

The *d*- and *f*-Block Elements

d-BLOCK ELEMENTS

The elements that lie in between *s*-block and *p*-block elements are called transition elements as they show transitional properties between *s* and *p*-block elements. It means *d* and *f*-block elements are collectively known as transition elements, however these are distinguished from each other as outer and inner transition metals respectively. *d*-block elements are simply known as transition elements. *d*-block elements in their ground state or in most common oxidation state have partially filled *d*-orbitals. General electronic configuration of *d*-block elements is (*n* - 1) *d*¹⁻¹⁰ *ns*⁶⁻².

It is obvious from the electronic configuration that in transition elements valence electrons are present in outermost shell as well as (n-1) *d*-orbital *i.e.* penultimate (last but one) shell.

Classification of *d***-Block Elements**

Classification of *d*-block elements : In the periodic table, there are four main transition series of elements corresponding to filling of 3*d*, 4*d*, 5*d* and 6*d* subshells in 4th, 5th, 6th and 7th periods.

Series	Elements
First transition series or 3 <i>d</i> series	Sc (At. no. 21) to Zn (At. no. 30)
Second transition series or 4 <i>d</i> series	Y (At. no. 39) to Cd (At. no. 48)
Third transition series or 5 <i>d</i> series	La (At. no. 57), Hf (At. no. 72) to Hg (At. no. 80)
Fourth transition series or 6d series	Ac (At. no. 89), Rf (At. no. 104) to Uub (At. no. 112)

Electronic Configuration

• First transition series (3d) :

Element	Symbol	Electronic Configuration
Scandium	Sc (21)	[Ar] $3d^1 4s^2$
Titanium	Ti (22)	[Ar] $3d^2 4s^2$
Vanadium	V (23)	[Ar] $3d^3 4s^2$

Chromium*	Cr (24)	[Ar] $3d^5 4s^1$
Manganese	Mn (25)	[Ar] $3d^5 4s^2$
Iron	Fe (26)	[Ar] 3 <i>d</i> ⁶ 4 <i>s</i> ²
Cobalt	Co (27)	[Ar] $3d^7 4s^2$
Nickel	Ni (28)	[Ar] $3d^8 4s^2$
Copper*	Cu (29)	[Ar] $3d^{10} 4s^1$
Zinc	Zn (30)	[Ar] $3d^{10} 4s^2$

• Second transition series (4d) :

Element	Symbol	Electronic Configuration
Yttrium	Y (39)	$[Kr]4d^{\dagger} 5s^2$
Zirconium	Zr (4●)	$[Kr]4d^2 5s^2$
Niobium*	Nb (41)	$[Kr] 4d^4 5s^1$
Molybdenum*	Mo (42)	[Kr] $4d^5 5s^1$
Technetium	Tc (43)	[Kr] $4d^5 5s^2$
Ruthenium*	Ru (44)	[Kr] $4d^7 5s^1$
Rhodium*	Rh (45)	[Kr] $4d^8 5s^1$
Palladium*	₽d (46)	[Kr] 4 <i>d</i> ¹⁰ 5 <i>s</i> ⁰
Silver*	Ag (47)	[Kr] $4d^{10} 5s^1$
Cadmium	Cd (48)	$[\mathrm{Kr}] \ 4d^{1\bullet} \ 5s^2$

Third transition series (5d) :

Element	Symbol	Electronic Configuration
Lanthanum	La (57)	$[Xe]5d^{1} 6s^{2}$
Hafnium	Hf (72)	$[Xe]4f^{14} 5 e^2 6s^2$
Tantalmn	Ta (73)	[Xe]4f ¹⁴ 5d ³ 6s ²
Tungsten	W (74)	$[Xe]4f^{14} 5d^4 6s^2$
Rhenium	Re (75)	$[Xe]4f^{14} 5d^5 6s^2$
Osmium	Os (76)	$[Xe]4f^{14} 5d^6 6s^2$
Iridium	Ir (77)	$[Xe]4f^{14} 5d^7 6s^2$
Platinum	Pt (78)	$[Xe]4f^{14} 5d^9 6s^1$
Gold	Au (79)	[Xe]4f ¹⁴ 5d ¹⁰ 6s ¹
Mercury	Hg (80)	$[Xe]4f^{14} 5d^{10} 6s^2$

*Exceptional electronic configurations due to extra stability of half filled and fully filled orbitals.