PLANT KINGDOM

- Plant kingdom is divided into two subkingdoms cryptogamae and phanerogamae.
- Cryptogams (no seed) include algae, bryophytes and pteridophytes. Phanerogams (with seeds) include gymnosperms and angiosperms.

ALGAE

- Study of algae (named by Linnaeus, 1753) is called phycology and F.E. Fritsch, the father of algae. Algae are chlorophyllous, thalloid, avascular plants with no cellular differentiation. Algae are usually aquatic, either marine or fresh water. Only a few algae occur in moist terrestrial habitats like on tree trunks, wet, rocks, moist soil, etc.
- Algae may be unicellular or multicellular ranging from small colonial (Volvox) to large sized like Macrocystis (several hundred feet). Filamentous form may be branched or unbranched, (free floating-Spirogyra, attached to the substratum-Ulothrix, colonial-Nostoc).
- Algae are divided into three main classes-chlorophyceae, phaeophyceae and rhodophyceae.
- Reproduction in algae takes place by vegetative, asexual or sexual means. Vegetative reproduction is the most common method of reproduction. It takes place by the following means:

- Fragmentation, e.g., Ulothrix.
- Cell division or fission, *e.g.*, desmids.
- Hormogonia, e.g., Nostoc.
- Tubers, e.g., Cladophora.
- Budding, e.g., Protosiphon.
- Asexual reproduction takes place by following methods:
 - Zoospores : (ciliated), e.g., Ulothrix, Oedogonium.
 - Aplanospore : (non-motile, thin walled), e.g., Chlorella, Microspora.
 - Hypnospores : (non-motile, thick walled), e.g., Vaucheria.
- The sexual reproduction is of two types isogamous and heterogamous (anisogamous, oogamous). Isogamyoccurs commonly in unicellular algae, *e.g.*, *Ulothrix*.
- Algae are economically important as food source (e.g., Porphyra, Ulva), nitrogen fixers (Nostoc, Anabaena).
 Besides, we obtain carrageenin from red alga Chondrus crispus, agaragar from Gelidium, Gracilaria, etc., goiter medicines (due to their high iodine content) and alginic acid from brown algae.
- Fritsch classified algaeinto 11 classes which are discussed in the following table:

Class/Examples	Structure	Occurr- ence	Major pigments	Reserve food material	Vegetative	Reproduction Asexual	Sexual
Chlorophyceae	Unicellular motile	Most forms	Chl a & b +	True starch	Fragmentation	Zoospores,	Sexual
(grass green)	to heterotrichous	are fresh	carotenoids	and sugar	or fission	aplanospores,	reproduction
e.g., Spirogyra,	filaments. Cell wall	water and	and			hypnospores	ranges from
Ulothrix	consists of	a few are	xanthophyll	1			isogamous
	cellulose.	marine.					to advanced
	Pyrenoids are	There is					oogamous
	commonly	a marked					type.
	surrounded by starc h-	tendency					.JI-
	sheath. Motile cells	towards the	}			ł	1
	have equal flagella	terrestrial					
	(2 to 4).	habitat.				1	
Xanthophyceae	Unicellular motile to	Most forms	Xanthophylls	Oil or	Most common	Aplanospores,	Sexual
(yellow green)	simple filamentous.	are fresh	& β-carotenes	leucosin	method occurs	akinetes,	reproductio
e.g., Botrydium,	Cell wall rich in	water but	+ Ch i a & e	}	by cell division	zoospores,	is rare and
Vaucheria	pectic compounds	a few are				cysts etc. All	always
	and	marine.				zoospores	isogamous.
	composed of					except that of	
	two equal pieces					<i>Vaucheria</i> have	
	overlapping at	ļ	ĺ	ĺ	Í	unequal flagella.	
	their edges. Motile						
	cells have two very						
	unequal flagella,						
	pyrenoids absent.]	1		ļ	J	

Table: Characteristics of different classes of algae

Chrysophyceae	Plants are unicellular	Most forms	Carotene,	Leucosin,	Binary fission	Planospores	Sexual
(orange/brown)	motile to branched	occur in cold	fucoxanthin,	rarely oil			reproduction
e.g., Ochromonas,	filamentous. Flagella	fresh water	lutein + Chl. a				seldom occurs
Dinobryon	are unequal attached at	but a few are	& c				but if occurs is
	front end. Cells	marine.					of isogamous
	commonly contain	1					type.
	one or two parietal	1					cype.
	chromatophores.	ſ					
Bacillariophyceae	All the members are	In all kind of	Diatoxanthin,	Oil,	Cell division		Forms are
e.g., Fragilaria,	unicellular or colonial.	fresh water,	diadinoxanthin,	volutin	producing two		diploid. Sexual
Denticula	Cell wall is partly	sea, soil and	fucoxanthin	Volutin			-
	composed of silica	terrestrial	+ chl a & c.		unequal cells.		reproduction is
	and partly of pectic	habitats.					of special type,
	substances. It consists	naonais.					occurs by fusion
	of two halves and						of protoplasts
	each has two or more						of the ordinary
							individuals.
	pieces. Cell wall is						
Counterhouses	richly ornamented.	D-41	<u> </u>				
Cryptophyceae (nearly brown)	Represented by	Both in	Chl. a & c,	Starch	Cell division	Cysts,	Isogamous type
· · ·	motile cells and most	marine and	carotenes,			plamelloid	in the reported
e.g., Cryptomonas,	advanced forms are	fresh water.	xanthophylls	-		stage.	cases.
Cryptochrysis	coccoid, flagella are						ŧ
Ding-harris	slightly unequal.		~				
Dinophyceae	Plants are unicellular	Plants occur	Chl. a & c,	Oil &	Cell division	Zoospores,	Sexual
(dark yellow)	motile to branched	widely as	xanthophylls	starch		aplanospores,	-
e.g., Ceratium,	filamentous.	marine	(diadinoxanthin,			autospores.	of isogamous
Glenodinium		planktons. A	dinoxanthin)				type. It is rare
		few may be					and not very
		fresh water				1.	definite.
Chloromona-	The plants are motile,	forms. All plants are	Chlorophylls and	Fatty	Cell division		
dineae	flagellate with two	fresh water	xanthophylls	substance	Cell division	Cysts and	-
(bright green)	almost equal flagella.	forms.	zanuiopitytis			spores.	
e.g. Vacuolaria	almost equal hagena.	1011115.		or oil			
Euglenineae	Motile flagellates,	Only fresh	Chl.a & b,	Paramylum,	1 .	Sometimes	0
e.g.,	flagella may be one	water forms	carotenes	a strach like		1	Sexual
Trachelomoas		are known.	carolenes			cyst,	reproduction is
Euglena	the base of canal-like	ale kilowii.		substance		Plammeoid	not substantially
Zugicha	invagination at the			but negative		stage are	known. Itis
	front end. Complex			to iodine		observed.	isogamous type.
	vacuolar system and			test.			
	a large and prominent						
	nucleus.						
Phaeophyceae		Mostly	Fucoxanthin,	Laminaria	Eno orrestatio	Det	
(brown)	simple filamentous to	•	flavoxanthin	Laminarin,	Fragmentation	Both	Ranges from
e.g., Fucus,	bulky parenchymatous			mannitol	is most	motile and	isogamous to
sargassum	forms. Several plants		β -carotenes +		common	non-motile	oogamous.
um guosuill	attain giant size,		Chl. a & c			spores are	Motile
	external and internal					formed e.g.,	gametes have
					I	zoospores,	two laterally
	differentiation.					tetraspores	attached flagella.
						etc.	Varied types
							of alternation
							of generation.
							Except fucales,
							in all other
							sexual forms are
						4	haploid.

Diversity in Living World

Rhodophyceae (red) e.g., Bangia, Porphyra	Simple filamentous to attaining consid- erable complexity of structure. Motile structures are not lenown. Except in few forms, cells show protoplasmic or pit connections.	Few forms are fresh water and others are marine.	Phyco- erythrins, phycocyanin + Chl, <i>a</i> & d	Floridean starch	Uncommon, except unicellular ones.	Monospores, carpospores, polyspores etc.	Advanced ooga- mous type. The male organ pro- duces non-motile gametes and the female organ has a long recep- tive neck. After sexual reproduc- tion special spores (carpospores) are produced.
Cyanophyceae or Myxophyceae (blue green) eg., Nostoc, Anabaena	Simple type of cell to filamen- tous, some of the filamentous forms show false or true branching, very rudimentary nucleus, no proper chromatophores, the photosynthetic pigments being dif- fused throughout the peripheral cy- toplasm. No motile stages.	Found in sea and fresh water.	c-Phycocy- anin, c-Phyco- erythrin, and Chl- <i>a</i>	Cyanophy- cean starch	Fission, fragmentation, Hormogonia, pseudohor mogonia	Endospores, exospores, nannospores, akinetes, heterocysts.	There is no sexual reproduction.

 Various scientists consider cyanophyceae as member of kingdom monera and euglenophyceae, dinophyceae, chrysophyceae in kingdom protista.

BRYOPHYTES

Bryophyta, Greek word (bryon = moss, phyton = plant), represent a group of plants that includes liverworts, hornworts and mosses growing predominantly in amphibious environment. Bryophytes are land inhabiting or terrestrial plants. They complete their vegetative phase on land but water is necessary for their reproductive phase, *i.e.*, for completion of life cycle. So bryophytes are known as "Amphibians of plant kingdom". Dominant plant phase in bryophytes is free living thalloid gametophyte. The gametophyte is thalloid in primitive forms (*Riccia*) and differentiated into rhizoids, stem and leaves in higher bryophytes (mosses).

Reproduction

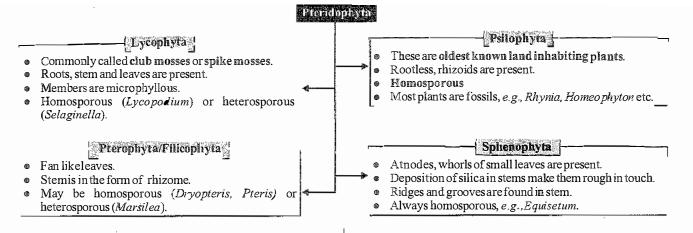
- Vegetative reproduction occurs by various methods such as by death and decay of the older thallus, adventitious branches detached from thallus to form new thallus, e.g., Riccia.
- The sexual reproduction is of oogamous type, *i.e.*, fusion of a non-motile passive egg cell (female gamete) and biflagellated active male gamete (antherozoid) takes

place. The sex organs are multicellular and jacketed, *i.e.*, a sterile layer of cells is present.

- Male sex organ is antheridium, which produces single coiled, biflagellated male gamete or spermatozoid or antherozoid. Female sex organ is archegonium. It is a flask shaped structure with swollen base called venter and upper elongated neck.
- The fertilization takes place in presence of water. The spermatozoid swims to the neck of archegonium. It passes through the canal formed by the disintegration of neck canal cells and ventral canal cell and fuses with the egg. Sporophytic generation starts with zygote. The zygote immediately secretes cellulosic wall, to develop into multicellular embryo or sporophyte.
- The gametophyte provides protection and nourishment to the developing embryo.
- The sporophyte consists of foot, seta and capsule. In a few cases only seta is absent as in Corsinia whereas in Riccia both foot and seta are absent. In a capsule, the spores are formed after meiosis. These spores (meiospores) are all of one kind. The plants are homosporous.
- They are economically important as they prevent soil erosion, make important link in ecological succession, have high water retention ability thus used in shipping of plants and other desiccating materials, used as food and manure, cause soil aeration etc.

Table: Classification of bryophytes

	Features	Hepaticopsida	Anthocerotopsida	Bryopsida	
1.	Common name	Liverworts	Homworts	Mosses	
2.	Gametophytic plantbody	May be thallose or foliose Aseptate rhizoids	Thallose Aseptate rhizoids	Thalloid protonema and leafy game- tophore. Obliquely septate rhizoids.	
3.	Sex organs	Present on dorsal surface of thallus	Present on dorsal surface of thallus.	Develop from the superficial cells at the apex of leafy gametophore.	
4.	Sporophyte or sporogonium	Differentiated into foot, seta and capsule	Foot, short-meristematic region and capsule.	Foot, seta and capsule.	
5.	Elaters	Generally present but absent in some plants like <i>Riccia</i>	Pseudoelaters are present in the capsule	Absent	
6.	Sporogenous tissue	Develops from endothecium	Develops from amphithecium and endothecium forms sterile columella.	Develops from outer layer of endothecium. Inner layer forms sterile columella.	
7.	Dehiscence of capsule	Irregular	Irregular	Regular	
8.	Examples	<i>Riccia, Marchantia, Sphaerocarpus</i> etc.	Anthoceros, Notothylus, Megaceros, etc.	Sphagnum, Polytrichum, Funaria, etc.	


PTERIDOPHYTES

- Pteridophytes are higher cryptogams or vascular cryptogams (Gk. *kryptos* = hidden, gamos = wedded). These are the group of seedless vascular plants, that have successfully invaded land and reproduce by means of spores. Pteridophytes are also called 'Snakes of Plant Kingdom' or 'Botanical Snakes' as snakes, *i.e.*, reptiles (pteridophytes) evolved after amphibians (bryophytes).
- Smallest pteridophyte is *Azolla* (an aquatic fern) and largest is *Cyathea* (tree fern).
- Plant body is sporophyte which is differentiated into kue stem, leaves and roots. Roots are mainly adventitious. Some primitive members of the group may lack kue roots and well developed leaves, e.g., order psilophytales and psilotales. In some members, the branching of the stem is of dichotomous type, while in others, it is monopodial.
- The sporophytic plant presents a great range in the form. Two main categories may be distinguished. One category comprises megaphyllous types, in which the leaves are large in relation to the stem, and is represented by the ferns; the second category consists of microphyllous types, in which the leaves are small in relation to the stem and is represented by the lycopods and the hor setails.
- Large leaves of ferns are called fronds.
- Leaves bearing the sporangia are called sporophylls. The sporophylls may be widely scattered on a plant or may be clustered in definite areas and structures, called cones or strobili (*Selaginella* and *Equisetum*).
- The development of sporangium may be eusporangiate or leptosporangiate.
- Eusporangiate development takes place by a group of cells and not by a single cell. This is primitive type and is found in *Psilotum, Selaginella, Lycopodium, Equisetum,* etc.Leptosporangiate development takes place from a single cell. Occurs in *Salvinia, Azolla, Marsilea* etc.

- Vascular tissues are present. In xylem, vessels are absent and in phloem, companion cells are absent. *Selaginella* and *Equisetum* are exceptions where vessels are present.
- The sporophytes reproduce asexually producing spores in sporangia.
- Spores may be homosporous (*Lycopodium*, *Dryopteris*) or heterosporous (*Selaginella*, *Azolla*, *Salvinia*).
- Gametophyte is usually independent. Sex organs are multicellular and jacketed. Archegonia are partially embedded. Sperms are flagellated. Fertilization in all cases is accomplished by the agency of water. Results in the formation of the zygote. The zygote undergoes repeated divisions to form a new sporophyte. The development of zygotes into young embryos takes place within female gametophyte. This event is a precursor to the evolution of seed habit. Alternation of generation is present in life cycle.
- Bower and Goebel named rhizophore of Selaginella as an organ sui-generis *i.e.*, an organ having the characters of both *i.e.* stem as well as root, but independent in origin.
- Pteridophytes show apogamy (coined by De Bary, 1878) apospory and parthenogenesis. Apogamy is the formation of sporophyte from a gametophytic cell other than egg without fertilization (*e.g.*, *Lycopodium*, *Selaginella*, *Marsilea*, etc.)
- Apospory is the formation of gametophyte from a sporophytic cell without meiosis, *e.g.*, *Pteridium*.
- **Parthenogenesis** is the formation of sporophyte from egg without fertilization *e.g.*, *Selaginella*, *Marsilea*.
- Pteridophytes are economically important for us.
- The chief economic importance of the pteridophytes is that their fossil remains contributed to the coal deposits of the world.
- Equisetum arvense is used in the preparation of diuretic, haemostatic and haemopoietic drugs. Ferns are extensively cultivated in gardens and greenhouses because of their

attractive foliage that are used by people in bouquets and floral decorations.

Pteridophytes can be classified into four groups as shown in the following flowchart.

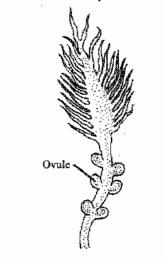
۲

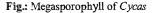
Stele

 For land plants absorption and conduction of nutrients and food is very much important for survival. To serve the purpose land plants have developed vascular system. Tissues inner to endodermis involving vascular tissue are termed collectively as 'stele'. Stele is first observed in pteridophytes. Various types of stele found in pteridophytes are shown below.

Table	0 \$	Different typ	es of	steles	in	pteridophytes	5

	Stele	Occurrence	Features	Figure
1.	Protostele	Lycopodium, Lygodium, Psilotum, etc.	Pith is absent. Most primitive and other types have been derived from it.	
(i)	Haplostele	Horneo phyton, Selaginella kraussana, Rhynia, etc.	Solid round central core of xylem is surrounded by phloem and pericycle.	
(ii)	Actinostele	Lycopodium serratum, Psilotum, etc.	Central xylem is star shaped with radiating arms and phloem is present in separate patches.	
(iii)	Plectostele	Lycopodium clavatum, L. volubile	Pholem is present in between the separate plates of xylem.	
(iv)	Mixed protostele	L. cernuum	Xylem is present in the form of discrete units embedded in phloem.	
2.	Siphonostele	· · · · · · · · · · · · · · · · · · ·	Pith is present. It is the protostele with pith.	
(i)	Ectophloic siphonostele	Osmunda, Schizaea etc.	Phloem is present only on outer side of xylem	
(ii)	Amphiphloic siphonostele	Marsilea, Dipteris, Adiantum, etc.	Phloem is present on both sides of xylem.	
3.	Solenostele	Adiantum, Marsilea	Siphonostele with single leaf gap is called solenostele.	

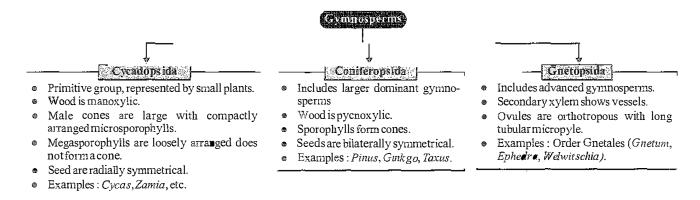

(i)	Ectophloic solenostele	· .	It is derived from ectoploic siphonostele	
(ii)	Amphiphloic solenostele		It is derived from amphiphloic siphonostele	Ce
4.	Dictyostele	Dryopteris, Pteris, etc.	A number of leaf gaps are present. Vascular cylinder breaks up into a number of meristeles.	
5.	Polycylic stele	Pteridium aquilinum, Pteris vittata, etc.	More than one ring of vascular tissue is present.	


۲

GYMNOSPERMS

- Gymnospeims constitute a sub-division of spermatophyta or phanerogams. They are the phanerogams without ovary (Goebel, 1887). These act as a connecting link between pteridophytes and angiosperms. In the evolutionary point of view gymnosperms are the most primitive seed plants. Most of the genera are entirely extinct and only a few are living.
- The term "gymnosperms" (Gymnos-naked, Sperma-seeds) was coined by Theophrastns (300 B.C.). Gymnosperms are naked seeded plants having freely exposed ovules on megasporophylls. Sporophylls generally aggregate into strobili. Sporophyte is divisible into root, stem and leaf. In general, tallest trees are in gymnosperms, e.g., Sequoia sempervirens is 366 ft in height and S. gigantea is 342 ft in height. Zamia pygmaea is the smallest gymnosperm (25 cm in height).
- Visible plants represent sporophytic generation (2n) and are usually slow growing plants commonly of moderate size. Plants possess tap root system but in some forms additional symbiotic relationship is exhibited between roots and algae in coralloid roots (*Cycas*) and between roots and fungi in mycorrhizic roots (*Pinus*). The stems are aerial, erect, branched (unbranched in *Cycas, Zamia*) and woody. Majority of gymnosperms have branched stem. Leaves are generally dimorphic, foliage and scale leaves. The foliage leaves do not have lateral veins. Leaves are protected by thick layers of cuticle and sometimes by an additional waxy layer. Stomata are protected as they develop in cavities.
- Plants are heterosporous, *i.e.*, producing microspores and megaspores. Both dioecious (*Cycas*) and monoecious (*Pinus*) types of plants are found in gymnosperms. Microsporangia are borne on the abaxial or lower surface of microsporophylls. They may be numerous and grouped in sori (*Cycas*) or reduced to two (*Pinus*). Megasporangia or ovules are naked and are borne on the megasporophylls. Ovules occur in opposite alternate pairs on the lateral sides in middle part of

megasporophyll. Each ovule has a mass of tissue called nucellus. It is equivalent to megasporangium. A megaspore mother cell develops in it.


- Gametophytic generation (n) is much reduced. The first male gametophytic cell is **microspore** or **pollen** grain. The first female gametophytic cell is **functional megaspore** that produces nuclear and later cellular female gametophyte.Female gametophyte develops **archegonia**. Smallest archegonium of plant kingdom is present in this group. **Pollination** takes place by means of **wind** by the direct contact of pollen grains with the ovules. Siphonogamy occurs. At the time of fertilization nuclei of male and female gametes fuse and result in the formation of a zygote. Zygote develops into an embryo.
- As endosperm is derived from the female gametophyte, it is always **haploid**. Gymnosperms do not possess an ovary and hence **do not produce a fruit**.
- Polyembryony, *i.e.*, development of several embryos in one seed, out of which only one survives, is of common

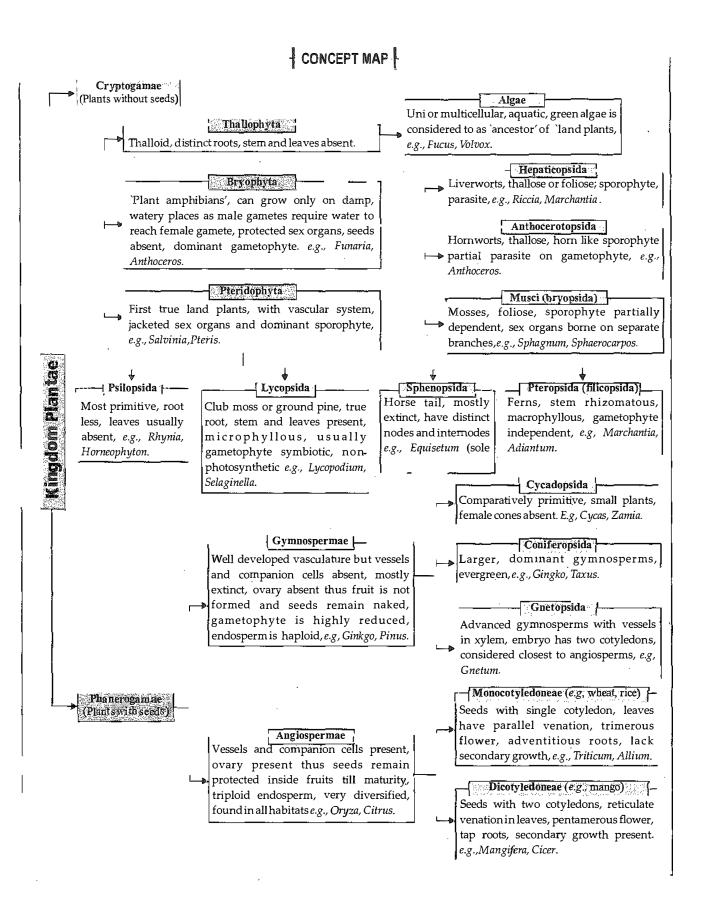
occurrence in *Pinus*. The number of cotyledons may be one or two (*Cycas*) or a whorl of many (*Pinus*). Endosperm is gametophytic. Distinct alternation of generation occurs.

• Gymnosperms are economically very important. The

members of this group are variously used by human beings as food, as medicines, as plants for decoration and in industries.

 Gyrnnosperms can be classified into three groups as discussed in the following flow chart.

ANGIOSPERMS


Angiosperms are seed plants in which sporophylls are organised into flowers and the seeds are produced inside fruits. The smallest is water plant Wolffia (less than 0.1 cm) while the tallest is Eucalyptus regnans (114 m and above). Angiosperms are highly evolved plants and form the dominant vegetation of present day earth. Sporophyte shows differentiation into root, stem and leaf. Xylem is mainly made up of vessels. Companion cells are present in the phloem. In the flower, essential organs (androecium)

and gynoecium) are surrounded by non-essential organs (calyx and corolla). Male gametophyte is known as pollen grain and female gametophyte is known as embryo sac. Pollination is indirect because the pollen grains reach the stigma. As the male gametes are non-motile, water is not essential for fertilization.

They are divided into two classes-dicotyledons (two cotyledons) and monocotyledons (single cotyledon). These two classes show various morphological variations. These variations are discussed in brief in the given table.

Table: Differences between dicots and monocots

	Dicots	Monocots
1.	There are usually two cotyledons.	The seeds contain one cotyledon.
2.	Flowers are generally pentamerous or tetramerous (floral parts in sets of 5 and 4 or their multiples).	Flowers are usually trimerous (floral parts in sets of three or its multiples).
3.	Pollen grains commonly have three germ pores.	Pollen grains generally possess a single germinal furrow.
4.	Leaves are net veined or with reticulate venation.	The leaves possess parallel venation with a few exceptions.
5.	Primary root often long lived forming tap root system. Adventitious roots occur in some cases.	Primary root is short-lived. Tap roots are absent. Instead adventitious roots are found.
6.	Stem possesses concentric arrangement of tissue systems – epidermis, cortex, endodermis, pericycle, pith, etc.	Tissue systems are not differentiated in the stem. A ground tissue occurs.
7.	Vascular bundles of the stem are arranged in a ring.	Vascular bundles are scattered.
8.	Vascular bundles of the stem possess cambium (vascular bundles open), so that secondary growth is possible.	Cambium is absent (vascular bundle closed).
9.	In root, a pith is absent or small. Vascular bundles are few (8 or less).	In root, a pith is always present. Vascular bundles are many (more than 8).
10.	Vessels are polygonal in outline.	Vessels are rounded in outline.

