### JEE MAIN

COURSE NUCLEUS

TEST CODE 1 1 1 2 9 7

# MOCK TEST-10

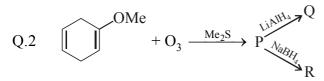
Class: XII Date: 12-12-2018 Time: 3 Hours. Max. Marks: 360

### **IMPORTANT INSTRUCTIONS**

- 1. The question paper consists of '90' objective type questions. There are '30' questions each in <a href="Chemistry">Chemistry</a>, <a href="Mathematics">Mathematics</a> and <a href="Physics">Physics</a> respectively. <a href="Physics">Please fill the OMR answer Sheet accordingly and carefully.
- **2.** Each question has four choices (1), (2), (3) and (4) out of which **ONLY ONE** is correct.
- 3. You will be awarded 4 marks for each question, if you have darkened only the bubble corresponding to the correct answer and zero mark if no bubble are darkened. In all other cases, minus one (-1) mark will be awarded.
- 4. There is only one correct response for each question. Filling up more than one response in each question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 3 above.
- 5. Use **Black or Blue Ball Point Pen** only for filling particulars.
- 6. Use of Calculator, Log Table, Slide Rule and Mobile is not allowed.
- 7. Rough work is to be done on the space provided at the bottom and in end of the booklet for this purpose in the Test Booklet only.
- 8. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator. However, the candidates are allowed to take away this Test Booklet with them.
- **9.** Do not fold or make any stray marks on the Answer Sheet.

#### USEFUL DATA

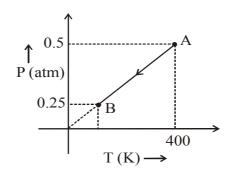
Atomic weights: Al = 27, Mg = 24, Cu = 63.5, Mn = 55, Cl = 35.5, O = 16, H = 1, P = 31, Ag = 108, N = 14, Li = 7, I = 127, Cr = 52, K = 39, S = 32, Na = 23, C = 12, Br = 80, Fe = 56, Ca = 40, Zn = 65.5, Ti = 48, Ba = 137, U = 238, Co = 59, B = 11, F = 19, He = 4, Ne = 20, Ar = 40, Mo = 96


[Take :  $ln\ 2 = 0.693$ ,  $ln\ 1.1 = 0.095$ ,  $ln\ 3 = 1.09$ ,  $e = 1.6 \times 10^{-19}$ ,  $m = 9.1 \times 10^{-31}$  kg ] Take:  $\epsilon_0 = 8.85 \times 10^{-12}$  C<sup>2</sup>/Nm<sup>2</sup>, g = 10 m/s<sup>2</sup>,  $S_{water} = 1$  cal/gm <sup>6</sup>C,  $L_{ice} = 80$  cal/gm., g = 10 m/s<sup>2</sup> unless otherwise stated

### CHEMISTRY

- Q.1 Consider the following process and respective energy change -
  - $M(s) \rightarrow M(g)$ ....(a)
  - $M(s) \rightarrow M^{2+}(g) + 2e^{-}$  .....(b)
  - $M(g) \to M^+(g) + e^-$  .....(c)
  - $M^+\!(g) \to M^{2+}\!(g) + e^- \ .....(d)$
  - $M(g) \rightarrow M^{2+}(g) + 2e^{-}$  .....(e)

Energy required to change M(s) into  $M^+(g)$  is -


- (1) a + c + d
- (2) a + c
- (3) a + e c
- (4) e c



Product P, Q, R will be respectively:

| Q.3 | In an unielectronic species, the number of revolution per second made by the electron in 4 <sup>th</sup> orbit is twice of the number of revolutions per second made by the electron in 2 <sup>nd</sup> orbit of H-atom. The unielectronic specie is,                                                                                                                                                     |                                |                               |                        |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|------------------------|
|     | (1) H                                                                                                                                                                                                                                                                                                                                                                                                     | (2) He <sup>+</sup>            | $(3) Li^{2+}$                 | $(4) \mathrm{Be^{3+}}$ |
| Q.4 | Which metal gives H <sub>2</sub> gas on reaction with NaOH solution-                                                                                                                                                                                                                                                                                                                                      |                                |                               |                        |
|     | (1)Zn                                                                                                                                                                                                                                                                                                                                                                                                     | (2) Mg                         | (3) Fe                        | (4) Cu                 |
| Q.5 | Which of the following will not undergo decarboxylation.                                                                                                                                                                                                                                                                                                                                                  |                                |                               |                        |
|     | (1) COOH                                                                                                                                                                                                                                                                                                                                                                                                  |                                | (2) COOH                      |                        |
|     | $(3) \bigcirc \begin{matrix} O \\ \parallel \\ C-CH_2- \end{matrix}$                                                                                                                                                                                                                                                                                                                                      | -СООН                          | COOH<br>(4) O                 |                        |
| Q.6 | 50 ml aliquot of a $\rm H_2O_2$ (aq.) solution is titrated against 200 ml of 0.2 M acidified KMnO <sub>4</sub> (aq.) solution. After the equivalence point, remaining KMnO <sub>4</sub> (aq.) solution requires 100 ml, 0.5 M H <sub>2</sub> C <sub>2</sub> O <sub>2</sub> (aq.) solution in acidic medium. The volume strength of $\rm H_2O_2$ (aq.) solution is (1) 1 V (2) 11.2 V (3) 5.6 V (4) 22.4 V |                                |                               |                        |
| Q.7 | The aqueous solution of slaked lime in excess water is known as - (1) Lime water (2) Lime stone (3) Milk of lime (4) Quick lime                                                                                                                                                                                                                                                                           |                                |                               |                        |
| Q.8 | How many stereoison (1) 4                                                                                                                                                                                                                                                                                                                                                                                 | ners will be formed of 2-(2) 6 | methyl hepta-3E, 5E-die (3) 7 | enoic acid? (4) 8      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                               |                        |

Q.9 Two moles of Ar (g) are subjected to following change:



Considering ideal behaviour, the heat lost by the gas during process AB will be:

- (1)-1200 Cal
- (2) 1200 Cal
- (3) 2400 Cal
- (4) 1000 Cal

Q.10 In which of the following process, the bond order has increased and the magnetic behaviours is changed?

- $(1) C_2^+ \rightarrow C_2$
- $(2) \text{ NO}^+ \rightarrow \text{NO}$
- $(3) O_2 \rightarrow O_2^+$
- $(4) N_2 \rightarrow N_2^+$

Q.11 Which order of basicity is correct for given groups:

- (I) NH<sub>3</sub>
- (II)  $C_2H_5NH_2$
- (III) (C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>NH
  - $(IV) (C_2H_5)_3N$

- (1) IV > III > II > II
- (2) III > IV > II > I
- (3) III > II > IV > I (4) I > II > III > IV

Q.12 At 25°C, consider following reactions,

$$NO + SO_3 \rightleftharpoons NO_2 + SO_2$$
;  $K_C = 3$   
 $2SO_2 + O_2 \rightleftharpoons 2SO_3$ ;  $K_C = 16 \text{ (mol/L)}^{-1}$ 

The value of equilibrium constant  $(K_C)$  for the reaction :  $2NO_2 \rightleftharpoons 2NO + O_2$  will be :

- $(1) 12 \, \text{mol/L}$
- (2) 144 mol/L
- (3) 9 mol/L
- $(4) \frac{1}{144} \text{mol/L}$

Q.13 Which of the following is an oxidizing agent?

- $(1) [Mn(CO)_5]$
- (2) [Fe(CO)<sub>5</sub>]
- (3)  $[Mn_2(CO)_{10}]$  (4)  $[Fe_2(CO)_5]$

Q.14 Select incorrect statement in the given:

- (1) D-glucose and D-galactose are used to form lactose.
- (2) Sucrose is the non-reducing sugar
- (3) Glucose gives positive Tollen's test
- (4) Glycine that is an amino acid is optically active.

- In Cesium iodide crystal, iodide ions form ideal simple cubic lattice while Cs<sup>+</sup> ions occupied cubic voids. If radius of I ion is 500 pm then radius of Cs<sup>+</sup> ion is nearly  $(1)850 \, pm$ (2) 150 pm (3) 366 pm (4) 1000 pm Which of the following is not a common product of hydrolysis of XeF<sub>2</sub> and XeF<sub>4</sub>? Q.16 (1) Xe (2) XeO<sub>3</sub>(3) HF  $\xrightarrow{\text{Sn+HCl}} (A) \xrightarrow{\text{NaNO}_2 + \text{HCl}} (B) \xrightarrow{\text{CuCl/HCl}} (C)$ Final product C is: During electrophoresis of a sol -Q.18
  - (1) The ferric hydroxide (sol) particles get accumulated near the cathode
  - (2) The sol particles of metals and their sulphides are accumulted at cathode.
  - (3) Basic dye methylene blue are accumulted at anode.
  - (4) Neither DP nor DM particles move in an electric field.
- Q.19 Correct order of bond angle is -

(1) 
$$PH_4^+ > OF_2 > SF_2 > SbH_3$$

(2) 
$$OF_2 > SF_2 > PH_4^+ > SbH_3$$

(3) 
$$PH_4^+ > SF_2^- > OF_2^- > SbH_3^-$$

$$\begin{array}{ll} \text{(1) $PH_4^+ > OF_2 > SF_2 > SbH_3$} \\ \text{(3) $PH_4^+ > SF_2 > OF_2 > SbH_3$} \\ \end{array} \\ \text{(2) $OF_2 > SF_2 > PH_4^+ > SbH_3$} \\ \text{(4) $SF_2 > OF_2 > PH_4^+ > SbH_3$} \\ \end{array}$$

Q.20 
$$H_5C_2 - CH - C - NH_2 \xrightarrow{Br_2/KOH} P \xrightarrow{NaNO_2 + HCl} Q \xrightarrow{PCC} R$$
Final product R does not give

Final product R does not give

(1) Haloform reaction

(2) Tautomerisation

(3) Tollen's Test

(4) Fehling Test

Q.21 At 25°C, if  $E_{Sn^{2+}|Sn}^{o} = x$  volt and  $E_{Sn^{4+}|Sn}^{o} = y$  volt then  $E_{Sn^{2+}|Sn^{4+}}^{o}$  in volt will be:

(1) x - y

(2) 2x + 4y

(3) x - 2y

(4) 4y - 2x

Q.22 Boric acid polymerizes due to -

(1) the presence of hydrogen bond.

(2) its acidic nature.

(3) its geometry

(4) its monobasic nature.

Q.23 
$$N-H \xrightarrow{(i) \text{KOH} \atop (ii) \text{C}_2\text{H}_5-\text{X} \atop (iii) \text{aq.NaOH}} P \xrightarrow{\text{CHCl}_3+\text{NaOH} \atop \Delta} Q$$

Which of the given statement is incorrect:

- (1) Product P reacts with grignard reagent to form hydrocarbon.
- (2) Product P gives reaction with benzene sulphonyl chloride
- (3) Product Q is a good smelling compound
- (4) Product Q on acidic hydrolysis gives an amide.
- Q.24 At 373 K, the vapour pressure of pure water decreases by 190 torr when a certain amount of a non-volatile solute is dissolved. The mole fraction of solute in the solution is

(1) 19

(2)25

(3) 0.75

(4) 0.25

O.25 Which one is mismatched?

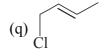
(1) Poling - refining of copper.

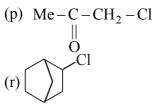
(2) Cupellation - refining of silver

(3) Roasting - An oxidation process.

(4) Smelting - An oxidation process.

Q.26 For which of the following reaction product is not correctly matched.


(1) 
$$CH_3 - C - H + \bigcirc \longrightarrow CHO \xrightarrow{\text{dil.NaOH}} Cross \text{ product shows G.I.}$$


$$(2) \xrightarrow{\text{CCl}_4} \xrightarrow{\text{NaOH}} \xrightarrow{\text{OH}} \xrightarrow{\text{COOH}} \xrightarrow{\text{(CH}_3\text{CO)}_2\text{O}} \text{Aspiring}$$

(3) 
$$\xrightarrow{\text{(i)O}_2} P + Q, P \text{ does not give reaction with FeCl}_3.$$

(4) 
$$\bigcirc$$
 +  $\operatorname{Cl}_2(\operatorname{excess}) \xrightarrow{hv}$  Benzene hexa chloride

- A substance X decomposes following 1st order kinetics with a half life of 100 minutes. The fraction of Q.27 initial concentration of X, which is reacted after 300 minutes will be:
  - $(1) \frac{1}{8}$
- $(2)\frac{1}{2}$
- $(3) \frac{1}{4}$
- $(4) \frac{7}{9}$
- Which of the following molecule have only one  $p\pi$ -d $\pi$  bond and zero  $p\pi$ -p $\pi$  bonds? Q.28
  - $(1) ClO_3^{-1}$
- (2) SO<sub>2</sub>
- (3) ClF<sub>3</sub>
- Find out correct order of reactivity of given compounds with respect to  $S_N 2$ Q.29





- (s)  $Me O CH_2 Cl$
- (1) p > s > q > r (2) r > q > s > p (3) s > p > r > q (4) q > r > p > s

- Q.30 At 25°C,  $K_{sp}$  values of four salts AB(s),  $MB_2(s)$ ,  $N_3C_2(s)$  and  $A_3C(s)$  are numerically equal. For dissolution of all salts in pure water, the only correct statement is -
  - (1) Solubility of all salts are same.
- (2)  $MB_2(s)$  is more soluble than  $A_3C(s)$ .

(3)  $N_3C_2(s)$  is most soluble.

(4) AB(s) is most soluble.

If  $y = \frac{ax^2 - 3x + 5}{5x^2 - 3x + a}$ , then number of possible integral values of 'a' for which y may be capable of all

values  $\forall x \in R$  is

- (1) 4
- (2)5
- (3)6
- (4) none of these
- Let  $a^2$ ,  $b^2$  and  $c^2$  be three distinct numbers in AP. If ab + bc + ca = 1 then (b + c), (c + a) and (a + b)
  - (1)AP
- (2) GP
- (3) HP
- (4) none of these

- $\frac{\sin 20^{\circ} + \cos 20^{\circ} + \sin 50^{\circ}}{\cos 10^{\circ} \cdot \sin 35^{\circ} \cdot \cos 25^{\circ}} \text{ equals}$ Q.33
  - (1)4
- (2) 2
- (3) 3
- (4) 15
- Let  $f(x) = [x] + \sqrt{x} + 1$  and  $g(x) = [x] + (x)^2 1$  then  $\int_{-\infty}^{2} f(x) dx + \int_{-\infty}^{3} g(x) dx$  equals

Where [k] denotes greatest integer function less than or equal to k and  $\{x\}$  is fractional part function (3)6

Q.35 Let  $\alpha_0, \alpha_1, \alpha_2, \ldots, \alpha_{n-1}$  be the n distinct n<sup>th</sup> roots of the unity, then the value of  $\sum_{r=0}^{n-1} \frac{\alpha_r}{3-\alpha_r}$  is equal

- (1)  $\frac{n}{3^n 1}$  (2)  $\frac{n 1}{3^n 1}$  (3)  $\frac{n + 1}{3^n 1}$
- $(4) \frac{n+2}{3^n-1}$

- Q.36 The value of  $\sqrt{7 + \sqrt{7 \sqrt{7 + \sqrt{7 \dots \infty}}}}$  is (1) 5 (2) 4

- (3)3
- (4)2

- If  $x \in \{1, 2, 3, \dots, 9\}$  and  $f_n(x) = x \times x \times \dots \times (n\text{-digits})$  then  $(f_n(3))^2 + f_n(2)$  is equal to  $(1) 2f_{2n}(1)$   $(2) f_n^2(1)$   $(3) f_{2n}(1)$   $(4) f_{2n}(4)$ 0.37

- Number of points having position vector  $\hat{ai} + \hat{bj} + c\hat{k}$  where a, b, c  $\in \{1, 2, 3, 4, 5\}$  such that Q.38  $2^a + 3^b + 5^c$  is divisible by 4 is
  - (1)70
- (2) 140
- (3)210
- (4)280
- If n be an integer and x, y, z, w are distinct, the number of distinct terms in the expansion of 0.39 $(x+y+z+w)^n$  is
  - $(1) {}^{n}C_{2}$
- $(2)^{n+2}C_2$
- $(3)^{n+3}C_n$
- $(4) {}^{n}C_{3}$
- If  $f(x) = \begin{vmatrix} x^2 + 3x & x 1 & x 3 \\ x + 1 & 2 x & x 3 \\ x 3 & x + 4 & 3x \end{vmatrix}$ , then f'(0) is equal to
- (3)24
- (4) none of these
- Q.41 If  $P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$ ,  $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$  and  $Q = PAP^T$ , then  $P^TQ^{2019}P$  is equal to
- $(1)\begin{bmatrix} 1 & 2019 \\ 0 & 1 \end{bmatrix} \qquad (2)\begin{bmatrix} \frac{\sqrt{3}}{2} & 2019 \\ 0 & \frac{\sqrt{3}}{2} \end{bmatrix} \qquad (3)\begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{2019}{2} \\ \frac{-2019}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \qquad (4)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- Let  $A = \{1, 3, 5, 7, 9\}$  and  $B = \{2, 4, 6, 8\}$  be two set. An element (a, b) of their cartesian product  $A \times B$  is chosen at random. The probability that (a + b) = 9 is
  - $(1)\frac{4}{5}$
- $(2)\frac{3}{5}$
- $(3)\frac{2}{5}$
- $(4)\frac{1}{5}$

Q.43 Let  $f:[0,1] \to \mathbb{R}$  be a function defined as  $f(x) = x^3 - x^2 + 4x + 2\sin^{-1}x$ , then number of integers in the range of the function y = f(x) is

(1)2

(3)8

(4) 16

 $\lim_{x \to \frac{\pi}{2}} \frac{\sin x - (\sin x)^{\sin x}}{1 - \sin x + \ln(\sin x)}$  is equal to

(1)2

(2) 1

(3)3

(4)0

Let  $f(x) = x^3 + ax^2 + bx + 5\sin^2 x$  be an increasing function  $\forall x \in \mathbb{R}$ , then which of the following must be Q.45

(1)  $a^2 - 3b - 15 > 0$ 

(2)  $a^2 - 3b + 15 < 0$  (3)  $a^2 - 3b + 25 < 0$  (4)  $a^2 - 3b + 15 > 0$ 

The co-ordinate of the point on  $y^2 = 8x$  which is closest from  $x^2 + (y + 6)^2 = 1$  are 0.46

(1)(2,-4)

(2)(18,-12)

(3)(32,16)

(4)(32,-16)

The area bounded by y = 2 - |2 - x|;  $y = \frac{3}{|x|}$  is 0.47

(1) 3 ln 5

(2)  $\frac{7\ln 2}{2}$  (3)  $\frac{5-3\ln 3}{2}$ 

(4) none

Q.48 Solution of  $\left(\frac{x+y-1}{x+y-2}\right)\frac{dy}{dx} = \left(\frac{x+y+1}{x+y+2}\right)$ , if at x = 1, y = 1, is

(1)  $ln \left| \frac{(x-y)^2 - 2}{2} \right| = 2(x+y)$  (2)  $ln \left| \frac{(x-y)^2 - 2}{2} \right| = 2(x-y)$ 

(3)  $ln \left| \frac{(x-y)^2 + 2}{2} \right| = 2(x+y)$  (4)  $ln \left| \frac{(x-y)^2 + 2}{2} \right| = 2(x-y)$ 

The four sides of a quadrilateral are given by the equation xy(x-2)(y-3)=0. The equation of the line 0.49 parallel to x - 4y = 0 that divides the quadrilateral in two equal areas is (1) x - 4y - 5 = 0 (2) x - 4y + 5 = 0(3) x - 4y - 1 = 0(4) x - 4y + 1 = 0Q.50 If  $\frac{\sin^4 \theta}{5} + \frac{\cos^4 \theta}{1} = \frac{1}{6}$ , then  $\sec^2 \theta$  is equal to (3)6(4) 2If the line  $x\cos \alpha + y\sin \alpha = P$  cuts the circle  $x^2 + y^2 = a^2$  at A and B (0 < P < a) then the equation of Q.51 circle, whose one diameter is line segment AB, is (1)  $x^2 + y^2 - a^2 + 2P (x\cos \alpha + y\sin \alpha - P) = 0$ (2)  $x^2 + y^2 - a^2 - 2P(x\cos\alpha + y\sin\alpha - P) = 0$ (3)  $x^2 + y^2 - a^2 - 4P (x\cos \alpha + y\sin \alpha + P) = 0$ (4) none of these If the chord of contact of tangents from a point P to the parabola  $y^2 = 4ax$  touches the parabola O.52 $x^2 = 4by$ , then the locus of P is a/an (3) ellipse (1) circle (2) parabola (4) hyperbola

Q.53 The equation  $(2x-y+1)^2 + 4(x+2y-3)^2 = 16$  represents a conic whose centre is  $(1)\left(\frac{7}{5}, \frac{1}{5}\right) \qquad (2)\left(\frac{1}{5}, \frac{7}{5}\right) \qquad (3)(1,7) \qquad (4) \text{ none of these}$ 

Q.54 The equation of the common tangent to the curves  $y^2 = 8x$  and xy = -1 is (1) 3y = 9x + 2 (2) y = 2x - 1 (3) 2y = x + 8 (4) y = x + 2

Q.55 Let P be any arbitrary point on the circumcircle of a given equilateral triangle ABC of side length a, then  $\left| \overrightarrow{PA} \right|^2 + \left| \overrightarrow{PB} \right|^2 + \left| \overrightarrow{PC} \right|^2$  is equal to

(1)  $2a^2$  (2)  $2\sqrt{3}a^2$  (3)  $a^2$  (4) none of these

Q.56 If the lines  $\vec{r} = \vec{a} + t\vec{b}$  and  $\vec{r} = \vec{c} + \lambda \vec{d}$  are co-planar, then

 $(1) (\vec{a} - \vec{b}) \cdot (\vec{c} \times \vec{d}) = 0$ 

(2)  $(\vec{c} - \vec{d}) \cdot (\vec{a} \times \vec{b}) = 0$ 

 $(3) (\vec{b} - \vec{d}) \cdot (\vec{a} \times \vec{c}) = 0$ 

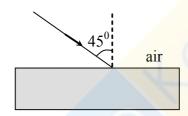
 $(4) (\vec{a} - \vec{c}) \cdot (\vec{b} \times \vec{d}) = 0$ 

Q.57  $\lim_{n\to\infty} \sum_{r=1}^{n} \frac{\pi}{n} sin\left(\frac{\pi r}{n}\right)$  is equal to

- (2)2
- (3)3
- (4)4

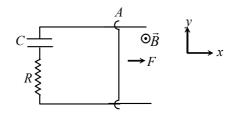
Q.58 Number of points at which the function  $f(x) = [3 + 11\sin x]$  [ $x \in (0, \pi)$  and [ $\cdot$ ] is greatest integer function] is not differentiable is

- (1)11
- (2)22
- (3)21
- (4)23

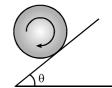

Sum of maximum and minimum values of  $y = (\sin^{-1}x)^4 + (\cos^{-1}x)^4$  is Q.59

- (1)  $\frac{137\pi^4}{128}$
- (2)  $\frac{69\pi^4}{64}$
- (3)  $\frac{37\pi^4}{32}$  (4)  $\frac{141\pi^4}{128}$

Q.60 If  $f(x) = \int \sqrt{\frac{\cos x - \cos^3 x}{1 - \cos^3 x}} dx$  and  $f\left(\frac{-\pi}{2}\right) = 0$ , then  $f\left(\frac{-\pi}{3}\right)$  is equal to


- $(1) \frac{-\pi}{3} \qquad (2) \frac{-\pi}{6} \qquad (3) \frac{-2}{3} \sin^{-1} \left(\frac{1}{\sqrt{8}}\right) \qquad (4) \frac{2}{3} \sin^{-1} \left(\frac{1}{\sqrt{8}}\right)$

- The force exerted by a compression device is given by  $F(x) = kx (x \ell)$  for  $0 \le x \le \ell$ , where  $\ell$  is the maximum possible compression, x is the compression and k is a constant. The work required to compress the device by a distance d will be maximum when:
  - $(1) d = \frac{\ell}{\Delta}$
- (2)  $d = \frac{\ell}{\sqrt{2}}$  (3)  $d = \frac{\ell}{2}$  (4)  $d = \ell$
- Two uniform solid balls of same density and of radii r and 2r are dropped in air and fall vertically Q.62 downwards. The terminal velocity of the ball with radius r is 1 cm s<sup>-1</sup>, then the terminal velocity of the ball of radius 2r will be (neglect bouyant force on the balls.)
  - $(1) 0.5 \text{ cm s}^{-1}$
- $(2) 4 \text{ cm s}^{-1}$
- $(3) 1 \text{ cm s}^{-1}$
- $(4) 2 \text{ cm s}^{-1}$
- A ray of light enters into a transparent liquid from air as shown in the figure. The refractive index of the Q.63 liquid varies with depth x from the topmost surface as  $\mu = \sqrt{2} - \frac{1}{\sqrt{2}}$  x where x in meters. The depth of the liquid medium is sufficiently large. The maximum depth reached by the ray inside the liquid is



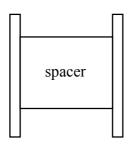

- (1)  $\sqrt{2}$  m
- (2)  $\frac{1}{\sqrt{2}}$  m
- (3) 0.5 m
- (4) 1 m
- A point source is emitting sound in all directions. The ratio of distance of two points from the point source Q.64 where the difference in loudness levels is 3 dB is:  $(\log_{10} 2 = 0.3)$ 
  - $(1)\frac{1}{2}$
- $(2) \frac{1}{\sqrt{2}}$
- $(3) \frac{1}{4}$
- $(4)\frac{2}{3}$

A conducting rod AB moves parallel to x-axis in the x-y plane. A uniform magnetic field B pointing normally out of the plane exists throughout the region. A force F acts perpendicular to the rod, so that the rod moves with uniform velocity v. The force F is given by (neglect resistance of all the wires)



- (1)  $\frac{vB^2l^2}{R}e^{-t/RC}$  (2)  $\frac{vB^2l^2}{R}$
- (3)  $\frac{vB^2l^2}{R} \left( 1 e^{-t/RC} \right)$  (4)  $\frac{vB^2l^2}{R} \left( 1 e^{-2t/RC} \right)$
- A cylinder of mass m and radius R is spined to a clockwise angular Q.66 velocity ω and then gently placed on an inclined plane for which coefficient of friction  $\mu = \tan \theta$ ,  $\theta$  is the angle of inclined plane with horizontal. The centre of mass of the cylinder will remain stationary for time:



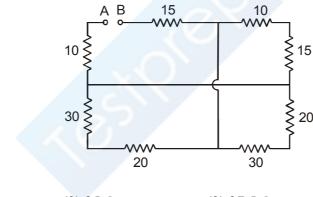

 $(1) \omega_0 R/g \sin\theta$ 

 $(3) 2\omega_0 R/5g\sin\theta$ 

- (2)  $2\omega_{o}R/3g\sin\theta$ (4)  $\omega_{o}R/2g\sin\theta$
- N atoms of a radioactive element emit n alpha particles per second at an instant. Then the half-life of the element is
  - (1)  $\frac{n}{N}$  sec.

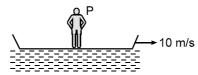
- (2) 1.44  $\frac{n}{N}$  sec. (3) 0.69  $\frac{n}{N}$  sec. (4) 0.69  $\frac{N}{n}$  sec.
- Q.68 A heavy nucleus having mass number 200 gets disintegrated into two small fragments of mass number 80 and 120. If binding energy per nucleon for parent atom is 6.5 M eV and for daughter nuclei is 7 MeV and 8 MeV respectively, then the energy released in the decay will be:
  - (1) 200 MeV
- (2) 220 MeV
- (3) 220 MeV
- (4) 180 MeV
- The angular momentum of an electron in first orbit of Li<sup>++</sup> ion is: Q.69
  - (1)  $\frac{3h}{2\pi}$
- (3)  $\frac{h}{2\pi}$
- $(4) \frac{h}{6\pi}$

A capacitor is to be designed to operate, with constant capacitance, in an environment of fluctuating temperature. As shown in the figure, the capacitor is a parallel plate capacitor with 'spacer' to change the distance for compensation of temperature effect. If  $\alpha_1$  be the co-efficient of linear expansion of plates and  $\alpha_2$  that of spacer, the condition for no change in capacitance with change of temperature is (The capacitance of the capacitor is equal to C and spacer have insulated ends)




- (1)  $\alpha_1 = \alpha_2$
- (2)  $\alpha_1 = 2\alpha_2$
- (3)  $2\alpha_1 = \alpha_2$
- (4)  $2\alpha_1 = 3\alpha_2$
- A balloon containing an ideal gas has a volume of 10 litre and temperature of 17°. If it is heated slowly to Q.71 75°C, the work done by the gas inside the balloon is (neglect elasticity of the balloon and take atmospheric pressure as 10<sup>5</sup> Pa)
  - (1) 100 J
- (2) 200 J
- (3) 250 J
- (4) data insufficient
- A bird is flying up at angle sin<sup>-1</sup> (3/5) with the horizontal. A fish in a pond looks at that bird. When it is O.72vertically above the fish. The angle at which the bird appears to fly (to the fish) is:  $[n_{water} = 4/3]$ 
  - $(1) \sin^{-1}(3/5)$
- $(2) \sin^{-1}(4/5)$
- $(3)45^{\circ}$
- $(4) \sin^{-1}(9/16)$
- A very small circular loop of area  $5 \times 10^{-4}$  m<sup>2</sup> and resistance 2 ohm is initially concentric and coplanar Q.73 with a stationary loop of radius 0.1 m. If one ampere constant current is passed through the bigger loop and the smaller loop is rotated about its diameter with constant angular velocity  $\omega$ . The current induced (in ampere) in the smaller loop will be:
  - (1)  $\frac{\pi\omega}{2} \times 10^{-9} \cos\omega t$  (2)  $\pi\omega \times 10^{-9} \sin\omega t$  (3)  $\frac{\pi\omega}{2} \times 10^{-9} \sin\omega t$  (4)  $\pi\omega \times 10^{-9} \sin\omega t$

- Q.74 A metallic charged ring is placed in a uniform magnetic field with its plane perpendicular to the field. If the magnitude of field starts increasing with time, then:
  - (1) the ring starts translating
  - (2) the ring starts rotating about its axis
  - (3) the ring starts rotating about a diameter
  - (4) the ring remains at rest


- Axis of a solid cylinder of infinite length and radius R lies along y-axis it carries a uniformly distributed current 'i' along +y direction. Magnetic field at a point  $\left(\frac{R}{2}, y, \frac{R}{2}\right)$  is :

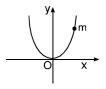
- $(1) \frac{\mu_0 I}{4\pi R} (\hat{i} \hat{k}) \qquad (2) \frac{\mu_0 i}{2\pi R} (\hat{j} \hat{k}) \qquad (3) \frac{\mu_0 i}{4\pi R} \hat{j} \qquad (4) \frac{\mu_0 I}{4\pi R} (\hat{i} + \hat{k})$
- A conducting disc of radius R rotates about its axis with an angular velocity  $\omega$ . Then the potential difference Q.76 between the centre of the disc and its edge is (no magnetic field is present):
  - (1) zero
- (2)  $\frac{m_e \omega^2 R^2}{2e}$  (3)  $\frac{m_e \omega R^3}{3e}$  (4)  $\frac{e m_e \omega R^2}{2}$
- A α particle is released from rest 10 cm from a large sheet carrying a surface charge density of 0.77 $-2.21 \times 10^{-9}$  C/m². It will strike the sheet after the time. ( $\epsilon_0 = 8.84 \times 10^{-12}$  C²/Nm²)
  - $(1) 4 \mu s$
- $(2) 2 \mu s$
- (3)  $2\sqrt{2} \mu s$
- A thin rod of negligible mass and area of cross-section  $2 \times 10^{-6}$  m<sup>2</sup>, suspended vertically from one end, Q.78 has a length of 0.5 m at 200°C. The rod is cooled to 0°C, but prevented from contracting by attaching a mass at the lower end. The value of this mass is : (Young's modulus =  $10^{11}$  N/m<sup>2</sup>, Coefficient of linear expansion  $10^{-5} \,\mathrm{K}^{-1}$  and  $g = 10 \,\mathrm{m/s^2}$ ):
  - (1) 20 kg
- (2) 30 kg
- (3) 40 kg
- (4) 50 kg
- The equivalent resistance of the circuit across points A and B is equal to:



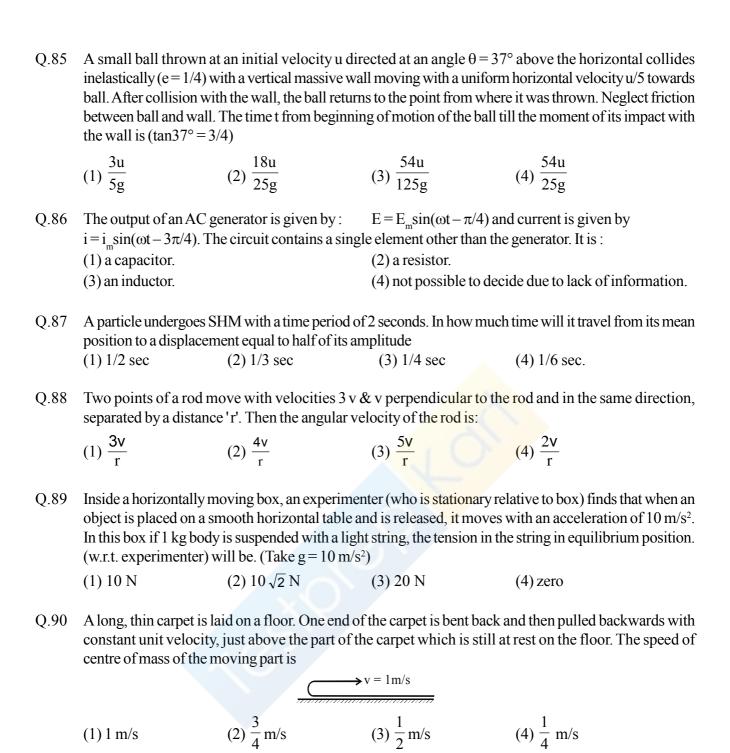
- (1) 22.5  $\Omega$
- (2) 25  $\Omega$
- (3)  $37.5 \Omega$
- $(4)75\Omega$

- Q.80Two glass plates are separated by water. If surface tension of water is 75 dynes per cm and area of each plate wetted by water is 8 cm<sup>2</sup> and the distance between the plates is 0.12 mm, then the force applied to separate the two plates is
  - $(1) 10^2$  dynes
- $(2) 10^4$  dynes
- $(3) 10^5 \, \text{dynes}$
- $(4) 10^6 \, \text{dynes}$
- Q.81 A person P of mass 50 kg stands at the middle of a boat of mass 100 kg moving at a constant velocity 10 m/s with no friction between water and boat and also the engine of the boat is shut off. With what velocity (relative to the boat surface) should the person move so that the boat comes to rest. Neglect friction between water and boat.




(1) 30 m/s towards right

(2) 20 m/s towards right


(3) 30 m/s towards left

- (4) 20 m/s towards left
- If the apparent weight of the bodies at the equator is to be zero, then the earth should rotate with angular Q.82 velocity

- (1)  $\sqrt{\frac{g}{R}}$  rad/sec (2)  $\sqrt{\frac{2 g}{R}}$  rad/sec (3)  $\sqrt{\frac{g}{2 R}}$  rad/sec (4)  $\sqrt{\frac{3 g}{2 R}}$  rad/sec
- A bead of mass m is located on a parabolic wire with its axis vertical and vertex at the Q.83 origin as shown in figure and whose equation is  $x^2 = 4ay$ . The wire frame is fixed and the bead can slide on it without friction. The bead is released from the point y = 4a on the wire frame from rest. The tangential acceleration of the bead when it reaches the position given by y = a is:



- $(1) \frac{g}{2}$
- $(2) \frac{\sqrt{3}g}{2} \qquad \qquad (3) \frac{g}{\sqrt{2}} \qquad \qquad (4) \frac{g}{\sqrt{5}}$
- N identical capacitors are connected in parallel to a potential difference V. These capacitors are then Q.84 reconnected in series such that positively charged plate of one capacitor is connected to negatively charged plate of the other, their charges being left undisturbed. The potential difference obtained is:
  - (1) zero
- (2)(N-1)V
- (3) N V
- (4) N<sup>2</sup>V



# ROUGH WORK



# ROUGH WORK

