Mlustration 2

The rate law for the reaction
$x+y \longrightarrow z$ is $r=k[x]^{3 / 2}[y]^{-1 / 2}$
Find the order and molecularity of reaction.
Soln.: As the above reaction involves two species to form product, thus the molecularity of the reaction is 2 .
The order of reaction is $=\frac{3}{2}+\left(-\frac{1}{2}\right)=1$

ZERO ORDER REACTION

- In a zero order reaction rate is independent of the concentration of reactant.

On integration, $k=\frac{x}{t}$ or $x=k t$
Unit of rate constant $=$ mol litre ${ }^{-1} \mathrm{~s}^{-1}$

- Half life period : The period in which concentration becomes half of its initial value, is known as half life period. Denoted as $t_{1 / 2}$.
$k=x / t$
$t=t_{1 / 2}$
So $t_{1 / 2}=\frac{a}{2 k} a=$ initial concentration
- Examples : Photochemical reactions
$2 \mathrm{NH}_{3} \xrightarrow{\mathrm{Pt}} \mathrm{N}_{2}+3 \mathrm{H}_{2}$

FIRST ORDER REACTION

- In first order reaction, the rate is determined by the change of one concentration term only.
For a reaction $A \longrightarrow$ product
$r=\frac{d x}{d t}=k(a-x)$ or $\frac{d x}{(a-x)}=k d t$
On integration, $\int \frac{d x}{(a-x)}=\int k d t$
i.e. $-\ln (a-x)=k t+c$ where c is integration constant,
when $t=0, x=0$ then $-\ln a=c$
$\therefore \quad-\ln (a-x)=k t-\ln a$
or $k t=\ln a-\ln (a-x)$ or $k t=\ln \frac{a}{a-x}$

$$
k=\frac{1}{t} \ln \frac{a}{(a-x)}=\frac{2.303}{t} \log \frac{a}{(a-x)}
$$

Unit of rate constant $=$ time $^{-1}$

- Half life period :

$$
\begin{aligned}
& k=\frac{2.303}{t} \frac{a}{a-x} \\
& \text { at } t=t_{1 / 2}, \quad x=a / 2 \\
& k=\frac{2.303}{t_{1 / 2}} \log \frac{a}{(a-a / 2)}=\frac{2.303}{t_{1 / 2}} \log 2
\end{aligned}
$$

$$
\begin{aligned}
& t_{1 / 2}=\frac{2.303 \times 0.3010}{k}=\frac{0.693}{k} \\
& t_{1 / 2}=\frac{0.693}{k}
\end{aligned}
$$

Thus, half life period of first order reaction is independent of initial concentration.

- Example :
$\mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow 2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}$
$\mathrm{SO}_{2} \mathrm{Cl}_{2} \longrightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{2}$
$\mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{\mathrm{I}^{-}} 2 \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}$

$n^{\text {th }}$ ORDER REACTION

Half life : $t_{1 / 2}=\frac{2^{n-1}-1}{k(n-1)(a)^{n-1}}$
Rate constant $k=\frac{1}{(n-1) t}\left[\frac{1}{(a-x)^{n-1}}-\frac{1}{(a)^{n-1}}\right]$

Mustration 3

The decomposition of $\mathrm{Cl}_{2} \mathrm{O}_{7}$ at 400 K in the gas phase to Cl_{2} is a first order reaction
(i) After 55 seconds at 400 K the pressure of $\mathrm{Cl}_{2} \mathrm{O}_{7}$ falls from 0.062 to 0.044 atm . Calculate the rate constant.
(ii) Calculate the pressure of $\mathrm{Cl}_{2} \mathrm{O}_{7}$ after 100 seconds of decomposition at this temperature.
Soln.:
(i) $2 \mathrm{Cl}_{2} \mathrm{O}_{7(g)} \rightarrow 2 \mathrm{Cl}_{2(g)}+7 \mathrm{O}_{2(g)}$

For $1^{\text {st }}$ order reaction,
$k=\frac{2.303}{t} \log \left(\frac{P_{0}}{P}\right)=\frac{2.303}{55} \log \left(\frac{0.062}{0.044}\right)=6.2 \times 10^{-3} \mathrm{~s}^{-1}$
(ii) $k=\frac{2.303}{t} \log \left(\frac{P_{\mathbf{o}}}{P}\right)$

Her e $k=6.2 \times 10^{-3} \mathrm{~s}^{-1}, t=100 \mathrm{~s}, P_{0}=0.062 \mathrm{~atm}$
$\therefore \quad 6.2 \times 10^{-3}=\frac{2.303}{100} \log \left(\frac{0.062}{P}\right)$
or $\log \frac{0.062}{P}=\frac{6.2 \times 10^{-3} \times 100}{2.303} \Rightarrow P=0.033 \mathrm{~atm}$

Mlustration 4

The half life for the reaction, $\mathrm{N}_{2} \mathrm{O}_{5(g)} \rightarrow 2 \mathrm{NO}_{2(g)}+\mathrm{O}_{2(g)}$ is 2.4 hr at $30^{\circ} \mathrm{C}$. (a) Starting with 10 g , what is the mass of $\mathrm{N}_{2} \mathrm{O}_{5}$ left after 9.6 hr ? (b) How much time is required to reduce $5.0 \times 10^{\mathbf{1 0}}$ molecules of $\mathrm{N}_{2} \mathrm{O}_{5}$ to 1.0×10^{8} molecules?
Soln.: For a first order reaction

$$
k=\frac{0.693}{t_{1 / 2}}=\frac{0.693}{2.4 \times 60 \times 60}=8.02 \times 10^{-5} \mathrm{~s}^{-1}
$$

(a) Now using the expression

$$
\begin{aligned}
& k=\frac{2.303}{t} \frac{a}{a-x} \\
& a=10 \mathrm{~g}, t=9.6 \mathrm{hr}=9.6 \times 60 \times 60 \mathrm{~s} ; k=8.02 \times 10^{-5} \mathrm{~s}^{-1} \\
& \\
& 8.02 \times 10^{-5}=\frac{2.303}{9.6 \times 60 \times 60}-\log \frac{10}{a-x}
\end{aligned}
$$

