Chemical Bonding and Molecular Structure - Which of the following pairs of compounds is isoelectronic and isostructural? - (a) TeI_2 , XeF_2 - (b) IBr_2^- , XeF_2 - (c) IF₃, XeF₂ - (d) BeCl₂, XeF₂ (NEET 2017) - 2. The species, having bond angles of 120° is (a) ClF₃ (b) NCl₃ (c) BCl₃ (d) PH₃ (NEET 2017) - 3. Which one of the following pairs of species have the same bond order? - (a) O_2 , NO^+ - (b) CN-, CO - (c) N_2 , O_2^- - (d) CO, NO (NEET 201 - Which one of the following compounds shows the presence of intramolecular hydrogen bon- - (a) H₂O₂ - (b) HCN - (c) Cellulose - (d) Concentrated acetic acid - 5. The hybridizations of atomic or in NO_2^+ , NO_3^- and NH_4^+ resp - (a) sp, sp^3 and sp(c) sp, sp^2 and sp - 6. Which of the following pa irs of ions is isoelectronic and isostructural? - (a) CO₃²⁻, NO₃⁻ (c) SO₃²⁻, NO₃⁻ - b) ClO₃⁻, CO₃² - (d) ClO_3^- , SO_3^2 (NEET-II 2016) - 7. The correct geometry and hybridization for XeF4 are - (a) octahedral, sp^3d^2 - (b) trigonal bipyramidal, sp^3d - (c) planar triangle, sp^3d^3 - (d) square planar, $sp^{3}d^{2}$. (NEET-II 2016) - 8. Among the following, which one is a wrong statement? - (a) PH₅ and BiCl₅ do not exist. - (b) $p\pi$ - $d\pi$ bonds are present in SO₂. - (c) SeF₄ and CH₄ have same shape. - (d) I_3^+ has bent geometry. (NEET-II 2016) - Consider the molecules CH₄, NH₃ and H₂O. Which of the given statements is false? - (a) The H O H bond angle in H₂O is smaller than the H — N — H bond angle - C H bond angle in CH₄ is larger (b) The Hthan the H \longrightarrow H bond angle in NH₃. - bond angle in CH₄, the bond angle in NH₃, and the <mark>bond a</mark>ngle in H₂O are all - H bond angle in H₂O is larger C — H bond angle in CH₄. (NEET-I 2016) - edict the correct order among the following: ond pair - bond pair > lone pair - bond pair > lone pair - lone pair - lone pair bond pair > bond pair bond pair > lone pair - lone pair - lone pair lone pair > lone pair bond pair > bond pair - bond pair - lone pair lone pair > bond pair bond pair > lone pair - bond pair (NEET-I 2016) - 11. In which of the following pairs, both the species are not isostructural? - (a) Diamond, Silicon carbide - (b) NH₃, PH₃ - (c) XeF₄, XeO₄ - (d) SiCl₄, PCl₄ (2015) - **12.** Decreasing order of stability of O_2 , O_2^- , O_2^+ and O_2^{2-} is - (a) $O_2^{2-} > O_2^- > O_2^+ > O_2^+$ - (a) $O_2 > O_2 > O_2 > O_2$ (b) $O_2 > O_2^+ > O_2^{-2} > O_2^-$ (c) $O_2^- > O_2^{-2} > O_2^+ > O_2$ (d) $O_2^+ > O_2 > O_2^- > O_2^{-2}$ - (2015) - 13. Which of the following pairs of ions are isoelectronic and isostructural? - (a) SO₃²⁻, NO₃⁻ (c) CO₃²⁻, SO₃²⁻ - (b) ClO_3^- , SO_3^{2-} - (d) ClO_3^- , CO_3^2 (2015, Cancelled) ## Chemical Bonding and Molecular Structure 24. The pair of species that has the same bond (b) NO⁻, CN⁻ (d) O₂, B₂ (Karnataka NEET 2013) order in the following is (a) CO, NO^+ (c) O₂, N₂ | 14. | The correct bond order in the following species is (a) $O_2^+ < O_2^- < O_2^{2+}$ (b) $O_2^- < O_2^+ < O_2^{2+}$ (c) $O_2^{2+} < O_2^+ < O_2^-$ (d) $O_2^{2+} < O_2^- < O_2^+$ (2015, Cancelled) | 25. The outer orbitals of C in ethene molecule can be considered to be hybridized to give three equivalent sp^2 orbitals. The total number of sigma (σ) and pi (π) bonds in ethene molecule is | |-----|--|---| | 15. | Which of the following options represents the correct bond order?
(a) $O_2^- > O_2 < O_2^+$ (b) $O_2^- < O_2 > O_2^+$ (c) $O_2^- > O_2 > O_2^+$ (d) $O_2^- < O_2 < O_2^+$ (2015, Cancelled) | (a) 3 sigma (σ) and 2 pi (π) bonds (b) 4 sigma (σ) and 1 pi (π) bonds (c) 5 sigma (σ) and 1 pi (π) bonds (d) 1 sigma (σ) and 2 pi (π) bonds. (Karnataka NEET 2013) 26. In which of the following pair both the species | | 16. | Maximum bond angle at nitrogen is present in which of the following? (a) NO ₂ ⁺ (b) NO ₃ ⁻ (c) NO ₂ (d) NO ₂ ⁻ (2015, Cancelled) | have sp^3 hybridization? (a) SiF ₄ , BeH ₂ (b) NF ₃ , H ₂ O (c) NF ₃ , BF ₃ (d) H ₂ S, BF ₃ (Karnataka NEET 2013) | | 17. | Which of the following molecules has the maximum dipole moment? (a) CO_2 (b) CH_4 (c) NH_3 (d) NF_3 (2014) | 27. In which of the following ionization processes the bond energy increases and the magnetic behaviour changes from paramagnetic to diamagnetic. | | 18. | Which one of the following species has plane triangular shape? (a) N_3 (b) NO_3^- (c) NO_2^- (d) CO_2 (2014) | (a) $C_2 \rightarrow \overline{C}_2^+$ (b) $C_2 \rightarrow C_2^+$ (c) $NO \rightarrow NO^+$ (d) $N_2 \rightarrow N_2^+$ (Karnataka NEET 2013) 28. Which one of the following pairs is isostructural | | 19. | Which of the following is electron-deficient? (a) (BH ₃) ₂ (b) PH ₃ (c) (CH ₃) ₂ (d) (SiH ₃) ₂ (NEET 2913) | (c) [NF ₃ and BF ₃] (d) [BF ₄ and NH ₄ ⁺] (2012) | | 20. | XeF_2 is isostructural with (a) $SbCl_3$ (b) $BaCl_2$ (c) TeF_2 (d) ICl_2 ($NEET\ 2013$) | 29. Bond order of 1.5 is shown by (a) O_2^+ (b) O_2^- (c) O_2^{2-} (d) O_2 (2012) | | 21. | Which of the following is a polar molecule? (a) SiF ₄ (b) XeF ₄ (c) BF ₃ (d) SF ₄ (NEET 2013) | 30. Which of the following species contains three bond pairs and one lone pair around the central atom? (a) H₂O (b) BF₃ (c) NH₂⁻ (d) PCl₃ | | 22. | Which of the following is paramagnetic? (a) CN^- (b) NO^+ (c) CO (d) O_2^- (NEET 2013) | 31. The pair of species with the same bond order is | | 23. | Dipole-induced dipole interactions are present
in which of the following pairs
(a) HCl and He atoms | (a) O_2^{2-} , B_2 (b) O_2^{+} , NO^{+} (c) NO, CO (d) N_2 , O_2 (2012) | | | (b) SiF₄ and He atoms (c) H₂O and alcohol (d) Cl₂ and CCl₄ (NEET 2013) | 32. During change of O₂ to O₂ ion, the electron adds on which one of the following orbitals? (a) π* orbital (b) π orbital | **33.** Four diatomic species are listed below. Identify the correct order in which the bond order is increasing in them (d) σ orbital (Mains 2012) (c) σ* orbital - (a) $NO < O_2^- < C_2^{2-} < He_2^+$ - (b) $O_2^- < NO < C_2^{2-} < He_2^+$ - (c) $C_2^{2-} < He_2^+ < O_2^- < NO$ - (d) $He_2^+ < O_2^- < NO < C_2^{2-}$ (Mains 2012, 2008) - 34. Which of the following has the minimum bond length? - (a) O_2^+ - (b) O_2^- - (c) O_2^{2-} (d) O_2 - (2011) - 35. Which of the two ions from the list given below that have the geometry that is explained by the same hybridization of orbitals, NO₂, NO₃, - NH₂, NH₄, SCN⁻? (a) NO_2^- and NO_3^- - (b) NH_4^+ and NO_3^- - (c) SCN⁻ and NH₂ - (d) NO_2^- and NH_2^- (2011) - **36.** The correct order of increasing bond length of C - H, C - O, C - C and C = C is - (a) C H < C = C < C O < C C - (b) C C < C = C < C O < C H - (c) C O < C H < C C < C = C - (d) C H < C O < C C < C = C - 37. Which of the following structures is the mo preferred and hence of lowest energy for - 38. The pairs of species of oxygen and their magnetic behaviour are noted below. Which of the following presents the correct description? - (a) O₂⁻, O₂²⁻ Both diamagnetic (b) O⁺, O₂²⁻ Both paramagnetic (c) O₂⁺, O₂ Both paramagnetic (d) O, O₂²⁻ Both paramagnetic - (2011) - 39. In which of the following pairs of molecules/ ions, the central atoms have sp^2 hybridisation? - (a) NO_2^- and NH_3 - (b) BF₃ and NO_2^- - (c) NH_2^- and H_2O - (d) BF₃ and NH₂ (2010) - **40.** Which one of the following species does not exist under normal conditions? - (a) $\operatorname{Be}_{2}^{+}$ (b) Be₂ - (c) B₂ - (d) Li₂ (2010) - **41.** In which one of the following species the central atom has the type of hybridization which is not the same as that present in the other three? - (a) SF₄ - (b) I_3^- - (c) SbCl₅²⁻ - (d) PCl₅ (2010) - **42.** In which of the following molecules the central atom does not have sp^3 hybridization? - (a) CH₄ (b) SF₄ - (c) BF_4^- (d) NH_4^+ (Mains 2010) - 43. Some of the properties of the two species, NO3 and H3Q re described below. Which correct? - Dissimilar in hybridization for the central om with different structures - Isostructural with same hybridization for the central atom. - tructural with different hybridization the central atom. - similar in hybridization for the central atom with different structures. (Mains 2010) - What is the dominant intermolecular force or bond that must be overcome in converting liquid CH₂OH to a gas? - (a) Dipole-dipole interaction - Covalent bonds - London dispersion force - (d) Hydrogen bonding - (2009) - 45. According to MO theory which of the lists ranks the nitrogen species in terms of increasing bond order? - **46.** In which of the following molecules/ions BF₃, NO_2^- , NH_2^- and H_2O , the central atom is sp^2 hybridised? - (a) NH_2^- and H_2O - (b) NO_2^- and H_2O - (c) BF₃ and NO₂ - (d) NO₂ and NH₂ (2009) - 47. The correct order of increasing bond angles in the following triatomic species is - (a) $NO_2^+ < NO_2 < NO_2^-$ ## Chemical Bonding and Molecular Structure - (b) $NO_2^+ < NO_2^- < NO_2$ - (c) $NO_2^- < NO_2^+ < NO_2$ (d) $NO_2^- < NO_2 < NO_2^+$ (2008) - 48. In which of the following pairs, the two species are isostructural? - (a) SO_3^{2-} and NO_3^{-} (c) BrO_3^{-} and XeO_3 - (b) BF₃ and NF₃ - (d) SF₄ and XeF₄ (2007) - **49.** The correct order of C O bond length among CO, CO_3^{2-} , CO_2 is (a) $CO < CO_3^{2-} < CO_2$ (b) $CO_3^{2-} < CO_2 < CO_2$ - (c) $CO < CO_2 < CO_3^{2}$ - (d) $CO_2 < CO_3^{2-} < CO$ (2007) - 50. Which of the following is not a correct statement? - (a) Multiple bonds are always shorter than corresponding single bonds. - (b) The electron-deficient molecules can act as Lewis acids. - (c) The canonical structures have no real existence. - (d) Every AB_5 molecule does in fact have square pyramid structure - 51. Which of the following specif shape? - (a) O_3 - 52. Which of the following with SiCl₄? - PO_4^{3-} (a) NH_4 (2006) - 53. Which of the following molecules has trigonal planar geometry? - (a) BF₃ (b) NH₃ (c) PCl₃ (d) IF₃ - (2005) - **54.** The correct order in which the O O bond length increases in the following is - (a) $O_2 < H_2O_2 < O_3$ - (b) $O_3 < H_2O_2 < O_2$ - (c) $H_2O_2 < O_2 < O_3$ - (d) $O_2 < O_3 < H_2O_2$ - **55.** The surface tension of which of the following liquid is maximum? - (a) C₂H₅OH - (b) CH₃OH - (c) H₂O - (d) C_6H_6 (2005) - **56.** Among the following, the pair in which the two species are not isostructural is - (a) SiF₄ and SF₄ - (b) IO₃⁻ and XeO₃ - (c) BH₄ and NH₄ - (d) PF₆⁻ and SF₆. (2004) - **57.** In a regular octahedral molecule, MX_6 the number of X - M - X bonds at 180° is - (a) three (b) two - (c) six - (d) four. (2004) - **58.** H₂O is dipolar, whereas BeF₂ is not. It is because - (a) the electronegativity of F is greater than that of O - (b) H₂O involves hydrogen bonding whereas BeF₂ is a discrete molecule - (c) H₂O is linear and BeF₂ is angular (d) H₂O is angular and BeF₂ is linear. (2004) - 59. In BrF the lone pairs occupy ositions to minimize - pair bond pair repulsion only - bond pair bond pair repulsion only - one pair lone pair repulsion and lone - bond pair repulsion - e pair lone pair repulsion only. (2004) Which one of the following statements is not correct for sigma- and pi- bonds formed between two carbon atoms? - (a) Sigma-bond is stronger than a pi-bond. - Bond energies of sigma- and pi-bonds are of the order of 264 kJ/mol and 347 kJ/mol, respectively. - Free rotation of atoms about a sigma-bond is allowed but not in case of a pi-bond. - (d) Sigma-bond determines the direction between carbon atoms but a pi-bond has no primary effect in this regard. (2003) - **61.** Which of the following has $p\pi d\pi$ bonding? (a) NO_3^- (b) SO_3^{2-} (c) BO_3^{3-} (d) CO_3^{2-} (2002) - 62. In NO₃ ion number of bond pair and lone pair of electrons on nitrogen atom are - (a) 2, 2 - (b) 3, 1 - (c) 1, 3 - (d) 4, 0. (2002) - **63.** Which of the following is isoelectronic? - (a) CO_2 , NO_2 - (b) NO_2^- , CO_2 - (c) CN-, CO - (d) SO_2 , CO_2 (2002) **64.** Which of the following two are isostructural? 65. In which of the following bond angle is **66.** Nitrogen forms N₂, but phosphorus does not (b) $p_{\pi} - p_{\pi}$ bonding is weak (c) $p_{\pi} - p_{\pi}$ bonding is strong (d) multiple bonds form easily. form P₂, however, it converts P₄, reason is (a) triple bond present between phosphorus (b) NH₃, BF₃ (d) PCl₅, ICl₅ (b) NH₄⁺ (c) PCl₃ (d) SCl₂ (2001) (2001) (2001) (a) XeF₂, IF₂⁻ (c) CO₃²⁻, SO₃²⁻ maximum? (a) NH₃ | 67. | In $X - HY$, X and Y both are electronegative elements. Then (a) electron density on X will increase and on | 76. | Which of the billowing has sp^2 -hybridisation?
(a) BeCl ₂ (b) c_2H_2 (c) C_2H_6 (d) C_2H_4 (1996) | |-----|--|-----|--| | | H will decrease (b) in both electron density will increase (c) in both electron density will decrease (d) on X electron density will decrease and on H increases. (2001) | | Which of the following species is paramagnetic? (a) CO (b) CN^- (c) O_2^{2-} (d) $NO_{(1995)}$ | | 68. | $d\pi - p\pi$ bond present in (a) CO_3^{2-} (b) PO_4^{3-} (c) NO_3 (d) NO_3 | 78. | The correct order of the O-O bond length in O_2 , H_2O_2 and O_3 is | | 69. | Right order of dissociation energy N_2 and N_2^+ is
(a) $N_2 > N_2^+$ (b) $N_2 = N_2^-$ | | (a) $O_2 > H_2O_2 > O_3$ (b) $H_2O_2 > O_3 > O_2$
(c) $O_2 > O_3 > H_2O_2$ (d) $O_3 > H_2O_2 > O_2$
(1995) | | 70. | (a) $N_2 = N_2$ (b) $N_2 = N_2$ (c) $N_2^+ > N_2$ (d) none. (2000) Which species does not exhibit paramagnetism? (a) N_2^+ (b) O_2 (c) CO (d) NO (2000) | 79. | The ground state electronic configuration of valence shell electrons in nitrogen molecule (N ₂) is written as KK , $\sigma 2s^2$, $\sigma^* 2s^2$, $\pi 2p_x^2 = \pi 2p_y^2 \sigma 2p_z^2$. Hence the bond order in nitrogen molecule is (a) 2 (b) 3 (c) 0 (d) 1 | | 71. | The number of anti-bonding electron pairs in ${\rm O_2}^{2^-}$ molecular ion on the basis of molecular orbital theory is (Atomic number of O is 8) (a) 3 (b) 2 (c) 5 (d) 4 (1998) | 80. | (1995) Which of the following molecules has the highest bond order? (a) O_2^- (b) O_2 (c) O_2^+ (d) O_2^{2-} (1994) | | 72. | In PO_4^{3-} ion, the formal charge on each oxygen atom and P—O bond order respectively are (a) $-0.75, 1.25$ (b) $-0.75, 1.0$ (c) $-0.75, 0.6$ (d) $-3, 1.25$ (1998) | 81. | Which of the following molecule does not possess a permanent dipole moment? (a) CS ₂ (b) SO ₃ (c) H ₂ S (d) SO ₂ (1994) | | 73. | N ₂ and O ₂ are converted into monocations,
N ₂ ⁺ and O ₂ ⁺ respectively. Which is wrong?
(a) In O ₂ paramagnetism decreases.
(b) N ₂ ⁺ becomes diamagnetic. | 82. | The table shown below gives the bond dissociation energies ($E_{\rm diss}$) for single covalent bonds of carbon (C) atoms with element A , | (c) In N₂, the N-N bond weakens. (a) In O₂, bond length increases. (b) N₂⁻ becomes diamagnetic. (c) In N₂, then N-N bond weakens. statements is wrong? (a) propene propane (d) In O2, the O-O bond order increases. **74.** N_2 and O_2 are converted into monoanions N_2 (d) In O2, the O-O bond order increases. 75. The bond length between hybridised carbon atom and other carbon atom is minimum in (b) propyne (d) butane. (1996) and O2 respectively, which of the following (1997) (1997) B, C and D. Which element has the smallest atoms? | Bond | $E_{\rm diss}({\rm kJ\ mol}^{-1})$ | |---------------------|------------------------------------| | C - A | 240 | | C - <i>B</i> | 328 | | C- <i>C</i> | 276 | | C-D | 485 | (a) C (b) D (c) A (d) B (1994) 83. Among the following which compound will show the highest lattice energy? (a) KF (b) NaF (c) CsF (d) RbF (1993) **84.** Which one of the following is the correct order of interactions? - (a) Covalent < hydrogen bonding < van der Waals' < dipole-dipole - (b) van der Waals' < hydrogen bonding < dipole < covalent - (c) van der Waals' < dipole-dipole < hydrogen bonding < covalent - (d) Dipole-dipole < van der Waals' < bonding < covalent. - 85. Which one of the following has the carbon carbon bond len (a) Benzene (c) Ethyne **86.** Which structure is SO_4^{2-} (a) SO_2 (1992) - 87. Strongest hydrogen bond is shown by - (a) water - (b) ammonia - (c) hydrogen fluoride - (d) hydrogen sulphide. (1992) **88.** In compound X, all the bond angles are exactly 109°28′, X is - (a) chloromethane - (b) carbon tetrachloride - (c) iodoform (d) chloroform (1991) 89. Among LiCl, BeCl₂, BCl₃ and CCl₄, the covalent bond character follows the order (a) $BeCl_2 > BCl_3 > CCl_4 < LiCl$ - (b) $BeCl_2 < BCl_3 < CCl_4 < LiCl$ - (c) $LiCl \le BeCl_2 \le BCl_3 \le CCl_4$ - (1990)(d) $LiCl > BeCl_2 > BCl_3 > CCl_4$ **90.** The complex ion $[Co(NH_3)_6]^{3+}$ is formed by sp^3d^2 hybridisation. Hence the ion should - (a) octahedral geometry - (b) tetrahedral geometry - (c) square planar geometry (d) tetragonal geometry. (1990) **91.** Which statement is NOT correct? - (a) A sigma bond is weaker than a pi bond. - (b) A sigma bond is stronger than a pi bond. - A double bond is stronger than a single bond. - is shorter than a single (d) A double bond maximum hydrogen 92. Which > (c) H₂S (1990) mbination of two hybridized orbitals ing to two atoms and each having one ron leads to the formation of - sigma bond - (b) double bond - (c) co-ordinate covalent bond - (d) pi bond. (1990) 94. Which one of the following formulae does not correctly represent the bonding capacities of the two atoms involved? (a) $$\begin{bmatrix} H - P - H \\ H - P - H \end{bmatrix}$$ (b) $$F = F$$ (c) $$O \leftarrow N = O$$ (d) $$H - C = C = O - H$$ (1990) 95. Which of the following molecule does not have a linear arrangement of atoms? (b) C_2H_2 (c) Be_2 (d) CO₂ (a) H_2S (1989) 96. Which of the following does not apply to - metallic bond? (a) Overlapping valence orbitals - (b) Mobile valence electrons - (c) Delocalized electrons - (d) Highly directed bonds (1989) - 97. In which one of the following molecules the central atom can be said to adopt sp^2 hybridization? - (a) BeF₂ (b) BF₃ (c) C_2H_2 (d) NH_3 (1989) - 98. H₂O has a net dipole moment while BeF₂ has zero dipole moment because - (a) H₂O molecule is linear while BeF₂ is bent - (b) BeF₂ molecule is linear while H₂O is bent - (c) fluorine has more electronegativity than oxygen - (d) beryllium has more electronegativity than oxygen. - 99. The angle between the overlapping of one s-orbital and one p-orbital is - (a) 180° - (b) 120° - (c) 109°28′ - (d) 120°, 60° (1988) - 100. Equilateral shape has - (a) sp hybridisation - (b) sp^2 hybridisation (c) sp^3 hybridisation - (d) dsp³ hybridisation (1988) **Answer Key** | 1. | (No | ne) | | 2. | (c) | 3. | (b) | 4. | (c) | 5. | (c) | 6. | (a,d | 7. | (a) | 8. | (c) | 9. | (d) | |------------|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|------------|------|-------------|-----|------------|-----|-------------|-----| | 10. | (c) | 11. | (c) | 12. | (d) | 13. | (b) | 14. | (b) | 15. | (d) | 16. | (a) | 17. | (c) | 18. | (b) | 19. | (a) | | 20. | (d) | 21. | (d) | 22. | (d) | 23. | (a) | 24. | (a) | 25. | (c) | 26. | (b) | 27. | (c) | 28. | (d) | 29. | (b) | | 30. | (d) | 31. | (a) | 32. | (a) | 33. | (d) | 34. | (a) | 35. | (a) | 36. | (a) | 37. | (d) | 38. | (c) | 39. | (b) | | 40. | (b) | 41. | (c) | 42. | (b) | 43. | (a) | 44. | (d) | 45. | (a) | 46. | (c) | 47 . | (d) | 48. | (c) | 49. | (c) | | 50. | (d) | 51. | (d) | 52. | (b) | 53. | (a) | 54. | (d) | 55. | (c) | 56. | (a) | 57. | (a) | 58. | (d) | 59 . | (d) | | 60. | (b) | 61. | (b) | 62. | (d) | 63. | (c) | 64. | (a) | 65. | (b) | 66. | (b) | 67. | (a) | 68. | (b) | 69. | (a) | | 70. | (c) | 71. | (d) | 72. | (a) | 73. | (b) | 74. | (d) | 75. | (b) | 76. | (d) | 77. | (d) | 78. | (b) | 79. | (b) | | 80. | (c) | 81. | (a) | 82. | (b) | 83. | (b) | 84. | (b) | 85. | (c) | 86. | (b) | 87. | (c) | 88. | (b) | 89. | (c) | | 90. | (a) | 91. | (a) | 92. | (a) | 93. | (a) | 94. | (d) | 95. | (a) | 96. | (d) | 97. | (b) | 98. | (b) | 99. | (a) | | 100. | | | | | - | | | | | | | | | | | | | | |