> Indirect redox reaction (Electrochemical reaction) : A reaction in which the reacting species which is capable of losing electrons (reducing agent) and that capable of gaining electrons (oxidising agent) are kept separately and the transfer of electrons from one species to another does not take place directly is called an indirect redox reaction.
In an indirect redox reaction, each of the reactants is kept in a separate container in contact with a rod/ sheet of a metallic conductor (electronic conductor) called an electrode. Electrical contact between the two reactants is established by placing a conducting salt bridge between the two.

OXIDATION NUMBER

- Oxidation number of an element is defined as the charge which an atom of the element has in its ion or in combined state with other atoms. Oxidation number can also be defined as the number of electron which the atom of an element loses or gains in going from its natural free state to a particular compound or ion. Oxidation number is also called oxidation state. It can be positive, negative, zero or even in fraction.
- Rules for assigning oxidation number

Rules	Oxidation no.	Examples
Atoms of different elements in elementary state and in allotropic form.	zero (0)	$\mathrm{N}_{2}, \mathrm{Cl}_{2}, \mathrm{O}_{2}, \mathrm{P}_{4}, \mathrm{~S}_{\mathrm{R}}$
Monoatomic ions	same as charge	$\begin{aligned} & \mathrm{Na}^{+}(1), \mathrm{Mg}^{2+}(2), \\ & \mathrm{Cl}^{-}(-1) \end{aligned}$
Hydrogen: - with non-metals - with metals	$\left\lvert\, \begin{aligned} & +1 \\ & -1 \end{aligned}\right.$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HCl} \\ & \mathrm{LiH}, \mathrm{CaH}_{2}, \mathrm{KH} \end{aligned}$
Oxygen : - in peroxides - with fluorine	$\begin{aligned} & -2 \text { (mostly) } \\ & -1 \\ & +1,+2 \end{aligned}$	$\begin{aligned} & \mathrm{H} \mathrm{H}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{NaOH} \\ & \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{BaO}_{2} \\ & \mathrm{O}_{2} \mathrm{~F}_{2}, \mathrm{OF}_{2} \\ & \text { (respectively) } \\ & \hline \end{aligned}$
Alkali metal (IA)	+1	Li, Na, K, etc.
Alkaline earth metals (IIA)	+2	$\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca}$, etc.
Fluorine (most electronegative)	$\begin{aligned} & -1 \\ & \text { (always) } \end{aligned}$	HF, OF_{2}, LiF

Illustration 1

Find the oxidation number of Cr in CrO_{5}.
Soln.: Structure of CrO_{5} :

In CrO_{5}, one of the oxygen is doubly bonded to Cr ($\mathrm{Cr}=\mathrm{O}$) and has been assigned an oxidation number
of -2 , whereas four of the oxygen have peroxo linkage ($\mathrm{O}-\mathrm{O}$) and should be assigned -1 oxidation number. Now, we can calculate oxidation number of Cr .

$$
x+1(-2)+4(-1)=0 \Rightarrow x=+6
$$

Mustration 2

Findthe oxidation number of S in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$.
Soln.: Structure of $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$:

In $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$, two of the S -atoms are bonded to sulphur only on both sides ($\mathrm{S}-\mathrm{S}$) and thus have oxidation number zero.
$2(+1)+2(x)+6(-2)+2(0)=0 \Rightarrow x=\frac{10}{2}=+5$

Ilustration 3

fdentify oxidant and reductant in the following reactions.
(i) $2 \mathrm{Cu}_{2} \mathrm{O}_{(s)}+\mathrm{Cu}_{2} \mathrm{~S}_{(s)} \rightarrow 6 \mathrm{Cu}_{(s)}+\mathrm{SO}_{2(g)}$
(ii) $3 \mathrm{Mg}_{(s)}+\mathrm{N}_{2(g)} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2(s)}$
(iii) $\mathrm{Zn}+2 \mathrm{AgCN} \rightarrow 2 \mathrm{Ag}+\mathrm{Zn}(\mathrm{CN})_{2}$
$+1-2 \stackrel{+1-2}{+1} \stackrel{0}{\mathrm{Cu}}+\stackrel{+4-2}{\mathrm{SO}_{2}}$
Soln.: (i) $2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$

- Oxidation state of sulphur changes from -2 in $\mathrm{Cu}_{2} \mathrm{~S}$ to +4 in SO_{2} i.e., it is getting oxidised and hence $\mathrm{Cu}_{2} \mathrm{~S}$ acts as reductant or reducing agent.
- Oxidation state of copper changes from +1 in $\mathrm{Cu}_{2} \mathrm{O}$ to zero in elemental copper i.e., it is getting reduced and hence $\mathrm{Cu}_{2} \mathrm{O}$ acts as oxidant or oxidising agent.
(ii) $\quad 3 \stackrel{0}{\mathrm{M}} \mathrm{g}+\stackrel{0}{\mathrm{~N}}_{2} \rightarrow \stackrel{+2}{\mathrm{Mg}} \mathrm{g}_{3} \stackrel{-3}{\mathrm{~N}}_{2}$
- Oxidation state of magnesium changes from zero (Mg) to $+2\left(\mathrm{Mg}_{3} \mathrm{~N}_{2}\right)$, thus Mg acts as reductant.
- Oxidation state of nitrogen changes from zero $\left(\mathrm{N}_{2}\right)$ to $-3\left(\mathrm{Mg}_{3} \mathrm{~N}_{2}\right)$, thus N_{2} acts as oxidant.
(iii) $\stackrel{+}{\mathrm{Zn}}+2 \stackrel{+1}{\mathrm{Ag} \mathrm{CN}} \rightarrow 2 \stackrel{0}{\mathrm{Ag}}+\stackrel{+2}{\mathrm{Zn}}(\mathrm{CN})_{2}$
- Oxidation states of Zn changes from zero (Zn) to $+2\left(\mathrm{Zn}(\mathrm{CN})_{2}\right)$, thus Zn act as reductant.
- Oxidation state of Ag changes from +1 (AgCN) to zero (Ag), thus AgCN acts as oxidising agent.

Balancing Redox Reactions

- Redox reactions can be balanced with the help of two methods.
> Oxidation number method : This method involves the following steps:
Step 1 : Write the skeleton redox reaction.
Step 2 : Write the oxidation number of atoms a bove the symbol and identify elements undergoing oxidation or reduction.

Step 3 : Balance, increase in oxidation number and decrease in oxidation number by multiplying the half-reaction with suitable integer.
Step 4 : Balance the atoms other than hydrogen and oxygen.
Step 5 : Balance hydrogen and oxygen:

- Acidic medium: Add $\mathrm{H}_{2} \mathrm{O}$ to balance ' O ' and then add H^{+}to balance H .
- Basic medium: Add OH^{-}to balance charge and then add $\mathrm{H}_{2} \mathrm{O}$ to balance H and O .

Clustration 4

Balance the following reaction in basic medium:

$$
\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{MnO}_{2}+\mathrm{O}_{2}
$$

Soln.: Oxidation Number Method:
Step (i): $\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{MnO}_{2}+\mathrm{O}_{2}$
Step (ii):
Oxidation number increases by 1 per O atom

Oxidation number decreases by 3 per Mn atom
Step (iii): Total increase in oxidation number $=1 \times 2=2$ Total decrease in oxidation number $=3$
Step (iv): Multiply O terms by 3 and Mn terms by 2 to equalise increase and decrease in oxidation number.

$$
2 \mathrm{MnO}_{4}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{O}_{2}
$$

Step (v): $2 \mathrm{MnO}_{4}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{O}_{2}$
Step (vi): $2 \mathrm{MnO}_{4}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow$

$$
2 \mathrm{MnO}_{2}+3 \mathrm{O}_{2}+2 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O}
$$

> Ion-electron method : This method involves following steps:
Step 1: Write down the equation in ionic form.
Step 2: Split the reaction into two half reactions; one for oxidation and other for reduction.
Step 3: Balance each half reaction by using following rules:

- First balance the atoms which undergo oxidation or reduction.
- Balance the atoms other than hydrogen and oxygen using simple multiples.
- In acidic and neutral solution : Add water molecules to the side deficient in oxygen and H^{+} to the side deficient in hydrogen.
- In basic medium : For each excess of oxygen add $\mathrm{H}_{2} \mathrm{O}$ to the same side and two OH^{-}ions to the other side. If hydrogen is still unbalanced, add one OH^{-}ion for each excess of hydrogen on same side and one water molecule to the other side.
Step 4: Add electrons to the side deficient in electrons to balance charge.
Step 5: Multiply two halfreactions by suitable integer to equalise number of electrons in both reactions.

Illus ration 5

Balance the following equation by ion-electron method in basic medium.

$$
\mathrm{Cl}_{2} \rightarrow \mathrm{ClO}_{3}^{-}+\mathrm{Cl}^{-}
$$

Soln.: Step (i): $\stackrel{\bullet}{\mathrm{Cl}_{2}} \rightarrow \stackrel{+5}{\mathrm{ClO}_{3}-}+\stackrel{-1}{\mathrm{Cl}^{-}}$
Oxidation (oxidation number increases by 5)

Step (ii):

Reduction (oxidation number decreases by 1)
Step (iii): $\mathrm{Cl}_{2} \rightarrow \mathrm{ClO}_{3}{ }^{-}$

$$
\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}^{-}
$$

> Oxidation half reaction Reduction half reaction

Step (iv):
(a) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{ClO}_{3}^{-} \quad \mathrm{Cl}_{2} \rightarrow \mathrm{Cl}^{-}$
(b) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{ClO}_{3}^{-}+10 e^{-} \quad \mathrm{Cl}_{2}+2 e^{-} \rightarrow 2 \mathrm{Cl}^{-}$
(c) $\mathrm{Cl}_{2}+12 \mathrm{OH}^{-} \rightarrow 2 \mathrm{ClO}_{3}^{-}+10 e^{-}$
(d) $\mathrm{Cl}_{2}+12 \mathrm{OH}^{-} \rightarrow 2 \mathrm{ClO}_{3}^{-}+10 e^{-}+6 \mathrm{H}_{2} \mathrm{O}$

Step (v):
$\mathrm{Cl}_{2}+12 \mathrm{OH}^{-} \rightarrow 2 \mathrm{ClO}_{3}^{-}+10 e^{-}+6 \mathrm{H}_{2} \mathrm{O}$
$\left[\mathrm{Cl}_{2}+2 e^{-} \rightarrow 2 \mathrm{Cl}^{-}\right] \times 5$
$6 \mathrm{Cl}_{2}+12 \mathrm{OH}^{-} \rightarrow 2 \mathrm{ClO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{Cl}^{-}$
i.e., $3 \mathrm{Cl}_{2}+6 \mathrm{OH}^{-} \rightarrow \mathrm{ClO}_{3}^{-}+5 \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}$

