THERMODYNAMICS

Thermodynamic processes:

1. **Isothermal process:** T = constant

dT = 0

 $\Delta T = 0$

2. **Isochoric process:** V = constant

dV = 0

 $\Delta V = 0$

3. **Isobaric process:** P = constant

dP = 0

 $\Delta P = 0$

4. Adiabatic process: q = 0

or heat exchange with the surrounding = 0(zero)

IUPAC Sign convention about Heat and Work:

Work done on the system = Positive Work done by the system = Negative

1st Law of Thermodynamics

$$\Delta U = (U_2 - U_1) = q + w$$

Law of equipartion of energy:

$$U = \frac{f}{2} nRT \qquad \text{(only for ideal gas)}$$

$$\Delta E = \frac{f}{2} nR (\Delta T)$$

where f = degrees of freedom for that gas. (Translational + Rotational)

f = 3 for monoatomic

= 5 for diatomic or linear polyatmic

= 6 for non - linear polyatmic

Calculation of heat (q):

Total heat capacity:

$$C_T = \frac{\Delta q}{\Delta T} = \frac{dq}{dT} = J/^{\circ}C$$

Molar heat capacity:

$$C = \frac{\Delta q}{n\Delta T} = \frac{dq}{ndT} = J \text{ mole}^{-1} \text{ K}^{-1}$$

$$C_{P} = \frac{\gamma R}{\gamma - 1}$$
 $C_{V} = \frac{R}{\gamma - 1}$

Specific heat capacity (s):

$$S = \frac{\Delta q}{m\Delta T} = \frac{dq}{mdT} = J gm^{-1} K^{-1}$$

Isothermal Reversible expansion/compression of an ideal gas:

$$W = - nRT ln (V_f/V_i)$$

Reversible and irreversible isochoric processes.

Since
$$dV = 0$$

So $dW = -P_{ext} \cdot dV = 0$.

Reversible isobaric process:

$$W = P (V_f - V_i)$$

Adiabatic reversible expansion:

$$\Rightarrow T_2 V_2^{\gamma-1} = T_1 V_1^{\gamma-1}$$

Reversible Work:

$$W = \frac{P_2V_2 - P_1V_1}{\gamma - 1} = \frac{nR(T_2 - T_1)}{\gamma - 1}$$

Irreversible Work:

$$W = \frac{P_2 V_2 - P_1 V_1}{\gamma - 1} = \frac{nR (T_2 - T_1)}{\gamma - 1} = nC_v (T_2 - T_1) = -P_{ext} (V_2 - V_1)$$

and use
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

Free expansion–Always going to be irrerversible and since $P_{ext} = 0$

so
$$dW = -P_{ext} \cdot dV = 0$$

If no. heat is supplied q = 0

then
$$\Delta E = 0$$
 so $\Delta T = 0$.

Application of 1st Law:

$$\Delta U = \Delta Q + \Delta W \qquad \Rightarrow \qquad \Delta W = -P \Delta V$$

$$\Delta U = \Delta Q - P \Delta V$$

Constant volume process

Heat given at constant volume = change in internal energy

$$\therefore$$
 du = (dq)_v
du = nC_vdT

$$C_v = \frac{1}{n} \cdot \frac{du}{dT} = \frac{f}{2} R$$

Constant pressure process:

H ≡ Enthalpy (state function and extensive property)

$$H = U + PV$$

$$\Rightarrow C_p - C_v = R$$
 (only for ideal gas)

Second Law Of Thermodynamics:

$$\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surrounding}} > 0$$
 for a spontaneous process.

Entropy (S):

$$\Delta S_{\text{system}} = \int_{A}^{B} \frac{dq_{\text{rev}}}{T}$$

Entropy calculation for an ideal gas undergoing a process:

State A
$$\xrightarrow{irr}$$
 State B

 P_1, V_1, T_1 P_2, V_2, T_2

$$\Delta S_{system} = nc_v ln \frac{T_2}{T_1} + nR ln \frac{V_2}{V_1}$$
 (only for an ideal gas)

Third Law Of Thermodynamics:

The entropy of perfect crystals of all pure elements & compounds is zero at the absolute zero of temperature.

Gibb's free energy (G): (State function and an extensive property)

$$G_{\text{system}} = H_{\text{system}} - TS_{\text{system}}$$

Criteria of spontaneity:

(i) If ΔG_{system} is (-ve) < 0 \Rightarrow process is spontaneous (ii) If ΔG_{system} is > 0 \Rightarrow process is non spontaneous (iii) If ΔG_{system} = 0 \Rightarrow system is at equilibrium.

Physical interpretation of ΔG :

→ The maximum amount of non-expansional (compression) work which can be performed.

$$\Delta G = dw_{\text{non-exp}} = dH - TdS$$
.

Standard Free Energy Change (△G°):

- 1. $\Delta G^{\circ} = -2.303 \text{ RT log}_{10} \text{ K}$
- 2. At equilibrium $\Delta G = 0$.
- 3. The decrease in free energy $(-\Delta G)$ is given as :

$$-\Delta G = W_{net} = 2.303 \text{ nRT log}_{10} \frac{V_2}{V_1}$$

- 4. ΔG_f° for elemental state = 0
- 5. $\Delta G_f^{\circ} = G_{products}^{\circ} G_{Reactants}^{\circ}$

Thermochemistry:

Change in standard enthalpy
$$\Delta H^\circ = H^0_{m,2} - H^0_{m,1}$$
 = heat added at constant pressure. = $C_P \Delta T$.

If
$$H_{products} > H_{reactants}$$

→ Reaction should be endothermic as we have to give extra heat to reactants to get these converted into products

and if
$$H_{products} < H_{reactants}$$

→ Reaction will be exothermic as extra heat content of reactants will be released during the reaction.

Enthalpy change of a reaction:

$$\Delta H_{reaction} = H_{products} - H_{reactants}$$
 $\Delta H^{\circ}_{reactions} = H^{\circ}_{products} - H^{\circ}_{reactants}$
 $= positive - endothermic$
 $= negative - exothermic$

Temperature Dependence Of AH: (Kirchoff's equation):

For a constant pressure reaction

$$\Delta H_2^\circ = \Delta H_1^\circ + \Delta C_P (T_2 - T_1)$$

where $\Delta C_P = C_P (products) - C_P (reactants).For a constant volume reaction$

$$\Delta E_2^0 = \Delta E_1^0 + \int \Delta C_V . dT$$

Enthalpy of Reaction from Enthalpies of Formation:

The enthalpy of reaction can be calculated by $\Delta H_r^\circ = \Sigma \ \nu_B \ \Delta H_f^\circ,_{products} - \Sigma \ \nu_B \ \Delta H_f^\circ,_{reactants} \ \nu_B$ is the stoichiometric coefficient.

Estimation of Enthalpy of a reaction from bond Enthalpies:

$$\Delta H = \begin{pmatrix} \text{Enthalpy required to} \\ \text{break reactants into} \\ \text{gasesous atoms} \end{pmatrix} - \begin{pmatrix} \text{Enthalpy released to} \\ \text{form products from the} \\ \text{gasesous atoms} \end{pmatrix}$$

Resonance Energy:

$$\begin{array}{l} \Delta \text{H}^{\circ}_{\text{ resonance}} = \Delta \text{H}^{\circ}_{\text{ f, experimental}} - \Delta \text{H}^{\circ}_{\text{ f, calclulated}} \\ = \Delta \text{H}^{\circ}_{\text{ c, calclulated}} - \Delta \text{H}^{\circ}_{\text{ c, experimental}} \end{array}$$