Electrochemistry

- 1. In the electrochemical cell: $Zn|ZnSO_4(0.01 \text{ M})||CuSO_4(1.0 \text{ M})|Cu$, the emf of this Daniell cell is E_1 . When the concentration of ZnSO₄ is changed to 1.0 M and that of CuSO₄ changed to 0.01 M, the emf changes to E_2 . From the followings, which one is the relationship between E_1 and E_2 ? (Given, RT/F = 0.059)
 - (a) $E_1 < E_2$ (c) $E_2 = 0^1 E_1$

(b) $E_1 > E_2$

(NEET 2017)

- 2. The molar conductivity of a 0.5 mol/dm³ solution of AgNO3 with electrolytic conductivity of 5.76×10^{-3} S cm⁻¹ at 298 K is
 - (a) 2.88 S cm²/mol
- (b) $11.52 \text{ S cm}^2/\text{mol}$
- (c) $0.086 \,\mathrm{S} \,\mathrm{cm}^2/\mathrm{mol}$
- (d) $28.8 \,\mathrm{S} \,\mathrm{cm}^2/\mathrm{mol}$ (NEET-II 2016)
- 3. During the electrolysis of molten sodiu chloride, the time required to produce 0.10 p of chlorine gas using a current of 3 amp
 - (a) 55 minutes

110 minu

(c) 220 minutes

4. If the E°_{cell} for a given reaction had value, which of the following give relationships for the value

(a) $\Delta G^{\circ} > 0$; K

(c) $\Delta G^{\circ} < 0; K_{eq}$ $-11 \ 2016, \ 2011)$

- 5. The number of electrons delivered at the cathode during electrolysis by a current of 1 ampere in 60 seconds is (charge on electron $= 1.60 \times 10^{-19} \,\mathrm{C}$
 - (a) 6×10^{23}

(b) 6×10^{20}

(c) 3.75×10^{20}

(d) 7.48×10^{23}

(NEET-II 2016)

- 6. Zinc can be coated on iron to produce galvanized iron but the reverse is not possible. It is because
 - (a) zinc is lighter than iron
 - (b) zinc has lower melting point than iron
 - (c) zinc has lower negative electrode potential than iron
 - (d) zinc has higher negative electrode potential than iron. (NEET-II 2016)

7. The pressure of H, required to make the potential of H₂-electrode zero in pure water at 298 K is

(a) 10^{-10} atm

(b) 10^{-4} atm

(c) 10^{-14} atm

(d) 10^{-12} atm (NEET-I 2016)

A device that converts energy of combustion of fuels like hydrogen and methane, directly into electrical is known as

(a) dynam

(b) Ni-Cd cell

fuel ce

(d) electrolytic cell. (2015, Cancelled)

hen 1 mol MnO_4^{2-} is oxidised the quantity electricity required to completely oxidise o MnO $_4^-$ is

(b) $2 \times 96500 \,\mathrm{C}$

(d) 96.50 C (2014)

weight of silver (at. wt. = 108) displaced by a quantity of electricity which displaces 5600 mL of O₂ at STP will be

(a) 5.4 g

(b) 10.8 g

(c) 54.0 g

(d) 108.0 g (2014)

11. At 25°C molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is 9.54 ohm⁻¹ cm² mol⁻¹ and at infinite dilution its molar conductance is 238 ohm⁻¹ cm² mol⁻¹. The degree of ionisation of ammonium hydroxide at the same concentration and temperature is

(a) 4.008%

(b) 40.800%

(c) 2.080%

(d) 20.800%

(NEET 2013)

12. A button cell used in watches function as following.

$$Zn_{(s)} + Ag_2O_{(s)} + H_2O_{(l)} \rightleftharpoons 2Ag_{(s)} + Zn_{(aq)}^{2+} + 2OH_{(aq)}^{-}$$

If half cell potentials are

$$Zn^{2^{+}}{}_{(aq)} + 2e^{-} \rightarrow Zn_{(s)}; E^{\circ} = -0.76 \text{ V}$$

 $Ag_{2}O_{(s)} + H_{2}O_{(l)} + 2e^{-} \rightarrow 2Ag_{(s)} + 2OH_{(aq)}^{-},$
 $E^{\circ} = 0.34 \text{ V}$

The cell potential will be

(a) 0.84 V

(b) 1.34 V

(c) 1.10 V

(d) 0.42 V

(NEET 2013)

- 13. A hydrogen gas electrode is made by dipping platinum wire in a solution of HCl of pH = 10 and by passing hydrogen gas around the platinum wire at one atm pressure. The oxidation potential of electrode would be
 - (a) 0.118 V
- (b) 1.18 V
- (c) 0.059 V
- (d) 0.59 V

(NEET 2013)

- **14.** Consider the half-cell reduction reaction $\text{Mn}^{2+} + 2e^- \rightarrow \text{Mn}$, $E^\circ = -1.18 \text{ V}$ $\text{Mn}^{2+} \rightarrow \text{Mn}^{3+} + e^-$, $E^\circ = -1.51 \text{ V}$ The E° for the reaction $3\text{Mn}^{2+} \rightarrow \text{Mn}^0 + 2\text{Mn}^{3+}$, and possibility of the forward reaction are respectively
 - (a) -4.18 V and yes
- (b) + 0.33 V and yes
- (c) + 2.69 V and no
- (d) -2.69 V and no

(Karnataka NEET 2013)

- 15. How many gram of cobalt metal will be deposited when a solution of cobalt(II) chloride is electrolyzed with a current of 10 amperes for 109 minutes (1 Faraday = 96,500 C; Atomic mass of Co = 59 u)
 - (a) 4.0
- (b) 20.0
- (c) 40.0
- (d) 0.66

(Karnataka NEET 2013

- 16. Limiting molar conductivity of NH₂OH [i.e. $\Lambda_{m(NH,OH)}^{\circ}$] is equal to
 - (a) $\Lambda_{m(NH_{4}Cl)}^{\circ} + \Lambda_{m(NaCl)}^{\circ} \Lambda_{m(NaCl)}^{\circ}$
 - (b) $\Lambda_{m(\text{NaOH})}^{\circ} + \Lambda_{m(\text{NaCl})}^{\circ} \Lambda_{m(\text{NH}_{4}C)}^{\circ}$
 - (c) $\Lambda_{m(NH_4OH)}^{\circ} + \Lambda_{m(NH_4CI)}^{\circ}$
 - (d) $\Lambda_{m(NH_{A}Cl)}^{\circ} + \Lambda_{m(NaOH)}^{\circ} \Lambda_{m(NaCl)}^{\circ}$ (2012)
- 17. Standard reduction potentials of the half reactions are given below:

F_{2(g)} + 2
$$e^- \rightarrow 2$$
F⁻_(aq) $E^\circ = + 2.85$ V
Cl_{2(g)} + 2 $e^- \rightarrow 2$ Cl⁻_(aq) $E^\circ = + 1.36$ V
Br_{2(l)} + 2 $e^- \rightarrow 2$ Br⁻_(aq) ; $E^\circ = + 1.06$ V

 $I_{2(s)} + 2e^- \rightarrow 2I^-_{(aq)}$; $E^\circ = +0.53 \text{ V}$ The strongest oxidising and reducing agents 23 respectively are

- (a) F_2 and I
- (b) Br₂ and Cl⁻
- (c) Cl₂ and Br
- (d) Cl₂ and I₂

(Mains 2012)

- 18. Molar conductivities (Λ_m°) at infinite dilution of NaCl, HCl and CH₃COONa are 126.4, 425.9 and 91.0 S cm² mol⁻¹ respectively. (Λ_m°) for CH₃COOH will be
 - (a) 425.5 S cm² mol⁻¹
- (b) $180.5 \,\mathrm{S} \,\mathrm{cm}^2 \,\mathrm{mol}^{-1}$
- (c) $290.8 \text{ S cm}^2 \text{ mol}^{-1}$
- (d) $390.5 \,\mathrm{S} \,\mathrm{cm}^2 \,\mathrm{mol}^{-1}$

(Mains 2012)

19. The Gibb's energy for the decomposition of Al₂O₃ at 500°C is as follows

$$\frac{2}{3}\text{Al}_2\text{O}_3 \rightarrow \frac{4}{3}\text{Al} + \text{O}_2$$

 $\Delta_r G = +960 \text{ kJ mol}^{-1}$

The potential difference needed for the electrolytic reduction of aluminium oxide (Al₂O₃) at 500°C is at least

- (a) 4.5 V
- (b) 3.0 V
- (c) 2.5 V
- (d) 5.0 V

(Mains 2012)

- 20. Standard electrode potential of three metals X, Y and Z are -1.2 V, + 0.5 V and 3.0 V respectively. The reducing power of these metals will be
 - (a) Y > Z > X
- (b) Y > X > Z
- (c) Z > X > Y
- (d) X > Y > Z

(2011)

21. The electrode potentials for

 $\operatorname{Cu}^{2+}_{(aq)} + e^{-} \to \operatorname{Cu}^{+}_{(aq)}$ and $\operatorname{Cu}^{+}_{(aq)} + e^{-} \to \operatorname{Cu}_{(s)}$ are + 0.15 V and + 0.50 V respectively. The value of $\operatorname{E}^{\circ}_{\operatorname{Cu}^{2+}/\operatorname{Cu}}$ will be

- (a) 0.500 V
- (b) 0.325 V
- (c) 0.650 V
- (d) 0.150 V (2011)
- 22. Standard electrode potential for Sn⁴⁺/Sn²⁺ couple is + 0.15 V and that for the Cr³⁺/Cr couple is 0.74 V. These two couples in their standard state are connected to make a cell. The cell potential will be
 - (a) + 1.19 V
- (b) +0.89 V
- (c) +0.18 V
- (d) + 1.83 V (2011)
- **23.** A solution contains Fe²⁺, Fe³⁺ and Γ ions. This solution was treated with iodine at 35°C. E° for Fe³⁺/Fe²⁺ is + 0.77 V and E° for $I_2/2\Gamma = 0.536$ V. The favourable redox reaction is
 - (a) I₂ will be reduced to I⁻
 - (b) there will be no redox reaction
 - (c) I will be oxidised to I₂
 - (d) Fe²⁺ will be oxidised to Fe³⁺

(Mains 2011)

24. For the reduction of silver ions with copper metal, the standard cell potential was found to be + 0.46 V at 25°C. The value of standard Gibb's energy, ΔG° will be

$$(F = 96500 \text{ C mol}^{-1})$$

- (a) -89.0 kJ
- (b) -89.0 J
- (c) -44.5 kJ
- (d) 98.0 kJ (2010)

Electrochemistry

- 25. An increase in equivalent conductance of a strong electrolyte with dilution is mainly due to
 - (a) increase in ionic mobility of ions
 - (b) 100% ionisation of electrolyte at normal dilution
 - (c) increase in both i.e., number of ions and ionic mobility of ions
 - (d) increase in number of ions. (2010)
- **26.** Which of the following expressions correctly represents the equivalent conductance at infinite dilution of $Al_2(SO_4)_3$. Given that $\mathring{\Lambda}_{\Lambda 1^{3+}}$

and $\mathring{\Lambda}_{SO^{2-}}$ are the equivalent conductances at infinite dilution of the respective ions?

(a)
$$2\mathring{\Lambda}_{Al^{3+}} + 3\mathring{\Lambda}_{SO_4^{2-}}$$

(b)
$$\mathring{\Lambda}_{Al^{3+}} + \mathring{\Lambda}_{SO_4^{2-}}$$

(c)
$$(\mathring{\Lambda}_{Al^{3+}} + \mathring{\Lambda}_{SO_4^{2-}}) \times 6$$

(d)
$$\frac{1}{3}\mathring{\Lambda}_{AI^{3+}} + \frac{1}{2}\mathring{\Lambda}_{SO_4^{2-}}$$
 (Mains 2010)

- 27. Consider the following relations for emf an electrochemical cell
 - EMF of cell = (Oxidation potential of ar - (Reduction potential of cathode)
 - (ii) EMF of cell = (Oxidation potential of a + (Reduction potential of cathod
 - (iii) EMF of cell = (Reduction anode) + (Reduction potential of cathode)
 - (iv) EMF of cell = (Oxidation potential of anode) - (Oxidation potential of cathode)

Which of the above relations are correct?

- (a) (iii) and (i)
- (i) and (ii)
- (c) (iii) and (iv)
- (d) (ii) and (iv)

(Mains 2010)

- **28.** Given :
 - (i) $Cu^{2+} + 2e^{-} \rightarrow Cu$, $E^{\circ} = 0.337 \text{ V}$
 - (ii) $Cu^{2+} + e^{-} \rightarrow Cu^{+}, E^{\circ} = 0.153 \text{ V}$

Electrode potential, E° for the reaction,

$$Cu^+ + e^- \rightarrow Cu$$
, will be

- (a) 0.90 V
- (b) 0.30 V
- (c) 0.38 V
- (d) 0.52 V (2009)
- 29. Al₂O₃ is reduced by electrolysis at low potentials and high currents. If 4.0×10^4 amperes of current is passed through molten Al₂O₃ for 6 hours, what mass of aluminium is produced? (Assume 100% current efficiency,

at. mass of A1 = 27 g mol⁻¹).

- (b) 2.4×10^5 g (d) 9.0×10^3 g
- (a) 8.1×10^4 g (c) 1.3×10^4 g

(2009)

- **30.** The equivalent conductance of M/32 solution of a weak monobasic acid is 8.0 mho cm² and at infinite dilution is 400 mho cm². The dissociation constant of this acid is
 - (a) 1.25×10^{-6}
- (b) 6.25×10^{-4}
- (c) 1.25×10^{-4}
- (d) 1.25×10^{-5}

(2009)

31. On the basis of the following E° values, the strongest oxidizing agent is

$$[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{3-} + e^{-1} ; E^{\circ} = -0.35 \text{ V}$$

 $Fe^{2+} \rightarrow Fe^{3+} + e^{-1} ; E^{\circ} = -0.77 \text{ V}$

- (a) Fe^{3+}
- 32. Kohlraus states that at
 - dilution, each ion makes definite ntribution to conductance of an electrolyte whatever be the nature of the other ion of the electrolyte
 - Infinite dilution, each ion makes definite contribution to equivalent conductance an electrolyte, whatever be the nature of the other ion of the electrolyte
 - Finite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte
 - (d) Infinite dilution each ion makes definite contribution to equivalent conductance of an electrolyte depending on the nature of the other ion of the electrolyte.

(2008)

- **33.** Standard free energies of formation (in kJ/mol) at 298 K are -237.2, -394.4 and -8.2 for $H_2O_{(l)}$, $CO_{2(g)}$ and pentane (g) respectively. The value of E°_{cell} for the pentane-oxygen fuel cell is
 - (a) 1.0968 V
- (b) 0.0968 V
- (c) 1.968 V
- (d) 2.0968 V (2008)
- **34.** The equilibrium constant of the reaction: $Cu_{(s)} + 2Ag^{+}_{(aq)} \rightarrow Cu^{2+}_{(aq)} + 2Ag_{(s)};$ $E^{\circ} = 0.46 \text{ V at } 298 \text{ K is}$
 - (a) 2.0×10^{10}
- (b) 4.0×10^{10}
- (c) 4.0×10^{15}
- (d) 2.4×10^{10}

(2007)

- 35. The efficiency of a fuel cell is given by
 - (a) $\Delta G/\Delta S$
- (b) $\Delta G/\Delta H$
- (c) $\Delta S/\Delta G$
- (d) $\Delta H/\Delta G$ (2007)

36. A hypothetical electrochemical cell is shown below

 $A \mid A^{+}(xM) \parallel B^{+}(yM) \mid B$

The emf measured is +0.20 V. The cell reaction

- (a) $A + B^+ \rightarrow A^+ + B$
- (b) $A^{+} + B \to A + B^{+}$
- (c) $A^+ + e^- \to A$; $B^+ + e^- \to B$
- (d) the cell reaction cannot be predicted.

- **37.** $E^{\circ}_{Fe^{2+}/Fe} = -0.441 \text{ V} \text{ and } E^{\circ}_{Fe^{3+}/Fe^{2+}} = 0.771 \text{ V}, \text{ the } E^{\circ}_{Fe^{3+}/Fe^{2+}} = 0.771 \text{ V}$ standard EMF of the reaction Fe + 2Fe³⁺ \rightarrow 3Fe²⁺
 - (a) 0.111 V
- (b) 0.330 V
- (c) 1.653 V
- (d) 1.212 V (2006)
- 38. 4.5 g of aluminium (at. mass 27 amu) is deposited at cathode from Al3+ solution by a certain quantity of electric charge. The volume of hydrogen produced at STP from H⁺ ions in solution by the same quantity of electric charge will be
 - (a) 44.8 L
- (b) 22.4 L
- (c) 11.2 L
- (d) 5.6 L
- **39.** The mass of carbon anode consumed (giving only carbon dioxide) in the production of 270 kg of aluminium metal from bauxite by the Hall process is
 - (a) 270 kg
- (c) 90 kg

(Atomic mass : A1 = 27)

- 40. The standard e.m.f. of a galvani cell reaction with n 2 is found at 25°C. The equilibrium the reaction would be
 - (a) 2.0×10^{1}
 - 10^{10} (c) 1.0×10^2

 $314 \text{ J K}^{-1} \text{ mol}^{-1}$ (Given F = 96500 C mol

41. The e.m.f. of a Daniell cell at 298 K is E_1 .

$$Zn \begin{vmatrix} ZnSO_4 \\ (0.01 \text{ M}) \end{vmatrix} \begin{vmatrix} CuSO_4 \\ (1.0 \text{ M}) \end{vmatrix} Cu$$

When the concentration of ZnSO₄ is 1.0 M and that of CuSO₄ is 0.01 M, the e.m.f. changed to E_2 . What is the relationship between E_1 and E_2 ?

- (a) $E_1 > E_2$ (c) $E_1 = E_2$

- (b) $E_1 < E_2$ (d) $E_2 = 0 \neq E_1$

(2003)

42. On the basis of the information available from the reaction.

4/3Al $+O_2 \rightarrow 2/3$ Al₂ O_3 , $\Delta G = -827$ kJ mol⁻¹ of O_2 , the minimum e.m.f. required to carry out an electrolysis of Al₂O₃ is $(F = 96500 \text{ C mol}^{-1})$

- (a) 2.14 V
- (b) 4.28 V
- (c) 6.42 V
- (d) 8.56 V (2003)
- 43. In electrolysis of NaCl when Pt electrode is taken then H₂ is liberated at cathode while with Hg cathode it forms sodium amalgam
 - (a) Hg is more inert than Pt
 - (b) More voltage is required to reduce H⁺ at Hg than at Pt
 - (c) Na is dissolved in Hg while it does not dissolve in Pt
 - (d) Conc. of H⁺ ions is larger when Pt electrode is taken.
- **44.** Standard electrode potentials are Fe²⁺/Fe; $E^{\circ} = -0.44$ and Fe^{3+}/Fe^{2+} ; $E^{\circ} = 0.77 Fe^{2+}$, Fe^{3-} and Fe blocks are kept together, then

 - (a) Fe³⁺ increases (b) Fe³⁺ decreases
 - (c) Fe^{2+}/Fe^{3} nains unchanged
 - (d) Fe

(2001)

- onductances of Ba²⁺ and Cl⁻ ions and 76 ohm cm⁻¹ eq⁻¹ respectively. uivalent conductance of BaCl₂ at infinite
- (b) 101.5
- (d) 279 (2000)
- the disproportionation of copper $u^+ \rightarrow Cu^{2+} + Cu$, E° is (Given E° for Cu^{2+}/Cu is 0.34 V and E° for Cu^{2+}/Cu^{+} is 0.15 V.)
 - (a) 0.49 V
- (b) -0.19 V
- (c) 0.38 V
- (d) -0.38 V (2000)
- **47.** The specific conductance of a 0.1 N KCl solution at 23°C is 0.012 ohm⁻¹ cm⁻¹. The resistance of cell containing the solution at the same temperature was found to be 55 ohm. The cell constant will be
 - (a) 0.918 cm^{-1}
- (b) 0.66 cm^{-1}
- (c) 1.142 cm^{-1}
- (d) 1.12 cm^{-1}

(1999)

- **48.** For the cell reaction, $Cu^{2+}(C_1.aq) + Zn_{(s)} = Zn^{2+}(C_2.aq) + Cu_{(s)}$ of an electrochemical cell, the change in free energy ΔG at a given temperature is a function of
 - (a) $\ln (C_2)$
- (b) $\ln (C_2/C_1)$
- (c) $\ln (C_1)$
- (d) $\ln (C_1 + C_2)$

- **49.** E° for the cell, $\operatorname{Zn} \mid \operatorname{Zn}^{2+}_{(aq)} \| \operatorname{Cu}^{2+}_{(aq)} | \operatorname{Cu}$ is 1.10V at 25°C, the equilibrium constant for the reaction $Zn + Cu^{2+}_{(aq)} \longrightarrow Cu + Zn^{2+}_{(aq)}$ is the order of
 - (a) 10^{+18}
- (b) 10^{+17}
- (c) 10^{-28}
- (d) 10^{-37} (1997)

Electrochemistry

50. The molar conductances of NaCl, HCl and CH₃COONa at infinite dilution are 126.45, 426.16 and 91 ohm⁻¹ cm² mol⁻¹ respectively. The molar conductance of CH₃COOH at infinite dilution

 (Λ_m^{∞}) is

- (a) 698.28 ohm⁻¹ cm² mol⁻¹ (b) 540.48 ohm⁻¹ cm² mol⁻¹ (c) 201.28 ohm⁻¹ cm² mol⁻¹ (d) 390.71 ohm⁻¹ cm² mol⁻¹

51. A 5 ampere current is passed through a solution of zinc sulphate for 40 minutes. The amount of zinc deposited at the cathode is

- (a) 0.4065 g
- (b) 65.04 g
- (c) 40.65 g
- (d) 4.065 g (1996)

(1997)

52. Reduction potential for the following half-cell reactions are

$$Zn = Zn^{2+} + 2e^{-}; E^{\circ} = +0.76 \text{ V};$$

$$Fe = Fe^{2+} + 2e^{-}; E^{\circ} = + 0.44 \text{ V}.$$

The EMF for the cell reaction

$$Fe^{2+} + Zn \rightarrow Zn^{2+} + Fe$$
 will be

- (a) -0.32 V
- (b) + 1.20 V
- (c) -1.20 V
- (d) +0.32 V
- 53. An electrochemical cell is set up as (1 atm)|HCl(0.1 M) || CH₃COOH (0.1 M (1 atm); Pt. The e.m.f. of this cell will no zero, because

- (a) acids used in two compartments are different
- (b) e.m.f. depends on molarities of acids used
- (c) the temperature is constant
- (d) pH of 0.1 M HCl and 0.1 M CH₃COOH is not same.
- 54. On heating one end of a piece of a metal, the other end becomes hot because of
 - (a) energised electrons moving to the other
 - (b) minor perturbation in the energy of atoms
 - (c) resistance of the metal
 - (d) mobility of atoms in the metal.

(1995)

- **55.** Standard reduction potentials at 25°C of Li⁺|Li, $Ba^{2+}|Ba, Na^{+}|Na \text{ and } Mg^{2+}|Mg \text{ are } -3.05, -2.90,$ -2.71 and -2.7 volt respectively. Which one s the strongest oxidising of the following
- (b) Mg^{2+} (d) Li^{+}
- (1994)
- ectrolysis of dilute sulphuric acid using electrodes, the product obtained at the ill be
 - hydrogen
- (b) oxygen
- hydrogen sulphide (d) sulphur dioxide. (1992)

Answer Key

- 1. (b) 2. (b) (b) (a) 5. (d) 7. (c) 10.
- (d) 12. (c) (d) 15. **16.** (d) 17. (a) 13. 14. (b) (a) 18. (d) 19. (c) 20. (c)
- 22. (b) 23. (c) 24. (a) 25. (a) 26. (b) 27. (d) 28. 29. (d)
- 35. **37.** 31. **32.** (a) 33. 34. (b) **36**. (d) 38. (d) **39**. **40**. (d) (a) (a) (c) (a) (c)
- (a) 42. (a) 43. (b) (b) 45. (a) 46. (c) (b) (b)
- **51.** (d) **52.** (d) 53. (d) 54. 55. (b) **56.** (b) (a)