Coordination Compounds

1.	An example of a sigma bonded organometallic
	compound is

- (a) Grignard's reagent (b) ferrocene
- (c) cobaltocene
- (d) ruthenocene.

(NEET 2017)

2. The correct order of the stoichiometries of AgCl formed when AgNO₃ in excess is treated with the complexes: CoCl₃.6NH₃, CoCl₃.5NH₃, CoCl₃.4NH₃ respectively is

- (a) 3AgCl, 1AgCl, 2AgCl
- (b) 3AgCl, 2AgCl, 1AgCl
- (c) 2AgCl, 3AgCl, 2AgCl
- (d) 1AgCl, 3AgCl, 2AgCl

(NEET 201

3. Correct increasing order for the wavelengths of absorption in the visible region for t complexes of Co³⁺ is

- (a) $[Co(H_2O)_6]^{3+}$, $[Co(en)_3]^3$
- (b) [Co(H₂O)₆]³⁺, [Co(NH₃)₆] (c) [Co(NH₃)₆]³⁺, [Co(*en*)₃]³⁺
- (d) $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]$

4. Pick out the correct stat to $[Mn(CN)_6]$

- (a) It is sp^3d^2 hybridised and tetrahedral.
- (b) It is d^2sp^3 hybridised and octahedral.
- (c) It is dsp^2 hybridised and square planar.
- (d) It is sp^3d^2 hybridised and octahedral. (NEET 2017)

5. The correct increasing order of trans-effect

- of the following species is
 - (a) $NH_3 > CN^- > Br^- > C_6H_5^-$
 - (b) $CN^- > C_6H_5^- > Br^- > NH_3$
 - (c) $Br^- > CN^- > NH_3 > C_6H_5^-$
 - (d) $CN^- > Br^- > C_6H_5^- > NH_3$

(NEET-II 2016)

6. Jahn-Teller effect is not observed in high spin complexes of

- (a) d^{7}
- (b) d^{8}
- (c) d^4 (d) d^9

(NEET-II 2016)

- Which of the following has longest C-O bond length? (Free C—O bond length in CO is 1.128 Å.)
 - (a) $[Fe(CO)_4]^{2-}$
- (b) $[Mn(CO)_6]^+$
- (c) Ni(CO)₄
- (d) [Co(CO)₄]

(NEET-I 2016)

- The hybridization involved in complex $[Ni(CN)_4]^{2-}$ is At. N_0 . $N_1 = 28$)
 - (a) *sp*
 - (d) dxp^2

(2015)

- name of complex ion, $[Fe(CN)_6]^{3-}$ is
 - hexacyanitoferrate (III) ion
 - ricyanoferrate (III) ion
 - hexacyanidoferrate (III) ion
 - xacyanoiron (III) ion.

(2015)

sum of coordination number and oxidation number of the metal M in the complex $[M(en)_2(C_2O_4)]Cl$ (where *en* is ethylenediamine) is

- (a) 6
- (b) 7
- (c) 8
- (d) 9

(2015)

- 11. Number of possible isomers for the complex $[Co(en)_2Cl_2]Cl$ will be (en = ethylenediamine)
 - (a) 1
- (b) 3
- (c) 4 (d) 2

(2015)

- 12. Cobalt (III) chloride forms several octahedral complexes with ammonia. Which of the following will not give test for chloride ions with silver nitrate at 25°C?
 - (a) CoCl₃ · 5NH₃
- (b) CoCl₃·6NH₃
- (c) CoCl₃ · 3NH₃
- (d) CoCl₃ · 4NH₃

(2015, Cancelled)

- 13. Which of these statements about $[Co(CN)_6]^{3-}$
 - (a) $[Co(CN)_6]^{3-}$ has four unpaired electrons and will be in a high-spin configuration.
 - (b) $[Co(CN)_6]^{3-}$ has no unpaired electrons and will be in a high-spin configuration.

- (c) $[Co(CN)_6]^{3-}$ has no unpaired electrons and will be in a low-spin configuration.
- (d) $[Co(CN)_6]^{3-}$ has four unpaired electrons and will be in a low-spin configuration. (2015, Cancelled)
- 14. Among the following complexes the one which shows zero crystal field stabilization energy (CFSE) is
 - (a) $[Mn(H_2O)_6]^{3+}$
- (b) $[Fe(H_2O)_6]^{3+}$ (d) $[Co(H_2O)_6]^{3+}$
- (c) $[Co(H_2O)_6]^{2+}$

(2014)

- 15. Which of the following complexes is used to be as an anticancer agent?
 - (a) mer-[Co(NH₃)₃Cl₃] (b) cis-PtCl₂(NH₃)₂]
 - (c) cis- $K_2[PtCl_2Br_2]$
- (d) Na₂CoCl₄

(2014)

- **16.** A magnetic moment at 1.73 BM will be shown by one among of the following
 - (a) TiCl₄
- (b) $[CoCl_6]^{4-}$
- (c) $[Cu(NH_3)_4]^{2+}$
- (d) $[Ni(CN)_4]^{2-}$

(NEET

- 17. An excess of AgNO₃ is added to 100 mL a 0.01 M solution of dichlorotetraage chromium (III) chloride. The number of mo of AgCl precipitated would be
 - (a) 0.003 (b) 0.01

- 18. Crystal field splitting energy octahedral complex is
 - (a) $-1.2 \, \Delta_o$
 - (c) $-0.8 \Delta_{o}$

ka NEET 2013)

- **19.** In a particular isomer of $Co(NH_3)_4Cl_2$, the Cl - Co - Cl angle is 90°, the isomer is known
 - (a) optical isomer
- (b) cis-isomer
- (c) position isomer
- (d) linkage isomer.

(Karnataka NEET 2013)

- 20. The anion of acetylacetone (acac) forms Co (acac)₃ chelate with Co³⁺. The rings of the chelate are
 - (a) five membered
- (b) four membered
- (c) six membered
- (d) three membered
- (Karnataka NEET 2013)

- **21.** The correct IUPAC name for $[CrF_2(en)_2]$ Cl is
 - (a) chloro difluorido ethylene diaminechromium (III) chloride
 - (b) difluoridobis (ethylene diamine) chromium (III) chloride
 - (c) difluorobis-(ethylene diamine) chromium (III) chloride
 - chloro difluoridobis (ethylene diamine) chromium (III) (Karnataka NEET 2013)
- 22. Which among the following is a paramagnetic complex?
 - (a) $[Co(NH_3)_6]^{3+}$
- (b) $[Pt(en)Cl_2]$
- (c) $[CoBr_4]^2$
- (d) Mo(CO)₆

(At. No. Mo = 42, Pt = 78) (Karnataka NEET 2013)

- 23. Which is diam
 - (b) [Ni(CN)₄]²⁻ (a) [Co(F)
 - (d) $[Fe(CN)_6]^{3-}$ (c) [NiCl (Karnataka NEET 2013)
- one of the following is an outer orbital plex and exhibits paramagnetic behaviour?
 - $(NH_3)_6]^{2+}$
- (b) $[Zn(NH_3)_6]^2$
- $[H_3]_6]^{3+}$
- (d) $[Co(NH_3)_6]^{3+}$

(2012)

- d precipitate is obtained when ethanol solution of dimethylglyoxime is added to ammoniacal Ni(II). Which of the following statements is not true?
 - Red complex has a square planar geometry.
 - Complex has symmetrical H-bonding.
 - Red complex has a tetrahedral geometry.
 - Dimethylglyoxime functions as bidentate ligand.

$$\begin{bmatrix} \text{dimethylglyoxime} = \begin{bmatrix} \text{H}_{3}\text{C} - \text{C} = \text{N} \\ \text{H}_{3}\text{C} - \text{C} = \text{N} \\ \text{OH} \end{bmatrix} \\ \text{(Mains 2012)}$$

- **26.** Low spin complex of d° -cation in an octahedral field will have the following energy

 - (a) $\frac{-12}{5}\Delta_o + P$ (b) $\frac{-12}{5}\Delta_o + 3P$ (c) $\frac{-2}{5}\Delta_o + 2P$ (d) $\frac{-2}{5}\Delta_o + P$

 $(\Delta_o = \text{crystal field splitting energy in an})$ octahedral field, P = Electron pairing energy)(2012)

Coordination Compounds

27.	Of	the	follo	wing	complex	ions,	which	is
	diamagnetic in nature?							

- (a) $[NiCl_4]^2$
- (b) [Ni(CN)₄]
- (c) [CuCl₄]

(d) [CoF₆]

28. The complexes $[Co(NH_3)_6][Cr(CN)_6]$ and [Cr(NH₃)₆][Co(CN)₆] are the examples of which type of isomerism?

- (a) Linkage isomerism
- (b) Ionization isomerism
- (c) Coordination isomerism
- (d) Geometrical isomerism

(2011)

(2011)

29. The complex, [Pt(Py)(NH₃)BrCl] will have how many geometrical isomers?

- (a) 3
- (b) 4

(2011)

30. The *d*-electron configurations of Cr^{2+} , Mn^{2+} Fe²⁺ and Co²⁺ are d^4 , d^5 , d^6 and d^7 respectively. Which one of the following will exhibit minimum paramagnetic behaviour?

- (a) $[Mn(H_2O)_6]^{2-}$
- (b) $[Fe(H_2O)_6]$
- (c) $[Co(H_2O)_6]^2$
- (d) [Cr(H₂Q

(At. nos. Cr = 24, Mn = 25, Fe = 2

31. Which of the following carbonyl the strongest C - O bond's

- (a) $Mn(CO)_6$
- (c) V(CO)6

32. Which of the following pounds ehaviour? will exhibit highest

- (a) $[Ti(NH_3)_6]$
- (c) $[Co(NH_3)_6]^{3}$
- $(Zn(NH_3)_6)^{2+}$

(At. No. Ti = 22, Cr = 2 $C_0 = 27, Z_0 = 30$

(2011)

33. Which of the following complex ions is not expected to absorb visible light?

- (a) $[Ni(CN)_4]^{2-}$
- (b) $[Cr(NH_3)_6]^{3+}$
- (c) $[Fe(H_2O)_6]^{2+}$
- (d) $[Ni(H_2O)_6]^{2+}$

(2010)

34. Crystal field stabilization energy for high spin d^4 octahedral complex is

- (a) $-1.8 \Delta_o$
- (c) $-1.2 \Delta_o$
- (b) $-1.6 \Delta_o + P$ (d) $-0.6 \Delta_o$ (2010)

35. The existance of two different coloured complexes with the composition of $[Co(NH_3)_4Cl_2]^+$ is due to

- (a) linkage isomerism
- geometrical isomerism
- coordination isomerism
- (d) ionization isomerism.

(2010)

36. Which one of the following complexes is not expected to exhibit isomerism?

- (a) $[Ni(NH_3)_4(H_2O)_2]^{2+}$ (b) $[Pt(NH_3)_2Cl_2]$

(c) $[Ni(NH_3)_2Cl_2]$

(d) $[Ni(en)_3]^2$

37. Out of TiF_6^{2-} , CoF_6^{3-} , Cu_2Cl_2 and $NiCl_4^{2-}$ (Z of Ti = 22, Co = 27, Cu = 29, Ni = 28) thecolourless species are

- (a) Cu₂Cl₂ and NiCl₄²
- (b) TiF_6^2 and \bigcirc
- CoF_6

(2009)

ving does not show optical

- $en)Cl_2(NH_3)_2$
- $(en)_3]^{3+}$
- $(en)_2Cl_2]^+$
- ethylenediamine)

(2009)

(b) $[Cr(NH_3)_6]^{3+}$

Which of the following complex ions is expected to absorb visible light?

- (a) $[Ti(en)_2(NH_3)_2]^{4+}$
- (c) $[Zn(NH_3)_6]^2$
- (d) $[Sc(H_2O)_3(NH_3)_3]^{3+}$

[At. nos.
$$Zn = 30$$
, $Sc = 21$, $Ti = 22$, $Cr = 24$]

(2009)

40. Which of the following complexes exhibits the highest paramagnetic behaviour?

- (a) $[Co(ox)_2(OH)_2]^T$
- (b) $[Ti(NH_3)_6]^{3+}$
- (c) $[V(gly)_2(OH)_2(NH_3)_2]^+$
- (d) $[Fe(en)(bpy)(NH_3)_2]^4$

where gly = glycine, en = ethylenediamine and bpy = bipyridyl moities. (At. nos. Ti = 22,

V = 23, Fe = 26, Co = 27)

41. In which of the following coordination entities the magnitude of Δ_o (CFSE in octahedral field) will be maximum?

- (a) $[Co(CN)_6]^{3-}$
- (b) $[Co(C_2O_4)_3]^{3-}$
- (c) $[Co(H_2O)_6]^{3+}$
- (d) $[Co(NH_3)_6]^{3+}$
- (At. No. Co = 27)

(2008)

- 42. Which of the following will give a pair of enantiomorphs?
 - (a) $[Cr(NH_3)_6][Co(CN)_6]$
 - (b) $[Co(en)_2Cl_2]Cl$
 - (c) $[Pt(NH_3)_4][PtCl_6]$
 - (2007)(d) $[Co(NH_3)_4Cl_2]NO_2$ (en = NH₂CH₂CH₂NH₂)
- **43.** The *d* electron configurations of Cr^{2+} , Mn^{2+} Fe^{2+} and Ni^{2+} are $3d^4$, $3d^5$, $3d^6$ and $3d^8$ respectively. Which one of the following aqua complexes will exhibit the minimum paramagnetic behaviour?
 - (a) $[Fe(H_2O)_6]^{2+}$
- (b) $[Ni(H_2O)_6]^{2+}$
- (c) $[Cr(H_2O)_6]^{2+}$
- (d) $[Mn(H_2O)_6]^{2+}$
- (At. No. Cr = 24, Mn = 25, Fe = 26, Ni = 28)
- **44.** $[Cr(H_2O)_6]Cl_3$ (At. no. of Cr = 24) has a magnetic moment of 3.83 B.M. The correct distribution of 3d electrons in the chromium of the complex
 - (a) $3d_{xy}^{1}$, $3d_{yz}^{1}$, $3d_{z}^{12}$
 - (b) $3d_{1}^{1}$ _(x2-y2), $3d_{z}^{1}$ ₂, $3d_{x}^{1}$ ₂ (c) $3d_{x}^{1}$ _y, $3d_{(x2-y2)}^{1}$, $3d_{y}^{1}$ _z (d) $3d_{x}^{1}$ _y, $3d_{y}^{1}$ _z, $3d_{x}^{1}$ _z

- 45. $[Co(NH_3)_4(NO_2)_2]Cl$ exhibits
 - (a) linkage isomerism, geometric and optical isomerism
 - (b) linkage isomerism, ionization and optical isomerism
 - (c) linkage isomerism, io and geometrical
 - (d) ionization geometrical isomerism isomerism and optical isomerism. (2006)
- **46.** Which one of the following is an inner orbital complex as well as diamagnetic in behaviour?
 - (a) $[Zn(NH_3)_6]^{2+}$
- (b) $[Cr(NH_3)_6]^{3+}$
- (c) $[Co(NH_3)_6]^{3+}$ (d) $[Ni(NH_3)_6]^{2+}$ (Atomic number : Zn = 30, Cr = 24, Co = 27, Ni = 28)
- 47. Which one of the following is expected to exhibit optical isomerism?
 - (en = ethylenediamine)
 - (a) cis-[Pt(NH₃)₂Cl₂]
 - (b) $trans-[Pt(NH_3)_2Cl_2]$
 - (c) cis-[Co(en)₂Cl₂]^{\dagger}
 - (d) $trans-[Co(en)_2Cl_2]$

(2005)

48. Which of the following is considered to be an anticancer species?

(a)
$$CI$$
 Pt
 CH_2
 CH_2
 CH_2
 CI

(b)
$$\begin{bmatrix} Cl & Cl \\ Cl & Cl \end{bmatrix}$$

- of the following coordination ipounds would exhibit optical isomerism?
 - entaamminenitrocobalt(III) iodide
 - Diamminedichloroplatinum(II)
 - trans-Dicyanobis (ethylenediamine) chromium (III) chloride
 - tris-(Ethylenediamine)cobalt(III) bromide.
- **50.** Among $[Ni(CO)_4]$, $[Ni(CN)_4]^{2-}$, $[NiCl_4]^{2-}$ species, the hybridisation states at the Ni atom are, respectively
 - (a) sp^3 , dsp^2 , dsp^2 (b) sp^3 , dsp^2 , sp^3 (c) sp^3 , sp^3 , dsp^2 (d) dsp^2 , sp^3 , sp^3 .
- [Atomic number of Ni = 28]
- 51. CN is a strong field ligand. This is due to the fact that
 - (a) it carries negative charge
 - (b) it is a pseudohalide
 - (c) it can accept electrons from metal species
 - (d) it forms high spin complexes with metal (2004)species.
- **52.** Considering H₂O as a weak field ligand, the number of unpaired electrons in $[Mn(H_2O)_6]^{2+}$ will be (atomic number of Mn = 25)
 - (a) three
- (b) five
- (c) two
- (d) four.
- (2004)

	Which of the following does not have a metal - carbon bond? (a) $Al(OC_2H_5)_3$ (b) C_2H_5MgBr (c) $K[Pt(C_2H_4)Cl_3]$ (d) $Ni(CO)_4$ (2004) In an octahedral structure, the pair of d orbitals involved in d^2sp^3 hybridisation is	62.	(a) $[\text{Co(NH}_3)_4\text{Cl}_2]$ (b) $[\text{Ni(en)(NH}_3)_4]^{2+}$ (c) $[\text{Ni(C}_2\text{O}_4)(\text{en})_2]^{2-}$ (d) $[\text{Cr(SCN)}_2(\text{NH}_3)_4]^+$ (2001) Coordination number of Ni in $[\text{Ni(C}_2\text{O}_4)_3]^{4-}$ is (a) 3 (b) 6 (c) 4 (d) 2 (2001)
	(a) $d_{x^2-y^2}$, d_{z^2} (b) d_{xz} , $d_{x^2-y^2}$ (c) d_{z^2} , d_{xz} (d) d_{xy} , d_{yz} . (2004)	63.	Which of the following organometallic compounds is σ and π bonded? (a) $[Fe(\eta^5 - C_5H_5)_2]$ (b) $K[PtCl_3(\eta^2 - C_2H_4)]$
	The number of unpaired electrons in the complex ion $[CoF_6]^{3-}$ is (a) 2 (b) 3 (c) 4 (d) zero (Atomic no.: Co = 27) (2003)	64.	(c) [Co(CO) ₅ NH ₃] ²⁺ (d) Fe(CH ₃) ₃ (2001) Which statement is incorrect? (a) Ni(CO) ₄ - tetrahedral, paramagnetic
56.	Among the following which is not the p-bonded organometallic compound? (a) K [PtCl ₃ ($\eta^2 - C_2H_4$)] (b) Fe ($\eta^5 - C_3H_5$) ₂ (c) Cr ($\eta^6 - C_6H_6$) ₂ (d) (CH ₃) ₄ Sn (2003)	65.	 (b) Ni(CN)₄² - square planar, diamagnetic (c) Ni(CO)₄ - tetrahedral, diamagnetic (d) [Ni(Cl)₄]² tetrahedral, paramagnetic. (2001) Which of the following will exhibit maximum ions conductivity?
57.	Atomic number of Cr and Fe are respectively 24 and 26, which of the following 1s paramagnetic with the spin of electron? (a) [Cr(CO) ₆] (b) [Fe(CO) ₅] (c) [Fe(CN) ₆] ⁴⁻ (d) [Cr(NH ₃) ₆] ³⁺ (2002)	66.	(a) K ₃ (Fe(CN) ₆] (b) [Co(NH ₃) ₆]Cl ₃ (c) [Cu(NH ₃) ₄]Cl ₂ (d) [Ni(CO) ₄] (2001) Shape of Fe(CO) ₅ is (a) octahedral (b) square planar (c) trigonal bipyramidal
58.	The hypothetical complex chlore diaquatriammine cobalt(III) chloride can be represented as (a) [CoCl(NH ₃) ₃ (H ₂ O) ₂ Cl ₂ (b) [Co(NH ₃) ₃ (H ₂ O)Cl ₃] (c) [Co(NH ₂) ₃ (H ₂ O) ₂ Cl]	67.	(d) square pyramidal. (2000) Which complex compound will give four isomers? (a) [Fe(en) ₃]Cl ₃ (b) [Co(en) ₂ Cl ₂]Cl (c) [Fe(PPh ₃) ₃ NH ₃ ClBr]Cl (d) [Co(PPh ₃) ₃ Cl]Cl ₃ (2000)
59.	In the silver plating of copper, $K[Ag(CN)_2]$ is used instead of $AgNO_3$. The reason is (a) a thin layer of Ag is formed on Cu	68.	The total number of possible isomers for the complex compound $[Cu^{II}(NH_3)_4][Pt^{II}Cl_4]$ are (a) 5 (b) 6 (c) 3 (d) 4 (1998)
	 (b) more voltage is required (c) Ag⁺ ions are completely removed from solution (d) less availability of Ag⁺ ions, as Cu can not displace Ag from [Ag(CN)₂]⁻ ion. (2002) 	69.	A coordination complex compound of cobalt has the molecular formula containing five ammonia molecules, one nitro group and two chlorine atoms for one cobalt atom. One mole
60.	$\begin{array}{c} {\rm CuSO_4} \ when \ reacts \ with \ KCN \ forms \ CuCN,} \\ {\rm which \ is \ insoluble \ in \ water. \ It \ is \ soluble \ in} \\ {\rm excess \ of \ KCN, \ due \ to \ formation \ of \ the} \\ {\rm following \ complex} \\ {\rm (a) \ \ } K_2[{\rm Cu(CN)_4}] \\ {\rm (b) \ \ } K_3[{\rm Cu(CN)_4}] \\ {\rm (c) \ \ CuCN_2} \\ \end{array} \qquad \begin{array}{c} {\rm (b) \ \ } K_3[{\rm Cu(CN)_4}] \\ {\rm (d) \ \ } {\rm Cu[KCu(CN)_4].} \\ {\rm (2002)} \end{array}$		of this compound produces three mole ions in an aqueous solution. On reacting this solution with excess of AgNO ₃ solution, we get two moles of AgCl precipitate. The ionic formula for this complex would be (a) [Co(NH ₃) ₅ (NO ₂)]Cl ₂ (b) [Co(NH ₃) ₅ Cl][Cl(NO ₂)]
61.	Which of the following will give maximum number of isomers?		(c) $[Co(NH_3)_4(NO_2)Cl](NH_3)Cl]$ (d) $(Co(NH_3)_5][(NO_2)_2Cl_2]$ (1998)

- 70. IUPAC name of [Pt(NH₃)₃(Br)(NO₂)Cl]Cl is
 - (a) Triamminebromochloronitroplatinum(IV) chloride
 - (b) Triamminebromonitrochloroplatinum(IV) chloride
 - (c) Triamminechlorobromonitroplatinum(IV) chloride
 - (d) Triamminenitrochlorobromoplatinum(IV) chloride (1998)
- 71. The formula of dichlorobis(urea)copper(II) is
 - (a) $[Cu \{O = C(NH_2)_2\} Cl]Cl$
 - (b) $[CuCl_2] \{O = C(NH_2)_2\}$
 - (c) $[Cu \{O = C(NH_2)_2\}Cl_2]$
 - (d) $[CuCl_2 {O = C(NH_2)_2}_2]$. (1997)
- 72. The number of geometrical isomers of the complex $[Co(NO_2)_3(NH_3)_3]$ is
 - (a) 4
- (b) 0
- (c) 2
- (d) 3

(1997)

- **73.** The structure and hybridisation of Si(CH₃), is
 - (a) octahedral, sp^3d (b) tetrahedral, sp^3d

- (c) bent, sp
- (d) trigonal, sp^2 .

(1996)

- **74.** The coordination number and oxidation state of Cr in K₃Cr(C₂O₄)₃ are respectively
 - (a) 3 and + 3
- (b) 3 and 0
- (c) 6 and + 3
- (d) 4 and + 2

(1995)

- **75.** The number of geometrical isomers for [Pt(NH₃)₂Cl₂] is
 - (a) 3 (b) 4
- (c) 1
 - (d)

(1995)

- **76.** In metal carbonyl having general formula $M(CO)_x$ where M = metal, x = 4 and the metal is bonded to
 - (a) carbon and xygen (b) $C \equiv O$
 - (d) carbon. (1995)
- 77. Which of the following ligands is expected to be yidentate?
 - a) CH₂NH₂
- (b) $CH_3C \equiv N$
- (c) Br
- (d) $C_2O_4^{2-}$ (1994)

(Answer Key

- (a) 2. (b) 3. (b) **5.** (b) 6. (b) 9. 10. 1. (d) 4. 7. (a) (d) (c) (d)
- (b) 12. (c) 13. 14. (b) 15. (b) **16.** (c) 17. (c) (b) 20. (c) 18.
- **21.** (b) 22. (c) 23. (b) 24. (a) 25. **26.** (b) 27. (b) 28. 30. (c) (c) 29. (a) (c)
- **31.** (a) **32.** (b) 33. (a) 34. (d) **35.** (d) **36.** (c) **37.** (b) **38. 39**. (b) 40. (d) (a)
- 41. (a) 42. (b) **43**. (b) 44. (d) 45. (c) 46. (c) **47.** (c) 48. 49. (d) **50.** (b) (c)
- 57. **51.** (b) **52.** (b) 53. (a) 54. (a) 55. (c) **56.** (d) (d) **58.** (a) **59**. (d) **60**. (b)
- **61.** (d) **65. 68. 62.** (b) **63**. 64. (a) 66. **67.** (b) (d) 69. **70.** (c) (a) (c) (a)
- 71. (b) 72. (c) 73. (b) 74. (c) 75. (d) 76. (d) 77. (d)