IONIC EQUILIBRIUM

OSTWALD DILUTION LAW:

Dissociation constant of weak acid (K_a),

$$K_a = \frac{[H^+][A^-]}{[HA]} = \frac{[C\alpha][C\alpha]}{C(1-\alpha)} = \frac{C\alpha^2}{1-\alpha}$$

If
$$\alpha <<$$
 1 , then 1 $\alpha \cong \,$ 1 or $K_a = c\alpha^2$ or $\alpha = \sqrt{\frac{K_a}{C}} = \sqrt{K_a \times V}$

Similarly for a weak base , $\alpha = \sqrt{\frac{K_b}{C}}$. Higher the value of K_a / K_b , strong is the acid / base.

Acidity and pH scale:

 $\therefore pH = -\log a_{H^+} \text{ (where } a_{H^+} \text{ is the activity of } H^+ \text{ ions} = \text{molar concentration}$ for dilute solution).

[Note: pH can also be negative or > 14]

pH =
$$-\log [H^+]$$
; [H^+] = 10^{-pH}
pOH = $-\log [OH^-]$; [OH^-] = 10^{-pOH}
pKa = $-\log Ka$; Ka = 10^{-pKa}
pKb = $-\log Kb$; Kb = 10^{-pKb}

PROPERTIES OF WATER:

- 1. In pure water $[H^+] = [OH^-]$ so it is Neutral.
- 2. Molar concentration / Molarity of water = 55.56 M.
- 3. Ionic product of water (K_w):

$$K_w = [H^+][OH^-] = 10^{-14} \text{ at } 25^{\circ} \text{ (experimentally)}$$

$$pH = 7 = pOH$$
 \Rightarrow neutral $pH < 7$ or $pOH > 7$ \Rightarrow acidic $pH > 7$ or $pOH < 7$ \Rightarrow Basic

4. Degree of dissociation of water:

$$\alpha = \frac{\text{no. of moles dissociated}}{\text{Total No. of moles initially taken}} = \frac{10^{-7}}{55.55} = 18 \times 10^{-10} \text{ or } 1.8 \times 10^{-7} \%$$

5. Absolute dissociation constant of water:

$$K_a = K_b = \frac{[H^+][OH^-]}{[H_2O]} = \frac{10^{-7} \times 10^{-7}}{55.55} = 1.8 \times 10^{-16}$$

$$pK_a = pK_b = -\log(1.8 \times 10^{-16}) = 16 - \log 1.8 = 15.74$$

$$K_a \times K_b = [H^+][OH^-] = K_w$$

- ⇒ Note: for a conjugate acid- base pairs $pK_a + pK_b = pK_w = 14$ at 25°C. pK_a of H_3O^+ ions = -1.74 pK_b of OH^+ ions = -1.74.
- O pH Calculations of Different Types of Solutions:
 - (a) Strong acid solution:
 - (i) If concentration is greater than 10⁻⁶ M
 In this case H⁺ ions coming from water can be neglected,
 - (ii) If concentration is less than 10⁻⁶ M In this case H⁺ ions coming from water cannot be neglected
 - (b) Strong base solution:

Using similar method as in part (a) calculate first [OH⁻] and then use $[H^+] \times [OH^-] = 10^{-14}$

(c) pH of mixture of two strong acids:

Number of H⁺ ions from I-solution = N_1V_1 Number of H⁺ ions from II-solution = N_2V_2

$$[H^+] = N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$$

(d) pH of mixture of two strong bases:

$$[OH^-] = N = \frac{N_1V_1 + N_2V_2}{V_1 + V_2}$$

(e) pH of mixture of a strong acid and a strong base :

If $N_1V_1 > N_2V_2$, then solution will be acidic in nature and

$$[H^+] = N = \frac{N_1 V_1 - N_2 V_2}{V_1 + V_2}$$

If $N_2V_2 > N_1V_1$, then solution will be basic in nature and

$$[OH^-] = N = \frac{N_2 V_2 - N_1 V_1}{V_1 + V_2}$$

(f) pH of a weak acid(monoprotic) solution:

$$\begin{split} K_a &= \frac{\left[H^+\right]\left[OH^-\right]}{\left[HA\right]} = \frac{C\alpha^2}{1-\alpha} \\ &\text{if } \alpha <<1 \implies (1-\alpha) \approx 1 \implies K_a \approx C\alpha^2 \end{split}$$

$$\Rightarrow \alpha = \sqrt{\frac{K_a}{C}}$$
 (is valid if $\alpha < 0.1$ or 10%)

On increasing the dilution

$$\Rightarrow$$
 C \downarrow $\Rightarrow \alpha$

and
$$[H^+] \downarrow \Rightarrow pH \uparrow$$

RELATIVE STRENGTH OF TWO ACIDS:

[H⁺] furnished by I acid
$$=\frac{c_1\alpha_1}{c_2\alpha_2} = \sqrt{\frac{k_{a_1}c_1}{k_{a_2}c_2}}$$

O SALT HYDROLYSIS:

Salt of Type of hydrolysis

weak acid & strong base anionic
$$\frac{k_w}{k_a}$$
 $\sqrt{\frac{k_w}{k_ac}}$ $7 + \frac{1}{2} pk_a + \frac{1}{2} log c$

(b) strong acid & weak base cationic
$$\frac{k_w}{k_b} \sqrt{\frac{k_w}{k_bc}} = 7 - \frac{1}{2} pk_b - \frac{1}{2} log c$$

(c) weak acid & weak base both
$$\frac{k_w}{k_a k_b} \sqrt{\frac{k_w}{k_a k_b}} 7 + \frac{1}{2} p k_a - \frac{1}{2} p k_b$$

Hydrolysis of ployvalent anions or cations

For $[Na_3PO_4] = C$.

$$K_{a1} \times K_{b3} = K_{w}$$

$$K_{a1}^{"} \times K_{b2}^{"} = K_{w}^{"}$$

$$K_{a3} \times K_{h1} = K_w$$

Generally pH is calculated only using the first step Hydrolysis

$$K_{h1} = \frac{Ch^2}{1-h} \approx Ch^2$$

$$h = \sqrt{\frac{K_{h1}}{c}} \qquad \Rightarrow [OH^{\scriptscriptstyle -}] = ch = \sqrt{K_{h1} \times c} \quad \Rightarrow [H^{\scriptscriptstyle +}] = \sqrt{\frac{K_W \times K_{a3}}{C}}$$

So
$$pH = \frac{1}{2}[pK_w + pK_{a3} + logC]$$

DUI I EN SOLUTION .

(a) Acidic Buffer: e.g. CH₃ COOH and CH₃COONa. (weak acid and salt of its conjugate base).

pH= pK_a + log
$$\frac{[Salt]}{[Acid]}$$
 [Henderson's equation]

(b) Basic Buffer : e.g. NH₄OH + NH₄Cl. (weak base and salt of its conjugate acid).

$$pOH = pK_b + log \frac{[Salt]}{[Base]}$$

SOLUBILITY PRODUCT:

$$K_{SP} = (xs)^{x} (ys)^{y} = x^{x}.y^{y}.(s)^{x+y}$$

CONDITION FOR PRECIPITATION:

If ionic product $K_{I.P} > K_{SP}$ precipitation occurs,

if $K_{I.P} = K_{SP}$ saturated solution (precipitation just begins or is just prevented).