used in atomic and nuclear physics. As 

electron volt is defined as “the energy acquired by a particle having one quantum of charge 1e when 

accelerated by 1volt” i.e. 
C

J
CeV

1
106.11 19    J19106.1   = 1.6  10–12 erg  

Energy acquired by a charged particle in eV when it is accelerated by V volt is E = (charge in quanta) × (p.d. in 

volt)  

 

 

Q1 

r 

Q2 

A B 

Q1 

Q2 Q3 

r31 

r23 

r12 
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Commonly asked examples:  

 

(5) Electric potential energy of a uniformly charged sphere: Consider a uniformly charged sphere of 

radius R having a total charge Q. The electric potential energy of this sphere is equal to the work done in 

bringing the charges from infinity to assemble the sphere. 

      
R

Q
U

0

2

20

3


  

(6) Electric potential energy of a uniformly charged thin spherical shell: 

     
R

Q
U

0

2

8
  

(7) Energy density: The energy stored per unit volume around a point in an electric field is given by  

2
0

2

1

Volume
E

U
Ue  . If in place of vacuum some medium is present then 2

0
2

1
EU re   

 

Concepts 

 

 Electric potential energy is not localized but is distributed all over the field 

 If a charge moves from one position to another position in an electric field so it’s potential 

energy change and work done in this changing is if UUW   

 If two similar charge comes closer potential energy of system increases while if two dissimilar 

charge comes closer potential energy of system decreases. 

 

S.No. Charge Accelerated by 

p.d. 

Gain in K.E. 

(i) Proton  5  104 V K = e  5  104 V = 5  104 eV = 8  10–15 J  [JIPMER 1999] 

(ii) Electron  100 V K = e  100 V = 100 eV = 1.6  10–17 J [MP PMT 2000; AFMC 

1999] 

(iii) Proton  1 V K = e  1 V = 1 eV = 1.6  10–19 J [CBSE 1999] 

(iv) 0.5 C  2000 V K = 0.5  2000 = 1000 J  [JIPMER 2002] 

(v) -

particle 

 106 V K = (2e)  106 V = 2 MeV [MP PET/PMT 1998] 
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19. Motion of Charged Particle in an Electric Field. 

 

(1) When charged particle initially at rest is placed in the uniform field:  

Let a charge particle of mass m and charge Q be initially at rest in an electric field of strength E 

 

 

 

 

 

 

 

(i) Force and acceleration: The force experienced by the charged particle is QEF  . Positive charge 

experiences force in the direction of electric field while negative charge experiences force in the direction 

opposite to the field. [Fig. (A)] 

Acceleration produced by this force is 
m

QE

m

F
a    

Since the field E in constant the acceleration is constant, thus motion of the particle is uniformly 

accelerated. 

 

 

(ii) Velocity: Suppose at point A particle is at rest and in time t, it reaches the point B [Fig. (B)] 

V = Potential difference between A and B; S = Separation between A and B 

(a) By using atuv  ,      t
m

E
Qv  0 ,              

m

QEt
v   

(b) By using asuv 222  , s
m

QE
v  202      

m

QV
v

22      









s

V
E    

m

QV
v

2
   

(iii) Momentum: Momentum p = mv, QEt
m

QEt
mp    or  mQV

m

QV
mp 2

2
   

(iv)  Kinetic energy: Kinetic energy gained by the particle in time t is 

m

tEQ

m

QEt
mmvK

2

)(

2

1

2

1 2222
2   

Fig. (A) 

 

A B 

S 

Fig. (B) 

+Q 

– Q F=QE 

F = QE 
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      or  QV
m

QV
mK 

2

2

1
 

 

(2) When a charged particle enters with an initial velocity at right angle to the uniform field:  

When charged particle enters perpendicularly in an electric field, it describe a parabolic path as shown 

(i) Equation of trajectory: Throughout the motion particle has uniform velocity along x-axis and horizontal 

displacement (x) is given by the equation x = ut  

Since the motion of the particle is accelerated along y–axis, we will use equation of motion for uniform 

acceleration to determine displacement y. From 2

2

1
atutS   

We have 0u  (along y-axis) so 2

2

1
aty   

i.e., displacement along y-axis will increase rapidly with time (since )2ty   

From displacement along x-axis 
u

x
t    

So 

2

2

1


















u

x

m

QE
y ; this is the equation of parabola which shows 2xy   

 

(ii) Velocity at any instant: At any instant t, uv x   and 
m

QEt
v y   

So  
2

222
222||

m

tEQ
uvvvv yx   

If  is the angle made by v with x-axis than
mu

QEt

v

v

x

y
tan . 

Concepts 

 An electric field is completely characterized by two physical quantities Potential and Intensity. Force 

characteristic of the field is intensity and work characteristic of the field is potential. 

 If a charge particle (say positive) is left free in an electric field, it experiences a force )( QEF   in the 

direction of electric field and moves in the direction of electric field (which is desired by electric field), 

so its kinetic energy increases, potential energy decreases, then work is done by the electric field and 

it is negative. 

 

 

vx 

vy 

 

v 

Y 

X 

 

u 

P(x, y) 
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20.  Force on a Charged Conductor. 

 

To find force on a charged conductor (due to repulsion of like charges) imagine a small part XY to be cut 

and just separated from the rest of the conductor MLN. The field in the cavity due to the rest of the 

conductor is E2, while field due to small part is E1. Then 

 

Inside the conductor 021  EEE  or 21 EE   

Outside the conductor 
0

21



 EEE  

Thus 
0

21
2


 EE  

 

To find force, imagine charged part XY (having charge dA  placed in the cavity MN having field E2). Thus 

force 2)( EdAdF   or dAdF
0

2

2


 . The force per unit area or electric pressure is 

0

2

2




dA

dF
 

The force is always outwards as 2)(   is positive i.e., whether charged positively or negatively, this force 

will try to expand the charged body. 

 

A soap bubble or rubber balloon expands on given charge to it (charge of any kind + or –). 

 

 

 

21.  Equilibrium of Charged Soap Bubble. 

 

For a charged soap bubble of radius R and surface tension T and charge density .  the pressure due to 

surface tension 
R

T
4  and atmospheric pressure outP  act radially inwards and the electrical pressure )( elP  acts 

radially outward. 

 

The total pressure inside the soap bubble 
0

2

outin
2

4






R

T
PP  

Excess pressure inside the charged soap bubble
0

2

excessoutin
2

4






R

T
PPP . If air pressure inside and 

outside are assumed equal then outin PP  i.e., 0excess P . So, 
0

2

2

4






R

T
 

(A) 

+ + 
+ 

+ 
+ 

+ 
+ 

+ 
+ + + + + 

+ 
+ 

+ 
+ 

+ + + + M 

N 

Y 

X 

E2 
E1 

E1 
E2 

Inside 
E = 0 L 

+ 

+ 

+ 
+ + 

+ 

+ 
+ 

+ 

+ 
+ 

+ 
+ 

E2 

(B) 
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This result give us the following formulae 

(1) Radius of bubble 
2

08



 T
R   

(2) Surface tension 
0

2

8

 R
T   

(3) Total charge on the bubble TRRQ 028   

(4) Electric field intensity at the surface of the bubble 
R

kT

R

T
E





328

0

  

(5) Electric potential at the surface 
0

8
3




RT
RTkV   

 

 

22.  Electric Dipole. 

 

(1) General information: System of two equal and opposite charges separated by a small fixed distance 

is called a dipole. 

 

 

 

 

 

(i) Dipole axis: Line joining negative charge to positive charge of a dipole is called its axis. It may also be 

termed as its longitudinal axis. 

(ii) Equatorial axis: Perpendicular bisector of the dipole is called its equatorial or transverse axis as it is 

perpendicular to length. 

(iii) Dipole length: The distance between two charges is known as dipole length (L = 2l)  

(iv) Dipole moment: It is a quantity which gives information about the strength of dipole. It is a vector 

quantity and is directed from negative charge to positive charge along the axis. It is denoted as p


 and is 

defined as the product of the magnitude of either of the charge and the dipole length.  

i.e.     )2( lqp


  

Its S.I. unit is coulomb-meter or Debye (1 Debye = 3.3 × 10–30 C  m) and its dimensions are M0L1T1A1. 

 

 

air 

Pout 

Pin 

PT 
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+ 

+ + 

+ 
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+q 
2l 
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Note: A region surrounding a stationary electric dipole has electric field only.  

When a dielectric is placed in an electric field, its atoms or molecules are considered as tiny dipoles.  

 

 

 

 

 

Water (H2O), Chloroform (CHCl3), Ammonia (NH3), HCl, CO molecules are some example of permanent electric dipole. 

 

 

   

  

 

 

(2) Electric field and potential due to an electric dipole: It is better to understand electric dipole with 

magnetic dipole. 

 

S.No. Electric dipole Magnetic dipole 

(i) System of two equal and opposite charges 

separated by a small fixed distance. 

 

 

 

 

System of two equal and opposite magnetic 

poles (Bar magnet) separated by a small fixed 

distance. 

 

 

 

(ii) Electric dipole moment: )2( lqp


 , directed 

from  q  to +q. Its S.I. unit is coulomb × meter 

or Debye.  

Magnetic dipole moment: )2( lmM


 , directed 

from S to N. Its S.I. unit is ampere × meter2. 

(iii) Intensity of electric field   

 

 

 

 

 

 

Intensity of magnetic field 

 

 

 

 

 

 

+ 

+ 

– 
– O2– 

H+ 

H+ 

A 

–q +q 
2l 

B 

 

a +q 

Equatorial line 

Axial line 

 +  

 

g 

 

 

e 

 

2l 

 

– q a 

Equatorial line 

Axial line 

 

e 

 +  

 

 

 

 

g 

2l 

N S 

+ – + 
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If a, e and g are three points on axial, equatorial 

and  general position at a distance r from the 

center of dipole  

on axial point 
3

0

2
.

4

1

r

p
Ea


  (directed from – q to 

+q) 

on equatorial point 
3

0

.
4

1

r

p
Ee


 (directed from +q to 

–q) 

on general point )1cos3(.
4

1 2

3
0

 
 r

p
Ea  

Angle between – aE


 and p


 is 0o, eE


 and p


 is 

180o, E


 and p


 is ( + ) (where  tan
2

1
tan  ) 

Electric Potential – At a 
2

0

.
4

1

r

p
Va


 , At e 0V   

At g 
2

0

cos
.

4

1

r

p
V




   

 

If a, e and g are three points on axial, equatorial 

and  general position at a distance r from the 

center of dipole  

on axial point 
3

0 2
.

4 r

M
Ba




  (directed from  S to N) 

on equatorial point 
3

0 .
4 r

M
Be




  (directed from N 

to S) 

on general point )1cos3(.
4

2

3

0  




r

M
Ba  

Angle between – aB


 and M


 is 0o, eB


 and M


 is 

180o, B


 and M


 is ( + ) (where  tan
2

1
tan  ) 

 

  

 

 

(3) Dipole (electric/magnetic) in uniform field (electric/magnetic)  

(i) Torque: If a dipole is placed in an uniform field such that dipole (i.e. p


 or M


) makes an angle  with 

direction of field then two equal and opposite force acting on dipole constitute a couple whose tendency 

is to rotate the dipole hence a torque is developed in it and dipole tries to align itself in the direction of 

field. 

 

Consider an electric dipole in placed in an 

uniform electric field such that dipole (i.e. p ) 

makes an angle  with the direction of electric 

field as shown 

 

 

 

 

A magnetic dipole of magnetic moment M is 

placed in uniform magnetic field B by making an 

angle  as shown 

 

 

 

 

F = qE 

F = qE 

 

B 

A 

–q 

+q 

 

N 

S 

F = mB 

F = mB 
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(a) Net force on electric dipole 0netF  

(b) Produced torque  = pE sin    )( EP   

 

(a) Net force on magnetic dipole 0netF  

(b) torque  = MB sin    )( BM   

 

 

(ii) Work: From the above discussion it is clear that in a uniform electric/magnetic field dipole tries to align 

itself in the direction of electric field (i.e. equilibrium position). To change its angular position some work 

has to be done.  

Suppose an electric/magnetic dipole is kept in an uniform electric/magnetic field by making an angle 1 

with the field, if it is again turn so that it makes an angle 2 with the field, work done in this process is 

given by the formula  

 

 

 

 

 

 

)cos(cos 21   pEW  

If 1 = 0o and 2 =  i.e. initially dipole is kept along 

the field then it turn through  so work done 

)cos1(  pEW  

 

 

 

 

 

 

)cos(cos 21   MBW  

 If 1 = 0o and 2 =  then W = MB(1 – cos)  

 

(iii) Potential energy: In case of a dipole (in a uniform field), potential energy of dipole is defined as work done 

in rotating a dipole from a direction perpendicular to the field to the given direction i.e. if 1 = 90o and 2 =   

then – 

 

 

 

 

 

 

 

 

 

 

 

 

 

+q +q 

–q 

–q 

1 2 

 

 

 
 

 

 

 
 

 

 

1 2 
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)cos90(cos  pEUW   U = – pE cos )cos90(cos  MBUW   U = – MB cos 

 

 

(iv) Equilibrium of dipole: We know that, for any equilibrium net torque and net force on a particle (or 

system) should be zero. 

We already discussed when a dipole is placed in a uniform electric/magnetic field net force on dipole is 

always zero. But net torque will be zero only when  = 0o or 180o  

When  = 0o i.e. dipole is placed along the electric field it is said to be in stable equilibrium, because after 

turning it through a small angle, dipole tries to align itself again in the direction of electric field. 

When  = 180o i.e. dipole is placed opposite to electric field, it is said to be in unstable equilibrium. 

 

 

 

 

 

  = 0o    = 90O   = 180o  

Stable equilibrium  Unstable 

equilibrium  

 = 0    max = pE   = 0 

W = 0   W = pE  Wmax = 2pE  

Umin = – pE   U = 0  Umax = pE  

 

 

 

 

 = 0o     = 90O   = 180o  

Stable equilibrium    

Unstable equilibrium  

 = 0    max = MB     = 0 

W = 0      W = MB            Wmax = 

2MB  

Umin = – MB        U = 0   Umax = MB 

 

(v) Angular SHM: In a uniform electric/magnetic field (intensity E/B) if a dipole (electric/magnetic) is 

slightly displaced from its stable equilibrium position it executes angular SHM having period of oscillation. 

If I = moment of inertia of dipole about the axis passing through its center and perpendicular to its length. 

For electric dipole:  
pE

I
T 2  and For Magnetic dipole:  

MB

I
T 2  

 

(vi) Dipole-point charge interaction: If a point charge/isolated magnetic pole is placed in dipole field 

at a distance r from the midpoint of dipole then force experienced by point charge/pole varies according 

to the relation 
3

1

r
F   
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(vii) Dipole-dipole interaction: When two dipoles placed closed to each other, they experiences a force 

due to each other. If suppose two dipoles (1) and (2) are placed as shown in figure then  

Both the dipoles are placed in the field of one another hence potential energy dipole (2) is  

3

1

0

212122

2
.

4

1
0cos

r

p
pEpEpU


  

Then by using
dr

dU
F  , Force on dipole (2) is 

dr

dU
F 2

2   

  









3

21

0

2

2
.

4

1

r

pp

dr

d
F


 

4

21

0

6
.

4

1

r

pp


  

Similarly force experienced by dipole (1)  
4

21

0

1

6
.

4

1

r

pp
F


  so  

4

21

0

21

6
.

4

1

r

pp
FF


  

Negative sign indicates that force is attractive. 
4

21

0

6
.

4

1
||

r

pp
F


  and 

4

1

r
F    

S. No. Relative position of dipole Force Potential energy 

(i)  

 

 

4

21

0

6
.

4

1

r

pp


 (attractive) 

3

21

0

2
.

4

1

r

pp


 

(ii)  

 

 

 

 

 

4

21

0

3
.

4

1

r

pp


 (repulsive) 

3

21

0

.
4

1

r

pp


 

(iii)  

 

 

 

 

 

4

21

0

3
.

4

1

r

pp


 (perpendicular to r ) 0 

 

Note:  Same result can also be obtained for magnetic dipole. 

 

 

 

+q +q –q – q 
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–q 
 

r 
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(4) Electric dipole in non-uniform electric field: When an electric dipole is placed in a non-uniform field, 

the two charges of dipole experiences unequal forces, therefore the net force on the dipole is not equal 

to zero. The magnitude of the force is given by the negative derivative of the potential energy w.r.t. 

distance along the axis of the dipole i.e. 
dr

Ed
p

dr

dU
F . . 

Due to two unequal forces, a torque is produced which rotate the dipole so as to 

align it in the direction of field. When the dipole gets aligned with the field, the 

torque becomes zero and then the unbalanced force acts on the dipole and the 

dipole then moves linearly along the direction of field from weaker portion of the 

field to the stronger portion of the field. So in non-uniform electric field 

(i) Motion of the dipole is translatory and rotatory 

(ii) Torque on it may be zero. 

Concepts 

 

 For a short dipole, electric field intensity at a point on the axial line is double than at a point on the 

equatorial line on electric dipole i.e. Eaxial = 2Eequatorial 

 It is interesting to note that dipole field 
3

1

r
E   decreases much rapidly as compared to the field of a point 

charge .
1

2 









r
E  

 

 

 

 

 

 

 

 

 

 

 

+q 

– q 

qE 

qE 

E > E 
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23.  Electric Flux. 

 

(1) Area vector: In many cases, it is convenient to treat area of a surface as a vector. The length of the 

vector represents the magnitude of the area and its direction is along the outward drawn normal to the 

area. 

 

 

 

 

(2) Electric flux: The electric flux linked with any surface in an electric field is basically a measure of total 

number of lines of forces passing normally through the surface.  or 

Electric flux through an elementary area ds  is defined as the scalar product of area of field i.e. 

 cosdsEdsEd   

Hence flux from complete area (S)   cosdsE  = ES cos  

If  = 0o, i.e. surface area is perpendicular to the electric field, so flux linked with 

it will be max. 

i.e. max = E ds and if  = 90o,  min = 0  

 

(3) Unit and Dimensional Formula 

S.I. unit – (volt × m) or 
2m

CN 
  

It’s Dimensional formula – (ML3T–3A– 1) 

 

 

(4) Types: For a closed body outward flux is taken to be positive, while inward flux is to be negative  

 

 

   

 

 

 

 

 

 

Area ds 

 

ds 

 

 
 

(B) 

Body 

Negative-flux 

(A) 
Positive – flux 

Body 

n E 
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24.  Gauss’s Law. 

 

(1) Definition: According to this law, total electric flux through a closed surface enclosing a charge is 
0

1


 

times the magnitude of the charge enclosed i.e. )(
1

.

0

encQ


    

(2) Gaussian Surface: Gauss’s law is valid for symmetrical charge distribution. Gauss’s law is very helpful 

in calculating electric field in those cases where electric field is symmetrical around the source producing 

it. Electric field can be calculated very easily by the clever choice of a closed surface that encloses the 

source charges. Such a surface is called “Gaussian surface”. This surface should pass through the point 

where electric field is to be calculated and must have a shape according to the symmetry of source. 

e.g. If suppose a charge Q is placed at the center of a hemisphere, then to calculate the flux through this 

body, to encloses the first charge we will have to imagine a Gaussian surface. This imaginary Gaussian 

surface will be a hemisphere as shown.  

Net flux through this closed body 
0


Q

  

Hence flux coming out from given hemisphere is .
2 0


Q

  

(3) Zero flux: The value of flux is zero in the following circumstances 

  

(i) If a dipole is enclosed by a surface  

 

 

0;0  encQ  

 

 

(ii) If the magnitude of positive and negative 

charges are equal inside a closed surface 

 

 

 ,0encQ   

so,   = 0 

 Q 

+q –q 

+q 

+4q 

–5q 
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(iii) If a closed body (not enclosing any charge) is placed in an electric field (either uniform or non-

uniform) total flux linked with it will be zero 

 

 

 

 

 

 

 

 

 

     0T       2aEutoin    

 

(4) Flux emergence: Flux linked with a closed body is independent of the shape and size of the body and 

position of charge inside it  
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(i) If a hemispherical body is placed in uniform 

electric field then flux linked with the curved surface 

  

 

 

ERcurved
2   

(ii) If a hemispherical body is placed in non-uniform 

electric field as shown below. Then flux linked with 

the curved surface. 

 

 

ERcurved
22   

(v) If charge is kept at the center of cube 

 

    ).(
1

0

Qtotal


   

    
06


Q

face    

   

 
08


Q

corner     
012


Q

edge   

 

(iv)  If charge is kept at the center of a face  

 

 

    

 

First we should enclosed the charge by assuming a 

Gaussian surface (an identical imaginary cube) 

 
0


Q

total   

    
02


Q

cube   (i.e. from 5 face 

only) 

    
00 1025

1




QQ
face 










 . 

 

Concept 

 In C.G.S. 



4

1
0  .  Hence if 1C charge is enclosed by a closed surface so flux through the surface will 

be  4 . 
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25. Application of Gauss’s Law. 

 

Gauss’s law is a powerful tool for calculating electric field in case of symmetrical charge distribution by 

choosing a Gaussian surface in such a way that E  is either parallel or perpendicular to its various faces.  

E.g. Electric field due to infinitely long line of charge: Let us consider a uniformly 

charged wire of infinite length having a constant linear charge density is .
length

charge










Let P be a point distant r from the wire at which the electric field is to be calculated. 

 

 

Draw a cylinder (Gaussian surface) of radius r and length l around the line charge which 

encloses the charge Q ( lQ . ). Cylindrical Gaussian surface has three surfaces; two circular and one 

curved for surfaces (1) and (2) angle between electric field and normal to the surface is 90o i.e., .90o   

So flux linked with these surfaces will be zero. Hence total flux will pass through curved surface and it is  

    cosdsE    …. (i) 

According to Gauss’s law  

  
0


Q

      …. (ii) 

Equating equation (i) and (ii)   
0

Q
dsE    
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