Chapter

Some Basic Concepts of Chemistry

1. Suppose the elements X and Y combine to form two compounds XY_2 and X_3Y_2 . When 0.1 mole of XY₂ weighs 10 g and 0.05 mole of X_3Y_2 weighs 9 g, the atomic weights of X and Y are

(a) 40, 30

(b) 60,40

(c) 20, 30

(d) 30, 20

(NEET-II 2016)

2. What is the mass of the precipitate formed when 50 mL of 16.9% solution of AgNO₃ is mixed with 50 mL of 5.8% NaCl solution? (Ag = 107.8, N = 14, O = 16, Na = 23)C1 = 35.5)

(a) 3.5 g

(c) 14 g (d) 28 g

3. If Avogadro number N_A , is changed $6.022 \times 10^{23} \text{ mol}^{-1}$ to $6.022 \times 10^{20} \text{ mol}^{-1}$ would change

- (a) the mass of one mole of carl
- (b) the ratio of chemical spec in a balanced equation
- the ratio of elements compound
- (d) the definition of of grams. (2015)
- 4. The number of water molecules is maximum in
 - (a) 1.8 gram of water
 - 18 gram of water
 - 18 moles of water

(d) 18 molecules of water.

(2015)

5. A mixture of gases contains H_2 and O_2 gases in the ratio of 1:4 (w/w). What is the molar ratio of the two gases in the mixture?

(a) 16:1 (b) 2:1

(c) 1:4 (d) 4:1

(2015, Cancelled)

6. Equal masses of H₂, O₂ and methane have been taken in a container of volume V at temperature 27 °C in identical conditions. The ratio of the volumes of gases H_2 : O_2 : methane would be

(a) 8:16:1

(b) 16:8:1

(c) 16:1:2

(d) 8:1:2 (2014)

When 22.4 litres of $H_{2(g)}$ is mixed with 11.2 litres of $Cl_{2(g)}$, each at S.T.P, the moles of $HCl_{(g)}$ formed is equal to

(a) 1 mol of HØI

(b) 2 mol of $HCl_{(g)}$

(c) 0.5 mol of No

(d) $1.5 \text{ mol of HCl}_{(g)}$.

of magnesium is burnt with 0.56 g O, in wessel. Which reactant is left in excess and how much? (At. wt. Mg = 24, O = 16)

(g, 0.16 g

(b) O_2 , 0.16 g

(d) O_2 , 0.28 g

 02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of solution is

(a) 0.001 M

(b) 0.1 M

(c) 0.02 M

(d) 0.01 M

(NEET 2013)

10. In an experiment it showed that 10 mL of 0.05 M solution of chloride required 10 mL of 0.1 M solution of AgNO₃, which of the following will be the formula of the chloride (X stands for the symbol of the element other than chlorine)

(a) X_2Cl_2

(b) XCl₂ (c) XCl_4 (d) X_2Cl

(Karnataka NEET 2013)

11. Which has the maximum number of molecules among the following?

(a) 44 g CO_2

(b) 48 g O_3

(c) 8 g H₂

(d) 64 g SO₂

(Mains 2011)

12. The number of atoms in 0.1 mol of a triatomic gas is $(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$

(a) 6.026×10^{22}

(b) 1.806×10^{23}

(c) 3.600×10^{23}

(d) 1.800×10^{22}

(2010)

- 13. 25.3 g of sodium carbonate, Na₂CO₃ is dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, molar concentration of sodium ion, Na^{+} and carbonate ions, CO_3^{2-} are respectively (Molar mass of $Na_2CO_3 = 106 \text{ g mol}^{-1}$)
 - (a) 0.955 M and 1.910 M
 - (b) 1.910 M and 0.955 M
 - (c) 1.90 M and 1.910 M
 - (d) 0.477 M and 0.477 M (2010)
- 14. 10 g of hydrogen and 64 g of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaction will be
 - (a) 3 mol
- (b) 4 mol
- (c) 1 mol
- (d) 2 mol (2009)
- 15. What volume of oxygen gas (O2) measured at 0°C and 1 atm, is needed to burn completely 1 L of propane gas (C₃H₈) measured under the same conditions?
 - (a) 5 L
- (b) 10 L
- (c) 7 L
 - (d) 6 L (2008)
- 16. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of Pb(and 3.2 g HCl?
 - (a) 0.011
- (b) 0.029
- (c) 0.044
- 17. An organic compound contain hydrogen and oxygen. Its ele gave C, 38.71% and H, 9.67%. formula of the compound
 - (a) CHO
- (c) CH₃O
- (2008)
- 18. An element, X has the following isotopic composition:

 $^{200}X:90\%$

 $^{199}X: 8.0\%$

 $^{202}X: 2.0\%$

The weighted average atomic mass of the naturally occurring element X is closest to

- (a) 201 amu
- (b) 202 amu
- (c) 199 amu
- (d) 200 amu (2007)
- 19. The maximum number of molecules is present in
 - (a) 15 L of H₂ gas at STP
 - (b) 5 L of N₂ gas at STP
 - (c) 0.5 g of H₂ gas
 - (d) $10 \text{ g of } O_2 \text{ gas.}$

(2004)

- 20. Which has maximum molecules?
 - (a) $7 g N_2$
- (b) $2 g H_2$
- (c) 16 g NO_2
- (d) 16 g O₂ (2002)

- 21. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at. wt. = 78.4) then minimum molecular weight of peroxidase anhydrous enzyme is
 - (a) 1.568×10^4
- (b) 1.568×10^3
- (c) 15.68
- (d) 2.136×10^4

(2001)

- 22. Molarity of liquid HCl, if density of solution is 1.17 g/cc is
 - (a) 36.5
- (b) 18.25
- (c) 32.05
- (d) 42.10 (2001)
- 23. Specific volume of cylindrical virus particle is 6.02×10^{-2} cc/g whose radius and length are 7 Å and 10 Å respectively. If $N_A = 6.02 \times 10^{23}$, find molecular weight of virus.
 - (a) 15.4 kg/ma
- (b) $1.54 \times 10^4 \text{ kg/mol}$
- (d) 3.08×10^3 kg/mol 3.08
- quantitative analysis of second group in laboratory, H₂S gas is passed in acidic medium r precipitation. When Cu²⁺ and Cd²⁺ react KCN, then for product, true statement is
 - $K_2[Cu(CN)_4]$ more soluble
 - K₂[Cd(CN)₄] less stable
 - (c) $K_3[Cu(CN)_2]$ less stable (d) $K_2[Cd(CN)_3]$ more stable.
- (2000)
- 25. Volume of CO₂ obtained by the complete decomposition of 9.85 g of BaCO₃ is
 - (a) 2.24 L
- (b) 1.12 L
- (c) 0.84 L
- (d) 0.56 L (2000)
- **26.** Oxidation numbers of A, B, C are +2, +5 and -2 respectively. Possible formula of compound is
 - (a) $A_2(BC_2)_2$
- (b) $A_3(BC_4)_2$
- (c) $A_2(BC_3)_2$
- (d) $A_3(B_2C)_2$

(2000)

- 27. The number of atoms in 4.25 g of NH₃ is approximately
 - (a) 4×10^{23}
- (b) 2×20^{23}
- (c) 1×10^{23}
- (d) 6×10^{23} (1999)
- 28. Given the numbers: 161 cm, 0.161 cm, 0.0161 cm. The number of significant figures for the three numbers is
 - (a) 3, 3 and 4 respectively
 - (b) 3, 4 and 4 respectively
 - (c) 3, 4 and 5 respectively
 - (d) 3, 3 and 3 respectively. (1998)

	e Basic Concepts of Chemistry					
29.	Haemoglobin contains 0.334% of iron by weight. The molecular weight of haemoglobin is approximately 67200. The number of iron atoms (Atomic weight of Fe is 56) present in		A 5 molar solution of 10 litre to a volume of 10 the solution will be (a) 1 N			
	one molecule of haemoglobin is		(c) 5 N	` ′	0.5 N	(1991)
	(a) 4 (b) 6 (c) 3 (d) 2 (1998)	38.	The number of gram molecules of oxygen in 6.02×10^{24} CO molecules is			
30.	In the reaction,		(a) 10 g molecules		5 g mc	olecules
	$4NH_{3(g)} + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(l)}$ when 1 mole of ammonia and 1 mole of O_2 are made to react to completion:		(c) 1 g molecules		_	nolecules. (1990)
	 (a) All the oxygen will be consumed. (b) 1.0 mole of NO will be produced. (c) 1.0 mole of H₂O is produced. 	39.	P. Boron has two stable isotopes, ¹⁰ B(19%) and ¹¹ B(81%). Calculate average at. wt. of boron in the periodic table			
	(d) All the ammonia will be consumed.		(a) 10.8	(b)	10.2	
	(1998)		(c) 11.2	` ′	10.0	(1990)
31.	Among the following which one is not paramagnetic? [Atomic numbers; Be = 4, $Ne = 10$, $As = 33$, $Cl = 17$]	40.	The molecular weight of 64 respectivel. At pressure, one litre of O ₂	15°C	and 15	0 mmHg
	(a) Ne^{2+} (b) Be^{+} (c) Cl^{-} (d) As^{+} (1998)	-	The number of molecu under the same conditi	les in	two litre	es of SO ₂
32.	0.24 g of a volatile gas, upon vaporisation, gives45 mL vapour at NTP. What will be the vapour		pressure will be	(1.)	3.7	
	density of the substance? (Density of $H_2 = 0.089$)	7	(a) N/2 (c) 2 N	(b)	N 4 N	(1000)
	(a) 95.93 (b) 59.93 (c) 95.39 (d) 5.993			` ′		(1990)
22	The amount of zinc required to produce 224 mL	41.	A metal oxide has the formula Z_2O_3 . It can be reduced by hydrogen to give free metal and			
<i>.</i>	of H ₂ at STP on treatment with dilute H ₂ SO ₄ will be		water. 0.1596 g of the metal oxide requires 6 mg of hydrogen for complete reduction. The atomic			
	(a) 65 g (b) 0.065 g (c) 0.65 g (d) 6.5 g		weight of the metal is	(1.)	150.6	
	(1996)		(a) 27.9 (c) 79.8	\ /	159.6 55.8	(1989)
34.	The dimensions of pressure are the same as	42	` '	` ′		`
	that of (a) force per unit volume		Ratio of C_p and C_V of a gas 'X' is 1.4. The number of atoms of the gas 'X' present in 11.2 litres of it at NTP will be			
	(b) energy per unit volume		(a) 6.02×10^{23}		1.2 × 1	0^{23}
	(c) force (d) energy. (1995)		(c) 3.01×10^{23}		2.01 ×	
35	`			(-)		(1989)
<i>ა</i> ა.	The number of moles of oxygen in one litre of air containing 21% oxygen by volume, under	43.	. What is the weight of oxygen required for the			
	standard conditions, is		complete combustion		_	
	(a) 0.0093 mol (b) 2.10 mol (c) 0.186 mol (d) 0.21 mol.		(a) 2.8 kg (b) 6.4 k	g (c)	9.6 kg	(d) 96 kg (1989)
	(1995) The total number of valence electrons in 4.2 g		The number of oxygen atoms in 4.4 g of CO ₂ is			
36.	` ′	44.	is			s or coz
36.	The total number of valence electrons in 4.2 g of N_3^- ion is (N_A is the Avogadro's number)	44.	is (a) 1.2×10^{23}			
36.	The total number of valence electrons in 4.2 g	44.	is (a) 1.2×10^{23} (c) 6×10^{23}	(b)	6 × 10 ² 12 × 10	22

- 45. At S.T.P. the density of CCl₄ vapour in g/L | 47. 1 cc N₂O at NTP contains will be nearest to
 - (a) 6.87
- (b) 3.42
- (c) 10.26 (d) 4.57
- **46.** One litre hard water contains 12.00 mg Mg²⁺. Milli-equivalents of washing soda required to remove its hardness is
 - (a) 1
- (b) 12.16
- (c) 1×10^{-3}
- (d) 12.16×10^{-3}

(1988)

- - (a) $\frac{1.8}{224} \times 10^{22}$ atoms
 - (b) $\frac{6.02}{22400} \times 10^{23}$ molecules
 - (c) $\frac{1.32}{224} \times 10^{23}$ electrons
 - (d) All the above.

(1988)

Answer Key

- 7. (a) 2. (b) **3.** (a) 4. (c) 5. (d) **6.** (c) (a) **8.** (d) 10. (b) (a)
- 11. (c) 12. (b) 13. 14. (b) 15. (a) 16. (b) 17. (c) 18. (b) (d) 19. (a)
- **21.** (a) 22. 25. (b) 26. 27. (d) 28. (c) 23. (a) 24. (c) (b) (d) **29.** (a)
- **31.** (c) **32.** (b) 33. (c) 34. (b) 35. (a) 36. (c) **37.** (a) **38.** (b) **39.** (a)
- **41.** (d) **42.** (a) 43. (c) 44. (a) **45.** (a) 46. (a) 47. (d)

EXPLANATIONS

For
$$XY_2$$
, $n = \frac{w}{\text{Mol. wt.}}$

$$0.1 = \frac{10}{x + 2y} \implies x + 2y = \frac{10}{0.1} = 100 \qquad ...(i)$$

For
$$X_3Y_2$$
, $n = \frac{w}{\text{Mol. wt.}}$

$$0.05 = \frac{9}{3x + 2y} \implies 3x + 2y = \frac{9}{0.05} = 180 \qquad ...(ii)$$

On solving equations (i) and (ii), we get y = 30 $x + 2(30) = 100 \Rightarrow x = 100 - 60 = 40$

2. (b): 16.9% solution of $AgNO_3$ means 16.9 g of $AgNO_3$ in 100 mL of solution.

16.9 g of AgNO₃ in 100 mL solution \equiv 8.45 g of AgNO₃ in 50 mL solution.

Similarly, 5.8% of NaCl in 100 mL solution ≡ 2.9 g of NaCl in 50 mL solution.

The reaction can be represented as:

AgNO₃ + NaCl
$$\longrightarrow$$
 AgCl + NaNO₃
Initial 8.45/170 2.9/58.5 0 0
mole = 0.049 = 0.049
Final moles 0 0 0.049 0.049

- :. Mass of AgCl precipitated = 0.049×143.3 = $7.02 \approx 7$ g
- 3. (a): Mass of 1 mol $(6.022 \times 10^{23} \text{ atoms})$ of carbon = 12 g

If Avogadro number is changed to 6.022 10²⁰ atoms then mass of 1 mol of carbon

$$= \frac{12 \times 6.022 \times 10^{20}}{6.022 \times 10^{23}} = 12 \times 10^{-3} \text{g}$$

4. (c): 1.8 gram of water =
$$\frac{6.023 \times 10^{23}}{18} \times 1.8$$

= 6.023×10^{22} molecules

18 gram of water = 6.023×10^{23} molecules 18 moles of water = $18 \times 6.023 \times 10^{23}$ molecules

5. (d): Number of moles of $H_2 = \frac{1}{2}$

Number of moles of $O_2 = \frac{4}{32}$

Hence, molar ratio = $\frac{1}{2}$: $\frac{4}{32}$ = 4: 1

6. (c): According to Avogadro's hypothesis, ratio of the volumes of gases will be equal to the ratio of their no. of moles.

So, no. of moles =
$$\frac{\text{Mass}}{\text{Mol. mass}}$$

$$n_{\text{H}_2} = \frac{w}{2}$$
; $n_{\text{O}_2} = \frac{w}{32}$; $n_{\text{CH}_4} = \frac{w}{16}$

...(i) So, the ratio is $\frac{w}{2}$: $\frac{w}{32}$: $\frac{w}{16}$ or 16:1:2.

7. (a): 1 mole = 22.4 litres at S.T.P.

$$n_{\text{H}_2} = \frac{22.4}{22.4} = 1 \text{ mol} ; \ n_{\text{Cl}_2} = \frac{11.2}{22.4} = 0.5 \text{ mol}$$

Reaction is as.

Here, Cl_2 is limiting leagent. So, 1 mole of $HCl_{(g)}$ is formed.

8. (a):
$$n_{\text{Mg}} = \frac{1}{24} = 0.0416$$
 moles

$$n_{0_2} = \frac{0.56}{32} = 0.0175$$
 moles

The balanced equation is

$$Mg + \frac{1}{2}O_2 \longrightarrow MgO$$

Initial 0.0416 moles 0.0175 moles 0

Final
$$(0.0416 - 2 \times 0.0175)$$
 0 2 × 0.0175
= 0.0066 moles (O₂ is limiting reagent.)

 \therefore Mass of Mg left in excess = $0.0066 \times 24 = 0.16$ g

9. **(d)**: Moles of urea =
$$\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}} = 0.001$$

Concentration of solution = $\frac{0.001}{100} \times 1000 = 0.01 \text{ M}$

10. (b) : Millimoles of solution of chloride $= 0.05 \times 10 = 0.5$

Millimoles of $AgNO_3$ solution = $10 \times 0.1 = 1$ So, the millimoles of $AgNO_3$ are double than the chloride solution.

- $\therefore XCl_2 + 2AgNO_3 \rightarrow 2AgCl + X(NO_3)_2$
- 11. (c): 8 g H₂ has 4 moles while the others has 1 mole each.
- **12. (b) :** No. of atoms = $N_A \times$ No. of moles \times 3 = $6.023 \times 10^{23} \times 0.1 \times 3 = 1.806 \times 10^{23}$
- 13. (b): Given that molar mass of $Na_2CO_3 = 106 g$

:. Molarity of solution =
$$\frac{25.3 \times 1000}{106 \times 250}$$

= 0.9547 M = 0.955 M

$$Na_2CO_3 \rightarrow 2Na^+ + CO_3^{2-}$$