NEET Exam. 2017 ($7^{\text {th }}$ May 2017)
 (Paper \& Solution)

Code - Y
Q. 1 The most suitable method of separation of $1: 1$ mixture of ortho and para-nitrophenols is :
(1) Steam distillation
(2) Sublimation
(3) Chromatography
(4) Crystallisation

Students may find similar question in CP exercise sheet:
[Chapter : Chemical Bonding, Exercise \# 1, Page No.219, Q.110]
Ans. [1]
Sol. In O-nitrophenol intra molecular H-Bond present. So Bpt is low where as in p-nitrophenol molecules are associated by inter molecular H-Bond. So Bpt is high, so o \& p-nitrophenol seperated by steam distillation method

O - nitrophenol

Q. 2 Which of the following statements is not correct?
(1) Denaturation makes the proteins more active.
(2) Insulin maintains sugar level in the blood of a human body.
(3) Ovalbumin is a simple food reserve in egg-white.
(4) Blood proteins thrombin and fibrinogen are involved in blood clotting.

Ans. [1]
Sol. \because Denaturation makes the protein inactive.

(3)

(4)

Students may find similar question in CP exercise sheet :
 [Chapter : Oxygen containing compounds from Class Notes]

Ans.
[3]
Sol.

Q. 4 The heating of phenyl-methyl ethers with HI produces.
(1) benzene
(2) ethyl chlorides
(3) iodobenzene
(4) phenol

Students may find similar question in CP exercise sheet :
[Chapter : Oxygen compounds from Class Notes]
Ans. [4]
Sol.

Methyl Phenyl ether

Phenol Methyl iodide
Q. 5 The correct increasing order of basic strength for the following compounds is :

(I)

(II)

(III)
(1) II $<$ I $<$ III
(2) II $<$ III $<$ I
(3) III $<$ I $<$ II
(4) III $<$ II $<$ I

[Chapter : GOC-II, Exercise \# 1, Page No.110, Q.68]
Ans. [1]

(III)

(I)

(II)
Q. 6 Which one of the following pairs of species have the same bond order?
(1) $\mathrm{N}_{2}, \mathrm{O}_{2}^{-}$
(2) CO, NO
(3) $\mathrm{O}_{2}, \mathrm{NO}^{+}$
(4) $\mathrm{CN}^{-}, \mathrm{CO}$
: Students may find similar question in CP exercise sheet :
' [Chapter: Chemical Bonding, Exercise \# 3(A), Page No.235, Q.116]
Ans. [4]
Sol. $\quad \mathrm{CO} \& \mathrm{CN}^{-}$are isoelectronic and having same bond order 3
Q. 7 Name the gas that can readily decolourise acidified KMnO_{4} solution :
(1) $\mathrm{P}_{2} \mathrm{O}_{5}$
(2) CO_{2}
(3) SO_{2}
(4) NO_{2}

Students may find similar question in CP exercise sheet:
[Chapter : Oxidation Reduction, Exercise \# 1, Page No.90, Q.70]
Ans. [3]
Sol. $\mathrm{KMnO}_{4}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
$\therefore \quad \mathrm{SO}_{2}$ which is R.A. decolourize KMnO_{4}
Q. 8 The reason for greater range of oxidation states in actinoids is attributed to :
(1) $4 f$ and $5 d$ levels being close in energies
(2) the radioactive nature of actinoids
(3) actinoid contraction
(4) 5f, 6d and 7s levels having comparable energies

IStudents may find similar question in $\overline{C P} \bar{P}$ exercise sheet :
[Chapter : Periodic table, Exercise \# 3(A), Page No.188, Q.33]
Ans. [4]
Sol. Actinoid shows grater range of oxidation state because $5 \mathrm{f}, 6 \mathrm{~d}, 7 \mathrm{~s}$ levels having comparable energies.
Q. 9 Concentration of the Ag^{+}ions in a saturated solution of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is $2.2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$. Solubility product of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is :
(1) 5.3×10^{-12}
(2) 2.42×10^{-8}
(3) 2.66×10^{-12}
(4) 4.5×10^{-11}

Students may find similar question in CPexercise sheet:-
[Chapter : Ionic equilibrium, Exercise \# 1-A, Page No.142, Q.59]
Ans. [1]

$$
\begin{aligned}
\mathrm{K}_{\mathrm{sp}} & =4 \mathrm{~s}^{3}=4 \times\left(1.1 \times 10^{-4}\right)^{3} \\
& =4 \times(1.1)^{3} \times 10^{-12} \\
& =5.324 \times 10^{-12} \mathrm{M}^{3}
\end{aligned}
$$

Q. 10 With respect to the conformers of ethane, which of the following statements is true?
(1) Both bond angles and bond length remains same
(2) Bond angle remains same but bond length changes
(3) Bond angle changes but bond length remains same
(4) Both bond angle and bond length change

Students may find similar question in CPercise sheet :
 [Chapter : Isomerism (GOC-I) from Class Notes]

Ans. [1]
Sol.

Bond angle \Rightarrow Unchanged
Bond length \Rightarrow Unchanged
Q. 11 Identify A and predict the type of reaction

(1)
 and cine substitution reaction
(2)

(3)

(4)

[^0]

Overall Br is replaced by NH_{2} group so we can say substitution reaction.
Q. 12 Which of the following is sink for CO?
(1) Plants
(2) Haemoglobin
(3) Micro organisms present in the soil
(4) Oceans

```
Students may find similar question in CP exercise sheet :
[Chapter : Environmental Chemistry, Exercise \# 2, Page No.243, Q.20]
```

Ans. [3]
Sol. Soil is a natural sink for carbon monoxide. The soil's ability to remove carbon monoxide from the atmosphere is due to the activity of soil micro-organisms.
Q. 13 In which pair of ions both the species contain $S-S$ bond?
(1) $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}, \mathrm{S}_{2} \mathrm{O}_{7}^{2-}$
(2) $\mathrm{S}_{2} \mathrm{O}_{7}^{2-}, \mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
(3) $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}, \mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
(4) $\mathrm{S}_{2} \mathrm{O}_{7}^{2-}, \mathrm{S}_{2} \mathrm{O}_{8}^{2-}$

[[Chapter : p-block from Class Notes]
Ans. [3]
Sol. (i)

Q. 14 Pick out the correct statement with respect to $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$:
(1) It is dsp 2 hybridised and square planar
(2) It is $s p^{3} d^{2}$ hybridised and octahedral
(3) It is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised and tetrahedral
(4) It is $d^{2} \mathrm{sp}^{3}$ hybridised and octahedral

Students may find similar question in $\overline{\boldsymbol{C} P}$ sheet :
 , [Chapter : Coordination compounds from Class Notes]

Ans. [4]
$\therefore \quad \Delta_{0}$ is high complex is $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridised and inner octahedral

Q. 15 The equilibrium constants of the following are :
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
The equilibrium constant (K) of the reaction :
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \stackrel{\mathrm{~K}}{\rightleftharpoons} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$, will be :
(1) $\mathrm{K}_{2}^{3} \mathrm{~K}_{3} / \mathrm{K}_{1}$
(2) $K_{1} K_{3}^{3} / K_{2}$
(3) $K_{2} K_{3}^{3} / K_{1}$
(4) $\mathrm{K}_{2} \mathrm{~K}_{3} / \mathrm{K}_{1}$
:- Students may find similar question in $\overline{\mathrm{CP}} \overline{\mathrm{P}}$ exercise sheet :
[Chapter : Chemical Equilibrium, Exercise \# 3-A, Page No121, Q.18]
Ans. [3]
Sol. (1)
(2) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$

$$
\mathrm{K}_{2}
$$

K_{1}

$$
\begin{equation*}
\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}_{2} \mathrm{O} \tag{3}
\end{equation*}
$$

$$
\mathrm{K}_{3}
$$

Object $2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \stackrel{\mathrm{~K}}{\rightleftharpoons} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$
Equation (3) $\times 3+(2)-(1)$
$\therefore \mathrm{K}=\frac{\mathrm{K}_{2} \times \mathrm{K}_{3}^{3}}{\mathrm{~K}_{1}}$
Q. 16 Match the interhalogen compounds of column I with the geometry in column II and assign the correct code.

Column I	Column II
(a) XX^{\prime}	(i) T - shape
(b) $\mathrm{XX}_{3}{ }_{3}$	(ii) Pentagonal bipyramidal
(c) $\mathrm{XX}^{\prime}{ }_{5}$	(iii) Linear
(d) $\mathrm{XX}_{7}{ }_{7}$	(iv) Square - pyramidal
	(v) Tetrahedral

(v) (in) (i)	(iv)	(ii)		
(4)	(v)	(iv)	(iii)	(ii)

:- Students may find similar question in $\overline{C P} \overline{\text { exercise sheet }: ~}$
 ' [Chapter : p-block from Class Notes]

Ans. [3]
Sol. (a) $\mathrm{XX}^{1} \quad \mathrm{sp}^{3} \quad$ Linear
(b) $\mathrm{XX}_{3}^{1} \quad \mathrm{sp}^{3} \mathrm{~d} \quad \mathrm{~T}$-shape
(c) $\mathrm{XX}_{5}^{1} \quad \mathrm{sp}^{3} \mathrm{~d}^{2} \quad$ square pyramid
(d) $\mathrm{XX}_{7}^{1} \quad \mathrm{sp}^{3} \mathrm{~d}^{3} \quad$ Penta genal planar
$\mathrm{a} \Rightarrow \mathrm{iii}$
$\mathrm{b} \Rightarrow$ (i)
$\mathrm{c} \Rightarrow$ (iv)
$\mathrm{d} \Rightarrow$ (ii)
Q. 17 Mixture of chloroxylenol and terpineol acts as :
(1) antibiotic
(2) analgesic
(3) antiseptic
(4) antipyretic

Students may find similar question in $\overline{C P}$ exercise sheet :
[Chapter : Chemistry in everyday life, Exercise \# 3, Page No.214, Q.25]
Ans. [3]
Sol. Mixture of Chloroxylenol and terpineol is called dettol which acts as an antiseptic.
Q. 18 It is because of inability of ns^{2} electrons of the valence shell to participate in bonding that :
(1) Sn^{4+} is reducing while Pb^{4+} is oxidising
(2) Sn^{2+} is reducing while Pb^{4+} is oxidising
(3) Sn^{2+} is oxidising while Pb^{4+} is reducing
(4) Sn^{2+} and Pb^{2+} are both oxidising and reducing

Ans. [2]
Sol. Due to inert pair effect Pb^{+2} is more stable where as in tin Sn^{+4} is more stable.
$\therefore \quad \mathrm{Pb}^{+4}$ will get reduce and Sn^{+2} will get Oxidize.
$\left[\mathrm{Pb}^{+4}=\right.$ oxidising agent, $\mathrm{Sn}^{+2}=$ reducing agent $]$

Ans. [1]

Sol. Silver is extracted by cyanide process involving :

1. Complex formation
2. Metal displacement with zinc

Q. 20 A 20 litre container at 400 K contains $\mathrm{CO}_{2}(\mathrm{~g})$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid $\mathrm{SrO})$. The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO_{2} attains its maximum value, will be :
(Given that : $\mathrm{SrCO}_{3}(\mathrm{~s}) \stackrel{\mathrm{K}}{\rightleftharpoons} \mathrm{SrO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{Kp}=1.6 \mathrm{~atm}$)
(1) 2 litre
(2) 5 litre
(3) 10 litre
(4) 4 litre
:- Students may find similar question in CPexercise sheet :
[Chapter : Chemical equilibrium, Exercise \# 3(B), Page No.127, Q.66]
Ans. [2]
Sol. $\underset{(\mathrm{s})}{\mathrm{SrCO}_{3}} \rightleftharpoons \underset{(\mathrm{~s})}{\mathrm{SrO}}+\underset{(\mathrm{g})}{\mathrm{CO}_{2}}$
At maximum pressure of CO_{2}
$\mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{CO}_{2}}=1.6 \mathrm{~atm}$
Temperature is constant
$\therefore \quad \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$0.4 \times 20=1.6 \times V_{2}$
$\mathrm{V}_{2}=5 \mathrm{lit}$
Q. 21 Which is the incorrect statement ?
(1) Frenkel defect is favoured in those ionic compounds in which sizes of cation and anions are almost equal
(2) $\mathrm{FeO}_{0.98}$ has non stoichiometric metal deficiency defect
(3) Density decreases in case of crystals with Schottky's defect
(4) $\mathrm{NaCl}(\mathrm{s})$ is insulator, silicon is semiconductor, silver is conductor, quartz is piezo electric crystal

Students may find similar question in CP exercise sheet :
[Chapter : Solid State, Exercise \# 1, Page No.118, Q.6]
Ans. [1]
Sol. Frenkel defect is favoured in those ionic compounds in which sizes of cation and anions are not equal . i.e.
\qquad
'[Chapter: Solution colligative properties, Exercise \# 1, Page No.49, Q.33]
Ans. [3]
Sol. Molarity depends upon temperature
$\mathrm{M}=\frac{\mathrm{W}_{\mathrm{A}} \times 1000}{\mathrm{M}_{\mathrm{A}} \times \mathrm{V}}$
$V \propto T$
$\mathrm{T} \uparrow, \mathrm{V} \uparrow$, Molarity (\downarrow)
Q. 23 The correct order of the stoichiometries of AgCl formed when AgNO_{3} in excess is treated with the complexes : $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ respectively is -
(1) $2 \mathrm{AgCl}, 3 \mathrm{AgCl}, 1 \mathrm{AgCl}$
(2) $1 \mathrm{AgCl}, 3 \mathrm{AgCl}, 2 \mathrm{AgCl}$
(3) $3 \mathrm{AgCl}, 1 \mathrm{AgCl}, 2 \mathrm{AgCl}$
(4) $3 \mathrm{AgCl}, 2 \mathrm{AgCl}, 1 \mathrm{AgCl}$

Students may find similar question in CP exercise sheet :
 ' [Chapter : Coordination compounds, Exercise \# 11(B), Page No.77, Q.113]

Ans. [4]
Sol. $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \xrightarrow{\mathrm{AgNO}_{3}} 3 \mathrm{AgCl}$
$\mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \xrightarrow{\mathrm{AgNO}_{3}} 2 \mathrm{AgCl}$
$\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \xrightarrow{\mathrm{AgNO}_{3}} 1 \mathrm{AgCl}$
Q. 24 An example of a sigma bonded organometallic compound is -
(1) Cobaltocene
(2) Ruthenocene
(3) Grignard's reagent
(4) Ferrocene

Students may find similar question in CP exercise sheet:
[Chapter : Coordination compounds, Exercise \# 7, Page No.56, Q.3]
[3]
Ans. [3]
Sol. Grignard's reagent (R mg x) is σ-bonded organometallic compound $\mathrm{CH}_{3}-\mathrm{Mg}-\mathrm{I}$
Ferrocene, cobaltocene and Ruthenocene are π-bonded organometallic compound and they contain cyclopentadionyl ring
particle.
(3) The uncertainty principle is $\Delta \mathrm{E} \times \Delta \mathrm{t} \geq \frac{\mathrm{h}}{4 \pi}$
(4) Half filled and fully filled orbitals have greater stability due to greater exchange energy, greater symmetry and more balanced arrangement
Students may find similar question in CP exercise sheet:
[Chapter : Atomic Structure, Exercise \# 1, Page No.21, Q.28]
Ans. [1]
Sol. In hydrogen like atom energy 2 s in equal to 2 p (as in single electron species)
Q. 26 Which one is the most acidic compound ?
(1)

(2)

(3)

(4)

'Students may find similar question in CP exercise sheet:
[Chapter : GOC-II, Exercise \# 2, Page No.115, Q.23]
Ans. [1]
Sol. \because Acidic strength \propto stability of anion

Max. stable anion due to delocalised $\Theta v e$ charge \& -M effect of all three NO_{2} group
Q. 27 A first order reaction has a specific reaction rate of $10^{-2} \mathrm{sec}^{-1}$. How much time will it take for 20 g of the reactant to reduce to 5 g ?
(1) 693.0 sec
(2) 238.6 sec
(3) 138.6 sec
(4) 346.5 sec

Students may find similar question in CP exercise sheet:
[Chapter : Chemical Kinetics, Exercise \# 3A, Page No.201, Q.36]
Ans. [3]
Sol. For first order reaction
$\mathrm{t}=\frac{2.303}{10^{-2}} \log 4$
$=\frac{2.303 \times 0.6020}{10^{-2}}=138.64 \mathrm{sec}$
Q. 28 Consider the reactions :

Identify $\mathrm{A}, \mathrm{X}, \mathrm{Y}$ and Z
(1) A-Ethanol, X-Acetaldehyde, Y-Butanone Z-Hydrazone
(2) A-Methoxymethane, X-Ethanoic acid, Y-Acetate ion, Z-Hydrazine
(3) A-Methoxymethane, X-Ethanol, Y-Ethanoic acid, Z-Semicarbazide
(4) A-Ethanal, X-Ethanol, Y-But-2-enal., Z-Semicarbazone

Ans. [4]
Sol.

X is $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}$ (Ethanol)
A is $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{O}$ (Ethanal)
Y is $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{O}$ (But-2-enal)
Z is $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{N}-\mathrm{NH}-\mathrm{C}-\mathrm{NH}_{2}$ (Acetaldehyde-semicarbazone)

The overall order of the reaction will be -
(1) 1.5
(2) 1
(3) 2
(4) 0

Students may find similar question in CP exercise sheet:
' [Chapter : Chemical Kinetics, Exercise \#2, Page No.191, Q.8]
Ans. [1]
Sol. From slow step

$$
\mathrm{r}=\mathrm{k}[\mathrm{X}]\left[\mathrm{Y}_{2}\right]
$$

but $[\mathrm{X}]$ is dummy reactant so it will replaced by step I
$\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{X}]^{2}}{\left[\mathrm{X}_{2}\right]}$
$[\mathrm{X}]=\sqrt{\mathrm{K}_{\mathrm{c}}\left[\mathrm{X}_{2}\right]}$
$\therefore \mathrm{r}=\mathrm{K}\left(\mathrm{K}_{\mathrm{c}}\right)^{\frac{1}{2}}\left[\mathrm{X}_{2}\right]^{\frac{1}{2}}\left[\mathrm{Y}_{2}\right]^{1}$
so overall order $=\frac{1}{2}+1=1.5$
Q. 30 Predict the correct intermediate and product in the following reaction :

(1)

B :

(2)

(3)

B

(4) A

B : $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
Students may find similar question in CP exercise sheet :
[Chapter : _Hydrocarbons, Exercise \# 3, Page No.170, Q.50]

Ans. [1]

Sol.

(A)
(B)
(3) 5-formylhex-2-en-3-one
(4) 5-methyl-4-oxohex-2en-5-al

Ans.
[2]

Sol.

Q. 32 In the electrochemical cell -
$\mathrm{Zn}\left|\mathrm{ZnSO}_{4}(0.01 \mathrm{M}) \| \mathrm{CuSO}_{4}(1.0 \mathrm{M})\right| \mathrm{Cu}$, the emf of this Daniel cell is E_{1}. When the concentration of ZnSO_{4} is changed to 1.0 M and that of CuSO_{4} changed to 0.01 M , the emf changes to E_{2}. From the followings, which one is the relationship between E_{1} and E_{2} ? (Given, $\frac{\mathrm{RT}}{\mathrm{F}}=0.059$).
(1) $\mathrm{E}_{2}=0 \neq \mathrm{E}_{1}$
(2) $\mathrm{E}_{1}=\mathrm{E}_{2}$
(3) $\mathrm{E}_{1}<\mathrm{E}_{2}$
(4) $E_{1}>E_{2}$

Students may find similar question in $\bar{C} \boldsymbol{P}$ exercise sheet:
[Chapter : Electrochemistry, Exercise \# 3A, Page No.31, Q.31]
Ans. [4]
Sol.

$$
\underset{(0.01 \mathrm{M})}{\mathrm{Zn} \mid} \underset{(1.0 \mathrm{M})}{\mathrm{ZnSO}_{4}}\left\|\mathrm{CuSO}_{4}\right\| \mathrm{Cu}
$$

Nernst equation

$$
\mathrm{Emf}=\mathrm{E}_{\mathrm{cell}}^{\circ}-\frac{0.059}{2} \log \frac{\left[\mathrm{Zn}^{+2}\right]}{\left[\mathrm{Cu}^{+2}\right]}
$$

In first case
$\mathrm{E}_{1}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{0.059}{2} \log \frac{0.01}{1}$
In second case
$\mathrm{E}_{2}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{0.059}{2} \log \frac{1}{0.01}$
So $\quad \mathrm{E}_{1}>\mathrm{E}_{2}$
! [Chapter: Chemical Thermodynamics \& Energetic, Exercise \# 3(A), Page No.154, Q.32]
Ans. [4]
Sol. $\quad \Delta \mathrm{U}=\mathrm{q}+\mathrm{w}$
Insulated container $\mathrm{So}, \mathrm{q}=0$
$\Delta \mathrm{U}=-\mathrm{PdV}$
$=-2.5[4.50-2.50]$
$=-2.5 \times 2$ litre $-\mathrm{atm}=-5 l \mathrm{~atm} \quad[1 \ell-\mathrm{atm}=101.3 \approx 101 \mathrm{~J}]$
$=-5 \times 101$
$\Rightarrow-505 \mathrm{~J}$
Q. 34 Correct increasing order for the wavelengths of absorption in the visible region for the complexes of Co^{3+} is -
(1) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(2) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(3) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(4) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$

Students may find similar question in CP exercise sheet :
[[Chapter : Coordination compounds, Exercise \# 11(A), Page No.65, Q.74]

Ans. [2]

Sol. Increasing order of wavelength of absorption is

$$
\begin{aligned}
& \Delta_{0}=\text { en }>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O} \\
& \Delta_{0}=\mathrm{E}=\frac{\mathrm{hc}}{\lambda} \\
& \lambda=\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{+3}<\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}<\left[\mathrm{Co}(\mathrm{HO})_{6}\right]^{+3}
\end{aligned}
$$

Q. 35 The correct statement regarding electrophile is :
(1) Electrophile can be either neutral or positively charged species and can form a bond by accepting a pair of electrons from a nucleophile
(2) Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons form a nucleophile
(3) Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from another electrophile
(4) Electrophiles are generally neutral species and can form a bond by accepting a pair of electrons from a nucleophile

Students may find similar question in CP sheet :

[Chapter: GOC-II from Class Notes]
Ans. [1]
$\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ do not vary with temperature)
(1) $\mathrm{T}>298 \mathrm{~K}$
(2) $\mathrm{T}<425 \mathrm{~K}$
(3) $\mathrm{T}>425 \mathrm{~K}$
(4) All temperatures

Students may find similar question in $\overline{C P}$ exercise sheet:
' [Chapter: Chemical Thermodynamics \& Energetic, Exercise \# 3(A), Page No.157, Q.66]
Ans. [3]
Sol. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
at equilibrium $\Delta \mathrm{G}=0$
$35.5 \times 10^{3}-\mathrm{T} \times 83.6=0$
$\mathrm{T}_{\text {eq }}=\frac{35.5 \times 10^{3}}{83.6}=424.64$
If $\mathrm{T}>\mathrm{T}_{\mathrm{eq}} ; \Delta \mathrm{G}=-\mathrm{ve}$
$\therefore \mathrm{T}>425 \mathrm{~K}$
Q. 37 Which of the following pairs of compounds is isoelectronic and isostructural ?
(1) $\mathrm{IF}_{3}, \mathrm{XeF}_{2}$
(2) $\mathrm{BeCl}_{2}, \mathrm{XeF}_{2}$
(3) $\mathrm{TeI}_{2}, \mathrm{XeF}_{2}$
(4) $\mathrm{IBr}_{2}, \mathrm{XeF}_{2}$

Students may find similar question in CP exercise sheet:
[Chapter : Chemical Bonding, Exercise \# 3(A), Page No.228, Q.81]
Ans. [4]
Sol. $\quad \mathrm{IBr}_{2}{ }^{-}$and XeF_{2} are isoelectronic because they conation same number of valence electron and both are linear.

Ans. [4]
Sol. Due to formation of complex

$\mathrm{I}_{2} \xrightarrow{\mathrm{I}^{-}} \mathrm{I}_{3}^{-}$
Q. 39 Which one of the following statements is not correct?
(1) Coenzymes increase the catalytic activity of enzyme
(2) Catalyst does not initiate and reaction
(3) The value of equilibrium constant is changed in the presence of a catalyst in the reaction at equilibrium
(4) Enzymes catalyse mainly bio-chemical reaction.

[Chapter : Chemical Equilibrium, Exercise \# 3(A), Page No.120, Q.12]

Ans. [3]

Sol. Equilibrium constant does not depend on catalyst.
Q. 40 Ionic mobility of which of the following alkali metal ions is lowest when aqueous solutions of their salts are put under an electric filed?
(1) Li
(2) Na
(3) K
(4) Rb
:- Students may find similar question in $\overline{C P}$ exercise sheet :
' [Chapter : Electro Chemistry, Exercise \# 1, Page No.15, Q.21]
Ans. [4]
Sol. According to electrochemistry due to presence of electric field hydration of ions will not place in excess means it effect will be negligible then only ionic weight is the factor.
Ionic weight of rubidium is high so its mobility will be less.
Q. 41 The element $\mathrm{Z}=114$ has been discovered recently. It will belong to which of the following family/group and electronic configuration?
(1) Nitrogen family, $[R n] 5 f^{14} 6 \mathrm{~d}^{10} 7 \mathrm{~s}^{2} 7 \mathrm{p}^{6}$
(2) Halogen family, $[R n] 5 f^{14} 6 d^{10} 7 \mathrm{~s}^{2} 7 \mathrm{p}^{5}$
(3) Carbon family, $[R n] 5 f^{14} 6 \mathrm{~d}^{10} 7 \mathrm{~s}^{2} 7 \mathrm{p}^{2}$
(4) Oxygen family, $[R n] 5 f^{14} 6 \mathrm{~d}^{10} 7 \mathrm{~s}^{2} 7 \mathrm{p}^{4}$
, - Students may find similar question in $\overline{\boldsymbol{C}} \overline{\boldsymbol{P}}$ sheet :
[Chapter : Periodic table from Class Notes]

Ans. [3]

Sol. $\quad Z=114$
$\mathrm{Z}_{114}=[\mathrm{Rn}] 5 \mathrm{f}^{14} 6 \mathrm{~d}^{10} 7 \mathrm{~s}^{2} 7 \mathrm{p}^{2}$

(3) $\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{CH}_{3}$
(4) $\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{CH}_{3}$
${ }_{1}$ Students may find similar question in $\overline{C P}$ exercise sheet :
[Chapter : Hydrocarbons, Exercise \# 3, Page No.165, Q.3]
Ans. [3]
Sol. Acidic nature $\propto \frac{-\mathrm{I}}{+\mathrm{I}} \propto$ E. N.
\therefore Acidic strength order will be

$$
\begin{array}{rcc}
\frac{\mathrm{HC} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}}{\mathrm{EN}(\mathrm{sp} \text { carbon })=3.25}>\frac{\mathrm{CH}_{2}=\mathrm{CH}_{2}}{\mathrm{EN}\left(\mathrm{sp}^{2} \text { carbon }\right)} & >\frac{\mathrm{CH}_{3}-\mathrm{CH}_{3}}{\mathrm{EN}\left(\mathrm{sp}^{3} \text { carbon }\right)} \\
& =2.75 & =2.50
\end{array}
$$

Q. 43 If molality of the dilute solution is doubled, the value of molal depression constant $\left(\mathrm{K}_{\mathrm{f}}\right)$ will be
(1) unchanged
(2) doubled
(3) halved
(4) tripled

Students may find similar question in CP exercise sheet :
' [Chapter : Solution Colligative Properties, Page No.59, Table No. 4]
Ans. [1]
Sol. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \times \mathrm{m}$
$\mathrm{K}_{\mathrm{f}} \rightarrow$ does not depend on molality
So, K_{f} molal depression constant remains same
Q. 44 The species, having bond angles of 120° is
(1) BCl_{3}
(2) PH_{3}
(3) CIF_{3}
(4) NCl_{3}

[^1]Ans. [1]
Sol. BCl_{3} is sp^{2} hybridized so, BCl_{3} is trigonal planar and Bond angle is 120°

| [Chapter :Nitrogen compounds from Class Notes]

Ans. [3]
Sol.

(Acetamide)
It is called Hoffmann's hypobromamide reaction.

Kota's Top Most Pre-Medical Faculty Team with Highest Success Rate

Majority of Top Rankers from Kota have been produced by members of this team

[[Chapter: Ecology : Population \& Community, Theory, Page No.51]
Ans. [3]
Sol. $K=N$
When K (Carrying capacity) equals to N (Population Density) the logistic growth acquire steady or asymptote stage
Q. 47 The vascular cambium normally gives rise to :
(1) Periderm
(2) Phelloderm
(3) Primary phloem
(4) Secondary xylem

Students may find similar question in $\bar{C} \bar{P}$ exercise sheet : Structural organization in plants
Exercise \# 2, Page No.61, Q.61]
Ans. [4]
Sol. The vascular cambium normally gives rise to secondary xylem
Q. 48 In case of poriferans, the spongocoel is lined with flagellated cells called :
(1) Mesenchymal cells
(2) Ostia
(3) Oscula
(4) Choanocytes

Students may find this in CP sheet: Animal Diversity, Page 15
Ans. [4]
Sol. Choanocyte or Collar cell are flagellated cell and lines Spongocoel and canal both.
Q. 49 Fruit and leaf drop at early stages can be prevented by the application of
(1) Gibberellic acid
(2) Cytokinins
(3) Ethylene
(4) Auxins

Students may find similar question in CP exercise sheet :
' [Chapter : Plant Physiology : Plant growth \& Hormones, Theory, Page No.144]

Ans. [4]

Sol. Auxin prevents abscission of young plant parts
Q. 50 A gene whose expression helps to identify transformed cell is known as
(1) Structural gene
(2) Selectable marker
(3) Vector
(4) Plasmid

Ans. [2]
(4) Avery, Mcleod and McCarty

Ans. [3]
Sol. Hershey and Chase gave the final unequivocal proof for DNA as the genetic material.
Q. 52 With reference to factors affecting the rate of photosynthesis, which of the following statements is not correct ?
(1) Tomato is a greenhouse crop which can be grown in CO_{2}-enriched atmosphere for higher yield
(2) Light saturation for CO_{2} fixation occurs at 10% of full sunlight
(3) Increasing atmospheric CO_{2} concentration up to 0.05% can enhance CO_{2} fixation rate
(4) C_{3} plants respond to higher temperatures with enhanced photosynthesis while C_{4} plants have much lower temperature optimum
Students may find similar question in CP exercise sheet :
[Chapter :Plant Physioology : Photosynthesis, Theory, Page No.21]
Ans. [4]
Sol. $\quad \mathrm{C}_{3}$ plants are adapted to cold climate while C_{4} plants are adapted to hot \& dry climate
Q. 53 The association of histone H 1 with a nucleosome indicates :
(1) The DNA double helix is exposed
(2) Transcription is occurring
(3) DNA replication is occurring
(4) The DNA is condensed into a Chromatin Fibre

```
Students may find this in CP sheet :Protoplasm
```

Ans. [4]
Sol. During DNA condensation into a chromatin fibre the DNA wraps around histone octamer and H1 Histone works as clip to prevent unwraping of DNA
Q. 54 GnRH , a hypothalamic hormone, needed in reproduction, acts on
(1) Posterior pituitary gland and stimulates secretion of LH and relaxin
(2) Anterior pituitary gland and stimulates secretion of LH and oxytocin
(3) Anterior pituitary gland and stimulates secretion of LH and FSH
(4) Posterior pituitary gland and stimulates secretion of oxytocin and FSH

Ans. [3]
Sol. GnRH gonadotropic releasing hormone is released by hypothalamus and acts on anterior pituitary (adenohypophysis) and stimulates release of gonadotropins (FSH \& LH)
(4) Neutral

Students may find similar question in CP exercise sheet : Genetic, Page No. $42-1$
Ans. [3]
Sol. DNA fragments are negatively charged due to phosphate $\left(\mathrm{H}_{3} \mathrm{PO}_{4}^{-}\right)$backbone
Q. 56 Which of the following options gives the correct sequences of events during mitosis?
(1) condensation \rightarrow arrangement at equator \rightarrow centromere division \rightarrow segregation \rightarrow telophase
(2) condensation \rightarrow nuclear membrane disassembly \rightarrow crossing over \rightarrow segregation \rightarrow telophase
(3) condensation \rightarrow nuclear membrance disassembly \rightarrow arrangement at equator \rightarrow centromere division \rightarrow segregation \rightarrow telophase
(4) condensation \rightarrow crossing over \rightarrow nuclear membrane disassembly \rightarrow segregation \rightarrow telophase

Students may find similar question in CP exercise sheet : Cell Structure and Function
Exercise \# 2, Page No.88, Q. 171
Ans. [3]
Sol. The correct sequence reduce of events during mitosis is condensation \rightarrow nuclear membrance disassembly \rightarrow arrangement at equator \rightarrow centromere division \rightarrow segregation \rightarrow telophase
Q. 57 Lungs are made up of air-filled sacs, the alveoli. They do not collapse even after forceful expiration, because of :
(1) Expiratory Reserve Volume
(2) Residual Volume
(3) Inspiratory Reserve Volume
(4) Tidal Volume

Students may find this in CP sheet : Animal Physiology, Page No. 149

Ans. [2]
Sol. $\quad 1200 \mathrm{ml}$ residual volume always stays inside lungs
Q. 58 Which one of the following statements is correct with reference to enzymes?
(1) Holoenzyme $=$ Coenzyme + Co-factor
(2) Apoenzyme $=$ Holoenzyme + Coenzymes
(3) Holoenzyme $=$ Apoenzyme + Coenzyme
(4) Coenzyme $=$ Apoenzyme + Holoenzyme

[Chapter : Plant Physiology : Enzyme, Theory, Page No.119]	

Ans. [3]
Sol. Holoenzyme formed by binding of Apoenzyme (protein part) with non-protein part (eoenzyme)
(4) Polysaccharides

Ans. [1]
Sol. Lipids are strictly not macromolecules they are not polymeric and have molecular weight less than 800 Da
Q. 60 Which of the following components provides sticky character to the bacterial cells ?
(1) Gylcocalyx
(2) Cell wall
(3) Nuclear membrane
(4) Plasma membrane

Students may find this in CP sheet :Plant Diversity, Page No. 25
[1]
Ans. [1]
Sol. Glycocalyx is the outer most part of bacterial envelope which is either composed of slimy layer (Dextrin sugar) or capsule form
Q. 61 An example of colonial alga is :
(1) Spirogyra
(2) Chlorella
(3) Volvox
(4) Ulothrix

Ans. [3]
Sol. Volvox forms colony which rolls over water - colony of volvox is termed coenobium.
Q. 62 A dioecious flowering plant prevents both :
(1) Cleistogamy and xenogamy
(2) Autogamy and xenogamy
(3) Autogamy and geitonogamy
(4) Geitonogamy and xenogamy

Ans. [3]
Sol. Dioecious flowing plant means sex organs are present on separate plants which will prevent both autogamy (within same flower and geitonogamy (between two different flower of same plant)
Q. 63 Plants which produce characteristic pneumatophores and show vivipary belong to :
(1) Hydrophytes
(2) Mesophytes
(3) Halophytes
(4) Psammophytes

Students may find similar question in CP exercise sheet : Ecology
Chapter: Organism \& Environment, Theory, Page No.30]
Ans. [3]
Sol. Halophytes grows in saline conditions so show pheumatophores of vivipary

Ans. [2]

Sol. Coconut is a drupe fruit
Q. 65 Which of the following is made up of dead cells ?
(1) Phloem
(2) Xylem parenchyma
(3) Collenchyma
(4) Phellem

Students may find similar question in CP exercise sheet : Structural Organisation in Plants
Exercise \# 1, Page No.54, Q.166, Exercise \# 2, Page No.68, Q.181]
Ans. [4]
Sol. Phellem is made up of dead cells
Q. 66 Root hairs develop from the region of :
(1) Meristematic activity
(2) Maturation
(3) Elongation
(4) Root cap

Students may find similar question in CP exercise sheet : Structural Organisation in Plants
 Exercise \# 2, Page No. 83 (diagram)]

Ans. [2]
Sol. Root hair develop from region of maturation
Q. 67 Which of the following options best represents the enzyme composition of pancreatic juice ?
(1) Lipase, amylase, trypsinogen, procarboxypeptidase
(2) Amylase, peptidase, trypsinogen, rennin
(3) Amylase, pepsin, trypsinogen, maltase
(4) Peptidase, amylase, pepsin, rennin

Ans. [1]
Sol. Pancreas produces pancreatic juice which is released in duodenum along with bile juice \& contains enzymes as such lipase, amylase trypsinogen \& procarboxypeptidase.
Q. 68 Zygotic meiosis is characteristic of :
(1) Chlamydomonas
(2) Marchentia
(3) Fucus
(4) Funaria

Ans. [1]
Sol. Zygotic meiosis - Haplontic life cycle eg. Chlamydomonas
Marchantia \rightarrow Haplo-diplontic \rightarrow Sporic meiosis
Fucus \rightarrow Diplontic \rightarrow Sporic meiosis
Funaria \rightarrow Haplo-diplontic \rightarrow Sporic meiosis

Sol. Halophiles form of Archebacteria are found in extreme saline conditions
Q. 70 In Bougainvillea thorns are the modifications of :
(1) Leaf
(2) Stipules
(3) Adventitious root
(4) Stem

Students may find sim Theory, Page No.87]				

Ans. [4]
Sol. In bougainvillea the throns are modifications of stem
Q. 71 Viroids differ from viruses in having
(1) RNA molecules without protein coat
(2) DNA molecules with protein coat
(3) DNA molecules without protein coat
(4) RNA molecules with protein coat

Ans. [1]
Sol. Viroids have only low molecular weight RNA without protein coat
Q. 72 Adult human RBCs are enucleate. Which of the following statements(s) is / are most appropriate explanation for this feature?
(a) They do not need to reproduce
(b) They are somatic cells
(c) They do not metabolize
(d) All their internal space is available for oxygen transport

Options :
(1) (b) and (c)
(2) Only (d)
(3) Only (a)
(4) (a), (c) and (d)

Ans. [2]
Sol. Adult human RBCs are enucleated, this helps in increased availability of space for haemoglobin. This feature is benificial for carrying more oxygen.

(4) m-RNA

Ans. [2]
Sol. rRNA - approx 80% of cellular RNA
Q. 74 During DNA replication, Okazaki fragments are used to elongate.
(1) The lagging strand away from the replication fork
(2) The leading strand towards replication fork
(3) The lagging strand towards replication fork
(4) The leading strand away from replication

```
\Students may find this in CP sheet :Protoplasm, Page No.125
!------------------------------------------------------------
```

Ans. [1]
Sol. In replication fork, leading and lagging strand are away from each other, Okazaki fragments are present on lagging strand.
Q. 75 Select the correct route for the passage of sperms in male frogs :
(1) Testes \rightarrow Vasa efferentia \rightarrow Kidney \rightarrow Bidder's canal \rightarrow Urinogenital duct \rightarrow Cloaca
(2) Testes \rightarrow Bidder's canal \rightarrow Kidney \rightarrow Vasa efferentia \rightarrow Urinogenital duct \rightarrow Cloaca
(3) Testes \rightarrow Vasa efferentia \rightarrow Kidney \rightarrow Seminal vesicle \rightarrow Urinogenital duct \rightarrow Cloaca
(4) Testes \rightarrow Vasa efferentia \rightarrow Bidder's canal \rightarrow Ureter \rightarrow Cloaca

Students may find this in CP sheet : Lower Animal, Page No.177----------------------
Students may find this in CP sheet : Lower Animal, Page No. 177
Ans. [1]
Sol. From testes of frog 10-12 Vasa efferentia comes out enters into kidney and open into Bidder's canal which leads into ureter (Urinogenital duct).\& then into Cloaca.
Ureter $=$ Urinogenital duct in male frog
Q. 76 If there are 999 bases in an RNA that codes for a protein with 333 amino acids, and the base at position 901 is deleted such that the length of the RNA becomes 998 bases, how many codons will be altered?
(1) 333
(2) 1
(3) 11
(4) 33

Ans. [4]
Sol. 333 amino acid from 999 bases
300 amino acid from 900 bases
Alteration in 901 means frame shift occurred in the sequence thereafter, which will affect rest 33 codons.
(4) Radial orientation of cellulose microfibrils in the cell wall of guard cells

```
Students may find similar question in CP exercise sheet : Plant Physiology
[Chapter : Plant Water Relation, Page No.202,]
```


Ans. [4]

Sol. Radial arrangement of cellulose microfibrils is present on inner wall of guards cell
Q. 78 Anaphase Promoting Complex (APC) is protein degradation machinery necessary for proper mitosis of animal cells. If APC is defective in a human cell, which of the following is expected to occur?
(1) Recombination of chromosome arms will occur
(2) Chromosomes will not condense
(3) Chromosomes will be fragmented
(4) Chromosomes will not segregate

Students may find this in CP sheet
[4]
Sol. Separase enzyme is a part of APC (Anaphase promoting complex) that degrades cohesion protein, separating the two chromatids. It APC is defective, the chromatids will not separate.
Q. 79 Life cycle of Ectocarpus and Fucus respectively are :
(1) Haplodiplontic, Haplontic
(2) Haplontic, Diplontic
(3) Diplontic, Haplodiplontic
(4) Haplodiplontic, Diplontic

Ans. [4]
Sol. Ectocarpus - Haplodiplontic (Iso morphic type)
Fucus - Diplontic life cycle.
Q. 80 Which statements is wrong for Krebs' cycle?
(1) The cycle starts with condensation of acetyl group (acetylCoA) with pyruvic acid to yield citric acid.
(2) There are three points in the cycle where NAD^{+}is reduced to $\mathrm{NADH}+\mathrm{H}^{+}$
(3) There is one point in the cycle where FAD^{+}is reduced to FADH_{2}
(4) During conversion of succinyl CoA to succinic acid, a molecule of GTP is synthesised

- Students may find similar question in $\overline{C P}$ exercise sheet :Plant physiology
[Chapter : Cell Rejiration, Theory Page No.72,
Ans. [1]
Sol. Kreb's cycle starts with condensation of Acetyl CoA with Oxaloacetic acid.
(3) Cell-mediated immune response
(4) Hormonal immune response

Ans. [3]
Q. 82 Artificial selection to obtain cows yielding higher milk output represents :
(1) stabilizing followed by disruptive as it stabilizes the population to produce higher yielding cows.
(2) stabilizing selection as it stabilizes this character in the population.
(3) directional as it pushes the mean of the character in one direction.
(4) disruptive as it splits the population into two, one yielding higher output and the other lower output.

Ans. [2]
Sol. In Directional selection one Extreml is favoured for selection as compared to the other extreme phenotype.
Q. 83 Select the mismatch :

(1) Rhizobium	-	Alfalfa
(2) Frania	-	Alnus
(3) Rhodospirillum	-	Mycorrhiza
(4) Anabaena	-	Nitrogen fixer

[^2]Ans. [3]
Sol. Rhodospirillum is a free living N_{2} fixing microbe.
Q. 84 Presence of plants arranged into well defined vertical layers depending on their height can be seen best in :
(1) Temperate Forest
(2) Tropical Savannah
(3) Tropical Rain Forest
(4) Grassland

Students may find similar question in CP exercise sheet : Ecology
[Chapter :population \& community, Theory Page No 53]
Ans. [3]
Sol. Tropical Rain forest show clear cut stratification of vegetations.
(b) Syphilis
(ii) Neisseria
(c) Genital Warts
(iii) Treponema
(d) AIDS
(iv) Human papilloma - virus

Options :

	(a)	(b)	(c)
(1) (iv)	(iii)	(ii)	(i)
(2) (ii)	(iii)	(iv)	(i)
(3) (iii)	(iv)	(i)	(ii)
(4) (iv)	(ii)	(iii)	(i)

[Page No.138]
Ans. [2]
Sol. C
Q. 86 Select the mismatch :
(1) Equisetum - Homosporous
(2) Pinus - Dioecious
(3) Cycas - Dioecious
(4) Salvinia - Heterosporous

Ans. [2]
Sol. In Pinus, both male and female cones are present are same plant i.e monoecious
Q. 87 The region of Biosphere Reserve which is legally protected and where no human activity is allowed is known as :
(1) Restoration zone
(2) Core zone
(3) Buffer zone
(4) Transition zone

Students may find similar question in CP exercise sheet $: \bar{E} c o l o g y$
[Chapter : Biodivercity, Theory Page No.46]
Ans. [2]
Sol. Core zone of biosphere reserves is totally undistorbed zone.
(4) It conducts water and minerals efficiently

Students may find similar question in CP exercise sheet : Structural Organisation in Plants
Exercise \# 2, Page No.73, Q. 265
Ans. [4]
Sol. The wrong statement in context to heartwood is "It conducts water and minerals efficiently.
Q. 89 The function of copper ions in copper releasing IUD's is :
(1) They inhibit ovulation
(2) They suppress sperm motility and fertilising capacity of sperms.
(3) They inhibit gametogenesis.
(4) They make uterus unsuitable for implantation
'Students may find this in CP sheet : Reproductive health, Theory, Page No. 59
Stadents may fors in CP shed. Reprawcine health, Theor, Page No.s
Ans. [2]
Q. 90 The process of separation and purification of expressed protein before marketing is called :
(1) Postproduction processing
(2) Upstream processing
(3) Downstream processing
(4) Bioprocessing

।
Ans. [3]
Q. 91 Which among the following are the smallest living cells, known without a definite cell wall, pathogenic to plants as well as animals and can survive without oxygen?
(1) Nostoc
(2) Bacillus
(3) Pseudomonas
(4) Mycoplasma

[4]
Ans. [4]
Sol. Mycoplasma lack cell wall and are facultature anaerobe i.e can survive in absence of oxygen also.
Q. 92 Phosphoenol pyruvate (PEP) is the primary CO_{2} acceptor in :
(1) C_{3} and C_{4} plants
(2) C_{3} plants
(3) C_{4} plants
(4) C_{2} plants

[Chapter: Photosynthesis, Theory Page No.21]

Ans. [3]

Sol. Phospho enol pyruvate (PEP) is primary CO_{2} acceptor in C_{4} plants.
Q. 94 The DNA fragments separated on an agarose gel can be visualised after staining with :
(1) Ethidium bromide
(2) Bromophenol blue
(3) Acetocarmine
(4) Aniline blue

Students may find this in CP sheet : Biotechnology : Principle and Process
---ーー-
-
Ans. [1]
Q. 95 Capacitation occurs in :
(1) Female Reproductive tract
(2) Rete testis
(3) Epididymis
(4) Vas deferens

Ans. [1]
Sol. Capacitation is a phenomenon that occur in vagina, due to it the sperms aquire ability to swim through female reproductive tract $\&$ fertilise the egg in fallopian tabe.
Q. 96 Which of the following is correctly matched for the product produced by them ?
(1) Sacchromyces cerevisiae : Ethanol
(2) Acetobacter aceti : Antibiotics
(3) Methanobacterium : Lactic acid
(4) Penicillium notatum : Acetic acid

Ans. [1]
Sol. Saccharomyces cerevisiae (yeast) is used in commercial production of Ethanol.
Q. 97 Which of the following statements is correct?
(1) The descending limb of loop of Henle is permeable to electrolytes.
(2) The ascending limb of loop of Henle is impermeable to water.
(3) The descending limb of loop of Henle is impermeable to water.
(4) The ascending limb of loop of Henle is permeable to water.

```
\---------\
```

Ans. [2]
Q. 98 The water potential of pure water is :
(1) More than one
(2) Zero
(3) Less than zero
(4) More than zero but less than one

Ans. [2]
Sol. Water Potential or free energy of pore water / pure solvent is maximum i.e zero as system not Performing any work.

Students may find this in CP sheet : Genetics, Page No. 21

Ans.
[4]
Sol.

I^{A}		I^{B}
I^{A}	$I^{A} I^{A}$	$I^{A} I^{B}$
	$I^{A} i$	$I^{B} i$

Blood group or phenotype is $\mathrm{A}, \mathrm{B}, \mathrm{AB}$ so 3 phenotype
Genotype - 4
Q. 100 An important characteristic that Hemichordates share with Chordates is :
(1) pharynx without gill slits
(2) absence of notochord
(3) ventral tubular nerve cord
(4) pharynx with gill slits

Ans. [4]
Sol. Hemichordates have pharyngeal gill slits which similar to the chordates.
Q. 101 Which one of the following is related to Ex-situ conservation of threatened animals and plants ?
(1) Himalayan region
(2) Wildlife Safari Parks
(3) Biodiversity hot spots
(4) Amazon rainforest

```
Students may find similar question in CP exercise sheet : Ecology
[Chapter : Biodiversity Theory, Page No. 144,]
```

Ans. [2]
Sol. Wild life safari parks are the ex-situ conservation strategy
Q. 102 Which of the following in sewage treatment removes suspended solids?
(1) Sludge treatment
(2) Tertiary treatment
(3) Secondary treatment
(4) Primary treatment

```
Students may find similar question in CP exercise sheet : Ecology
[Chapter : Environmental Issue Theory, Page No. 181 ]
```

Ans. [4]
Sol. Primary treatment in Sewage treatment plant involves filtration \& Sedimentation leads to separation of suspended solids.
(3) $\mathrm{X}=12, \mathrm{Y}=5$ True ribs are attached dorsally to vertebral column and sternum on the two ends.
(4) $\mathrm{X}=24, \mathrm{Y}=7 \quad$ True ribs are dorsally attached to vertebral column but are free on ventral side.

Students may find this in CP sheet: Skeletal System,Page No. 107
Ans. [2]
Q. 104 Double fertilization is exhibited by :
(1) Angiosperms
(2) Gymnosperms
(3) Algae
(4) Fungi

Ans. [1]
Sol. Double fertilization and triple fusion are characteristic feature of angiosperms.
Q. 105 Attractants and rewards are required for :
(1) Cleistogamy
(2) Anemophily
(3) Entomophily
(4) Hydrophily

Ans. [3]
Sol. Attractants and Rewards are required to attract insects for pollination i.e. entomophily
Q. 106 Which one from those given below is the period for Mendel's hybridization experiments ?
(1) $1870-1877$
(2) $1856-1863$
(3) $1840-1850$
(4) $1857-1869$

Ans. [2]
Q. 107 Receptor sites for neurotransmitters are present on
(1) post-synaptic membrane
(2) membranes of synaptic vesicles
(3) pre-synaptic membrane
(4) tips of axons

Ans. [1]
Sol. Receptor site the neurotransmitters are present on postsynaptic membrane.
Q. 108 Which among these is the correct combination of aquatic mammals ?
(1) Trygon, Whales, Seals
(2) Seals, Dolphins, Sharks
(3) Dolphins, Seals, Trygon
(4) Whales, Dolphins, Seals

[4]
Ans. [4]
Sol. Whale, Dolphins, Seals are aquatic mammals belongs order cetacean.
(c) Retinal is derivative of Vitamin A
(d) Retinal is a light absorbing part of all the visual photopigments

Options :

(1) (b), (c) and (d)
(2) (a) and (b)
(3) (a), (c) and (d)
(4) (a) and (c)

Ans. [4]
Sol. Carotene is precursor of vitamin A. It is required for synthesis of visual pigments in rods \& cone cells of retina.
Q. 110 What is the criterion for DNA fragments movement on agarose gel during gel electrophoresis ?
(1) Negatively charged fragments do not move
(2) The larger the fragment size, the farther it moves
(3) The smaller the fragment size, the farther it moves
(4) Positively charged fragment move to farther end

Students may find this in CP sheet : Genetics, Page No. 42

Ans. [3]
Q. 111 Hypersecretion of Grwoth Hormone in adults does not cause further increase in height, because :
(1) Muscle fibres do not grow in size after birth
(2) Growth Hormone becomes inactive in adults
(3) Epiphyseal plates close after adolescence
(4) Bones loose their sensitivity to Growth Hormone in adults

Ans. [3]
Sol. Hypersecretion of growth hormone in adults does not cause further increases in height because the epiphysial plates (growth plates) closes after adolescence.
Q. 112 Which of the following represents order of 'Horse' ?
(1) Ferus
(2) Equidae
(3) Perissodactyla
(4) Caballus

Ans. [3]
Sol. Horse belongs to order parissodactyla of class mammalia Order parissodactyla consist mammals with odd toes.
(3) Both are due to a quantitative defect in globin chain synthesis
(4) Thalassemia is due to less synthesis of globin molecules

Ans. [4]
Sol. NCERT-XII Bio Topic - Supplementary Material for Senior Secondary biology - Thalassemia \& class notes
Q. 114 Myelin sheath is produced by :
(1) Osteoclasts and Astrocytes
(2) Schwann Cells and Oligodendrocytes
(3) Astrocytes and Schwann Cells
(4) Oligodendrocytes and Osteoclasts

Students may find this in CP sheet : Animal Physiology -II
Ans. [2]
Sol. Myelin sheath is produced by Schwann cells in PNS \& oligodendrocyte cells in CNS.
Q. 115 Homozygous purelines in cattle can be obtained by :
(1) mating of individuals of different species
(2) mating of related individuals of same breed
(3) mating of unrelated individuals of same breed
(4) mating of individuals of different breed

Students may find similar question in CP exercise sheet : Genetics \& Class Notes
Page No. 6]
Ans. [2]
Q. 116 Mycorrhizae are the example of :
(1) Mutualism
(2) Fungistasis
(3) Amensalism
(4) Antibiosis

Students may find similar question in CPexercise sheet: Ecology
[Chapter : Population \& Community Theory, Page No. 67]
Ans. [1]
Sol. Mycorrhiza is mutualistic interaction between algae \& fungi
Q. 117 A baby boy aged two years is admitted to play school and passes through a dental check-up. The dentist observed that the boy had twenty teeth. Which teeth were absent ?
(1) Molars
(2) Incisors
(3) Canines
(4) Pre-molars

Students may find similar question in CP exercise sheet : Animal Physiology-I, Page No. 133
Ans. [4]
Sol. Premolar teeth are absent in child who bears only milk teeth.

Ans. [3]

Q. 119 The hepatic portal vein drains blood to liver from :
(1) Intestine
(2) Heart
(3) Stomach
(4) Kidneys

Ans. [1]
Sol. Hepatic portal vein carries nutrient rich blood from intestine to liver.
Q. 120 Which cells of 'Crypts of Lieberkuhn' secrete antibacterial lysozyme?
(1) Kupffer cells
(2) Argentaffin cells
(3) Paneth cells
(4) Zymogen cells

Ans. [3]
Sol. Antibacterial lysozymes are produced by paneth cells present in crypts of Lieberkuhn.
Q. 121 Spliceosomes are not found in cells of :
(1) Bacteria
(2) Plants
(3) Fungi
(4) Animals

Ans. [1]
Sol. Spliceosomes are required for splicing of introns which are absent in Bacteria.
Q. 122 Frog's heart when taken out of the body continues to beat for sometime.

Select the best option from the following statements.
(a) Frog is a poikilotherm
(b) Frog does not have any coronary circulation
(c) Heart is "myogenic" in nature
(d) Heart is autoexcitable

Options :

(1) (c) and (d)
(2) Only (c)
(3) Only (d)
(4) (a) and (b)

Ans. [1]
Sol. Frog's heart is myogenic and auto excitable
Q. 123 Functional megaspore in an angiosperm develops into :
(1) Embryo
(2) Ovule
(3) Endosperm
(4) Embryo sac

Ans. [4]
Sol. Functional megaspore in an angiosperm develops into female gametophyte i.e embryo sac.
; [Chapter :Biodiversity theory, Page No.138]
Ans. [4]
Sol. Alexander Von Humbolt imposed species area relationship.
Q. 125 The morphological nature of edible part of coconut is :
(1) Pericarp
(2) Perisperm
(3) Cotayledon
(4) Endosperm

Students may find similar question in CP exercise sheet: Structural Organisation in Plants
Theory Chart, Page No. 117
Ans. [4]
Sol. Endosperm is edible part of coconut.
Q. 126 A temporary endocrine gland in the human body is :
(1) Corpus allatum
(2) Pineal gland
(3) Corpus cardiacum
(4) Corpus luteum

Students may find similar question in CP sheet :Animal physiology-II Page No. 174
Ans. [4]
Sol. Temporary endocrine gland in human body is corpus luteum present in ovaries. It is formed from graafian follicles after ovulation and produce hormones like progesterone and estrogens.
Q. 127 Flowers which have single ovule in the ovary and are packed into inflorescence are usually pollinated by :
(1) Bat
(2) Water
(3) Bee
(4) Wind

Ans. [4]
Sol. Wind pollinated (Anemophilous) flowers occur in inflorescence and has single ovule in the ovary.
Q. 128 The pivot joint between atlas and axis is a type of :
(1) saddle joint
(2) fibrous joint
(3) cartilaginous joint
(4) synovial joint

Ans. [4]
Sol. Median at lento axial joint is a pivot type of synovial joint which helps in rotatory movements.
Q. 129 A decrease in blood pressure/volume will not cause the release of :
(1) ADH
(2) Renin
(3) Atrial Natriuretic Factor
(4) Aldosterone
'Students may find similar question in CP exercise sheet : Animal Physiology-II, Page no. 177
Ans. [3]
Sol. Fall in blood pressure/blood volume will not cause release of atrial natriuretic factor (ANF) because it causes fall in blood pressure/blood volume by suppressing release of rennin.
; [Chapter: Ecosystem, Page No.98]
Ans. [2]
Sol. Forest ecosystem posses highest biomass.
Q. 131 A disease caused by an autosomal primary non-disjunction is :
(1) Sickle Cell Anemia
(2) Down's Syndrome
(3) Klinefelter's Syndrome
(4) Turner's Syndrome

Students may find similar question in CP exercise sheet : Immunity and Disease
[Page No.133]
Ans. [2]
Q. 132 Which of the following cell organelles is responsible for extracting energy from carbohydrates to form ATP?
(1) Mitochondrion
(2) Lysosome
(3) Ribosome
(4) Chloroplast

Students may find similar question in CP éxercise sheet:Plant Physiology
[Chapter: Cell Respiration, Page No.72,]
Ans. [1]
Sol. Mitochondria (Power house of cell) is responsible for extracting energy from carbohydrates to ATP by electron transport system.
Q. 133 DNA replication in bacteria occurs-
(1) Just before transcription
(2) During S phase
(3) Within nucleolus
(4) Prior to fission

Ans. [4]
Sol. DNA replication in bacteria occurs.
Q. 134 In case of a couple where the male is having a very low sperm count, which technique will be suitable for fertilization?
(1) Intracytoplasmic sperm injection
(2) Intrauterine transfer
(3) Gamete intracytoplasmic fallopian transfer
(4) Artifical Insemination

-
(4) They cause increased agricultural productivity

Students may find similar question in CP exercise sheet: Ecology
[Chapter : Environmental issues, Page No.170,]
Ans. [4]
Sol. Aerosols are air pollutants produces as smog, fog and decrease the ahricultral productivity.

NEET I AIIMS 2018

Achiever Batch Course

For Repeater \& Extra Meritorious Students

Scholarship upto 90\% + Free Hostel
Classes Start: 15 May 2017

Match the following :

Column -1
P. Process I
Q. Process II
R. Process III
S. Process IV

Column -2
a. Adiabatic
b. Isobaric
c. Isochoric
d. Isothermal
(1) $\mathrm{P} \rightarrow \mathrm{d}, \mathrm{Q} \rightarrow \mathrm{b}, \mathrm{R} \rightarrow \mathrm{a}, \mathrm{S} \rightarrow \mathrm{c}$
(2) $\mathrm{P} \rightarrow \mathrm{a}, \mathrm{Q} \rightarrow \mathrm{c}, \mathrm{R} \rightarrow \mathrm{d}, \mathrm{S} \rightarrow \mathrm{b}$
(3) $\mathrm{P} \rightarrow \mathrm{c}, \mathrm{Q} \rightarrow \mathrm{a}, \mathrm{R} \rightarrow \mathrm{d}, \mathrm{S} \rightarrow \mathrm{b}$
(4) $\mathrm{P} \rightarrow \mathrm{c}, \mathrm{Q} \rightarrow \mathrm{d}, \mathrm{R} \rightarrow \mathrm{b}, \mathrm{S} \rightarrow \mathrm{a}$

Students may find similar question in CP exercise sheet:
' [Chapter : Thermodynamics, Exercise \# 3(B), Page No.46, Q.182]
Ans. [3]
Sol. $\quad \mathrm{P} \rightarrow \mathrm{c}$
$\mathrm{Q} \rightarrow \mathrm{a}$
$\mathrm{R} \rightarrow \mathrm{d}$
$\mathrm{S} \rightarrow \mathrm{b}$
Q. 137 Consider a drop of rain water having mass 1 g falling from a height of 1 km . It hits the ground with a speed of $50 \mathrm{~m} / \mathrm{s}$. Take ' g ' constant with a value $10 \mathrm{~m} / \mathrm{s}^{2}$. The work done by the (i) gravitational force and the (ii) resistive force of air is
(1) (i) 10 J
(ii) -8.75 J
(2) (i) -10 J (ii) -8.25 J
(3) (i) 1.25 J
(ii) -8.25 J
(4) (i) 100 J (ii) 8.75 J

[^3]Ans. [1]
Sol. (i) Work done by the gravitational force $=\mathrm{mgh}=1 \times 10^{-3} \times 10 \times 1000=10 \mathrm{~J}$
(ii) Work done by resistive force

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{r}}=-\mathrm{mgh}+\frac{1}{2} \mathrm{mv}^{2} \\
& =-10+\frac{1}{2} 10^{-3}(50)^{2}=-8.75 \mathrm{~J}
\end{aligned}
$$

' [Chapter: Magnetism, Exercise \# 1, Page No.71, Q.122]
Ans. [2]
Sol. $\quad \mathrm{W}=\mathrm{MB}\left(\cos 0^{\circ}-\cos 180^{\circ}\right)$

$$
\begin{aligned}
\mathrm{W} & =2 \mathrm{MB} \\
& =2(\mathrm{NIA}) \mathrm{B} \\
& =2 \times 250 \times 85 \times 10^{-6} \times 2.1 \times 1.25 \times 10^{-4} \times 0.85 \\
& =9.4 \times 10^{-6} \mathrm{~J} \\
& =9.1 \mu \mathrm{~J}
\end{aligned}
$$

Q. 139 Two Polaroids P_{1} and P_{2} are placed with their axis perpendicular to each other. Unpolarised light I_{0} is incident on P_{1}. A third polaroid P_{3} is kept in between P_{1} and P_{2} such that its axis makes an angle 45° with that of P_{1}. The intensity of transmitted light through P_{2} is
(1) $\frac{I_{0}}{16}$
(2) $\frac{I_{0}}{2}$
(3) $\frac{I_{0}}{4}$
(4) $\frac{I_{0}}{8}$

Students may find similar question in CP exercise sheet :
[Chapter : Polarisation, Exercise \# Solved Examples, Page No.117, Q.3]
Ans. [4]
Sol.

Intensity of light after passing from I Polaroid $=\frac{\mathrm{I}_{0}}{2}$
from malus law
Intensity of light after passing from II Polaroid $=\frac{\mathrm{I}_{0}}{2} \cos ^{2} \theta=\frac{\mathrm{I}_{0}}{2} \cos ^{2} 45^{\circ}=\frac{\mathrm{I}_{0}}{4}$
Intensity of light after passing from III Polaroid $=\frac{\mathrm{I}_{0}}{4} \cos ^{2} \theta$
$=\frac{\mathrm{I}_{0}}{4} \cos ^{2}\left(45^{\circ}\right)$
$=\frac{\mathrm{I}_{0}}{4} \times \frac{1}{2}=\frac{\mathrm{I}_{0}}{8}$

Ans.
Sol.

A	B
8λ	λ
$\mathrm{~N}_{0}$	$\mathrm{~N}_{0}$
$\frac{N_{B}}{N_{A}}=\frac{N_{0} e^{-\lambda t}}{N_{0} e^{-8 \lambda t}}=\frac{1}{e}$	
$\mathrm{e}^{-7 \lambda \mathrm{t}}=\mathrm{e}^{1}$	

Not possible
given answer by CBSE is correct for $\frac{N_{A}}{N_{B}}$ but in question $\frac{N_{B}}{N_{A}}$ is asked so none option is correct
Q. 141 The given electrical network is equivalent to

(1) NOT gate
(2) AND gate
(3) OR gate
(4) NOR gate

Students may find similar question in CP exercise sheet:
[Chapter: Electronics, Exercise \# 3(A), Page No.190, Q.171]

Ans. [4]

Sol.

Q. 142 The ratio of resolving powers of an optical microscope for two wavelengths $\lambda_{1}=4000 \AA$ and $\lambda_{2}=6000 \AA$ is
(1) $16: 81$
(2) $8: 27$
(3) $9: 4$
(4) $3: 2$

Ans. [4]
Sol. \quad R.P. $\propto \frac{1}{\lambda}$

$$
\begin{aligned}
& \left(\frac{\text { R.P } P_{1}}{\text { R.P }}\right)=\frac{\lambda_{2}}{\lambda_{1}}=\frac{6000}{4000} \\
& =\frac{3}{2}
\end{aligned}
$$

Students may find similar question in CP Class notes of Chapter : Semiconductor

Ans. [4]
Sol. $\quad A_{v}=\beta \frac{R_{O}}{R_{\text {in }}}=\beta \frac{R_{C}}{R_{B}}=100 \times \frac{3 \mathrm{k} \Omega}{2 \mathrm{k} \Omega}=150$
$A_{p}=\beta^{2} \frac{R_{C}}{R_{B}}=100 \times 100 \times \frac{3}{2}=15000$
Q. 144 Two cars moving in opposite directions approach each other with speed of $22 \mathrm{~m} / \mathrm{s}$ and $16.5 \mathrm{~m} / \mathrm{s}$ respectively. The driver of the first car blows a horn having a frequency 400 Hz . The frequency heard by the driver of the second car is [velocity of sound $340 \mathrm{~m} / \mathrm{s}$] :
(1) 448 Hz
(2) 350 Hz
(3) 361 Hz
(4) 411 Hz

Students may find similar question in CP exercise sheet :
[Chapter : Doppler Effect, Exercise \# 3(B), Page No.85, Q.291]
Ans. [1]
Sol. $\quad n^{\prime}=\mathrm{n}\left(\frac{\mathrm{v}+\mathrm{v}_{0}}{\mathrm{v}-\mathrm{v}_{\mathrm{s}}}\right)$
$=400\left[\frac{340+16.5}{340-22}\right] \mathrm{Hz}$
$=400 \times \frac{356.5}{318} \mathrm{~Hz}$
$=448.427 \mathrm{~Hz}$
Q. 145 Two astronauts are floating in gravitational free space after having lost contact with their spaceship. The two will :
(1) will become stationary
(2) keep floating at the same distance between them.
(3) move towards each other
(4) move away from each other.

Students may find similar question in CP Class notes of Chapter : Gravitation
'- 3]
Ans. [3]
Sol. Move towards each other due to mutual gravitational force.
Q. 146 A gas mixture consists of 2 moles of O_{2} and 4 moles of Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is :
(1) 11 RT
(2) 4 RT
(3) 15 RT
(4) 9 RT

Students may find similar question in CP exercise sheet:
 [Chapter : K.T.G., Exercise \# 3(A), Page No.143, Q.251]

Ans. [11

$$
\begin{aligned}
&=2\left(\frac{5}{2} \mathrm{R}\right) \mathrm{T}=5 \mathrm{RT} \\
& \mathrm{U}_{\mathrm{Ar}}=(4)\left(\frac{3}{2} \mathrm{R}\right)(\mathrm{T})=6 \mathrm{RT} \\
& \begin{aligned}
\mathrm{U}_{\text {mix }} & =\mathrm{U}_{\mathrm{O}_{2}}+\mathrm{U}_{\mathrm{Ar}} \\
& =5 \mathrm{RT}+6 \mathrm{RT} \\
& =11 \mathrm{RT}
\end{aligned}
\end{aligned}
$$

Q. 147 Which one of the following represents forward bias diode ?
(1) $\xrightarrow{3 \mathrm{~V}} \mathrm{DS}$ -

(3) $\xrightarrow{-4 \mathrm{~V}} \mathrm{D} \quad \underset{\sim}{\mathrm{R}} \mathrm{RH}^{-3 \mathrm{~V}}$
(4) $\xrightarrow{-2 \mathrm{~V}} \mathrm{D}$ - $\mathrm{RH}^{\mathrm{R}+2 \mathrm{~V}}$

Students may find similar question in CP exercise sheet :
' [Chapter : Semiconductor, Exercise \# 3(A), Page No.194, Q.64]
Ans. [2]
Sol.

Q. 148 A long solenoid of diameter 0.1 m has 2×10^{4} turns per meter. At the centre of the solenoid, a coil of 100 turns and radius 0.01 m is placed with its axis coinciding with the solenoid axis. The current in the solenoid reduces at a constant rate to 0 A from 4 A in 0.05 s . If the resistance of the coil is $10 \pi^{2} \Omega$, the total charge flowing through the coil during this time is :
(1) $16 \pi \mu \mathrm{C}$
(2) $32 \pi \mu \mathrm{C}$
(3) $16 \mu \mathrm{C}$
(4) $32 \mu \mathrm{C}$

[[Chapter: EMI, Exercise \# Example, Page No.159, Q. 18]
Ans. [4]
Sol. $\quad q_{\text {ind }}=-\frac{d \phi}{R}=-\left(\frac{\phi_{2}-\phi_{1}}{R}\right)$
$=-\left[\frac{0-\phi_{1}}{\mathrm{R}}\right]$
$=\frac{\phi_{1}}{R}$
$=32 \times 10^{-6}$ Coulomb
$=32 \mu \mathrm{C}$
Q. 149 A rope is wound around a hollow cylinder of mass 3 kg and radius 40 cm . What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N ?
(1) $5 \mathrm{~m} / \mathrm{s}^{2}$
(2) $25 \mathrm{~m} / \mathrm{s}^{2}$
(3) $0.25 \mathrm{rad} / \mathrm{s}^{2}$
(4) $25 \mathrm{rad} / \mathrm{s}^{2}$

[Chapter : Rotational Motion, Exercise \# Practice Question, Page No.128, Q.3]
Ans. [4]
Sol. $\quad \tau=\mathrm{I} \alpha$
$\mathrm{rF}=\mathrm{I} \alpha \quad \because \mathrm{I}=\mathrm{MR}^{2}$
$.4 \times 30=3(.4)^{2} \alpha$
$\alpha=\frac{30}{1.2}=25 \mathrm{rad} / \mathrm{s}^{2}$
Q. 150 A capacitor is charged by a battery. The battery is removed and another identical uncharged capacitor is connected in parallel. The total electrostatic energy of resulting system :
(1) increases by a factor of 2
(2) increases by a factor of 4
(3) decreases by a factor of 2
(4) remains the same

Ans. [3]
Sol.

$\mathrm{U}_{\text {system }}=\frac{1}{2} \mathrm{CV}^{2}$

C, $\mathrm{V}=0$
Energy loss $=\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{2\left(\mathrm{C} .+\mathrm{C}_{\wedge}\right)}\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)^{2}$
$=\mathrm{U}_{\text {system }}$ becomes halt.
Q. 151 The acceleration due to gravity at a height 1 km above the earth is the same as at a depth d below the surface of earth. Then :
(1) $\mathrm{d}=2 \mathrm{~km}$
(2) $\mathrm{d}=\frac{1}{2} \mathrm{~km}$
(3) $\mathrm{d}=1 \mathrm{~km}$
(4) $\mathrm{d}=\frac{3}{2} \mathrm{~km}$

' [Chapter : Gravitation, Exercise \# 3(B), Page No.219, Q.35]
Ans. [1]
Sol. $\quad g_{h}=g_{d}$
$\mathrm{g}\left(1-\frac{2 \mathrm{~h}}{\mathrm{R}}\right)=\mathrm{g}\left(1-\frac{\mathrm{d}}{\mathrm{R}}\right)$
$\mathrm{d}=2 \mathrm{~h}=2 \times 1=2 \mathrm{~km}$
Q. 152 A particle executes linear simple harmonic motion with an amplitude of 3 cm . When the particle is at 2 cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in seconds is :
(1) $\frac{2 \pi}{\sqrt{3}}$
(2) $\frac{\sqrt{5}}{\pi}$
(3) $\frac{\sqrt{5}}{2 \pi}$
(4) $\frac{4 \pi}{\sqrt{5}}$

Students may find similar question in CP exercise sheet :

: [Chapter : S.H.M., Exercise \# Example, Page No.238, Q.6]
Ans. [4]
Sol. $\quad v=\omega \sqrt{a^{2}-x^{2}}$
$|f|=\omega^{2} x$
$\omega^{2} x=\omega \sqrt{a^{2}-x^{2}}$
$\omega=\frac{\sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}}{\mathrm{x}}$
$=\frac{\sqrt{3^{2}-2^{2}}}{2}=\frac{\sqrt{9-4}}{2}$
$\omega=\frac{\sqrt{5}}{2}$
$\frac{2 \pi}{\mathrm{~T}}=\frac{\sqrt{5}}{2}$
$T=\frac{4 \pi}{\sqrt{5}}$

' Students may find similar question in CP exercise sheet:
 ' [Chapter : Thermodynamics, Exercise \# 3(A), Page No.177, Q.531]

Ans. [3]
Sol. $\eta=\frac{1}{10}=\frac{W}{Q_{1}}$

$$
\begin{aligned}
\mathrm{Q}_{1} & =\frac{\mathrm{W}}{\eta}=\frac{10 \mathrm{~J}}{1 / 10}=100 \mathrm{~J} \\
\mathrm{Q}_{2} & =\mathrm{Q}_{1}-\mathrm{W} \\
& =100-10 \\
& =90 \mathrm{~J}
\end{aligned}
$$

Q. 154 The photoelectric threshold wavelength of silver is $3250 \times 10^{-10} \mathrm{~m}$. The velocity of the electron ejected from a silver surface by ultraviolet light of wavelength $2536 \times 10^{-10} \mathrm{~m}$ is :
(Given $\mathrm{h}=4.14 \times 10^{-15} \mathrm{eVs}$ and $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$)
(1) $\approx 0.3 \times 10^{6} \mathrm{~ms}^{-1}$
(2) $\approx 6 \times 10^{5} \mathrm{~ms}^{-1}$
(3) $\approx 0.6 \times 10^{6} \mathrm{~ms}^{-1}$
(4) $\approx 61 \times 10^{3} \mathrm{~ms}^{-1}$

Students may find similar question in CP exercise sheet:
[Chapter : Photoelectric Effect, Exercise \# 1]
Ans. $[2,3]$
Sol. $\quad \frac{1}{2} \mathrm{mv}^{2}=\mathrm{hc}\left(\frac{1}{\lambda}-\frac{1}{\lambda_{c}}\right)$
$\frac{1}{2} \times 9.1 \times 10^{-31} \quad \mathrm{v}^{2}=6.62 \times 10^{-31} \times 3 \times 10^{8}\left(\frac{3250-2536}{3250 \times 2536}\right)$
In approximation
$\approx 6 \times 10^{5} \mathrm{~m} / \mathrm{s}$
$\approx 0.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$
Both are correct, but no option is exactly correct in options approximate
Q. 155 Suppose the charge of a proton and an electron differ slightly. One of them is $-e$, the other is ($e+\Delta e$). If the net of electrostatic force and gravitational force between two hydrogen atoms placed at a distance d (much greater than atomic size) apart is zero, then $\Delta \mathrm{e}$ is of the order of [Given mass of hydrogen $\mathrm{m}_{\mathrm{h}}=1.67 \times 10^{-27} \mathrm{~kg}$]
(1) $10^{-47} \mathrm{C}$
(2) $10^{-20} \mathrm{C}$
(3) $10^{-23} \mathrm{C}$
(4) $10^{-37} \mathrm{C}$

Students may find similar question in $\bar{C} \bar{P}$ exercise sheet :
[Chapter : Electrostatics, Exercise \# 1, Page No.50, Q.61]
Ans.
[4]
$(\Delta \mathrm{e})^{-}=\square$
$(\Delta \mathrm{e})^{2}=2.045 \times 10^{-74}$
$\Delta \mathrm{e} \approx 1.4 \times 10^{-37}$
$\Delta \mathrm{e}=10^{-37}$
Q. 156 An arrangement of three parallel straight wires placed perpendicular to plane of paper carrying same current 'I' along the same direction is shown in Fig. Magnitude of force per unit length on the middle wire ' B ' is given by :

(1) $\frac{\mu_{0} i^{2}}{\sqrt{2} \pi d}$
(2) $\frac{\mu_{0} i^{2}}{2 \pi d}$
(3) $\frac{2 \mu_{0} \mathrm{i}^{2}}{\pi \mathrm{~d}}$
(4) $\frac{\sqrt{2} \mu_{0} \mathrm{i}^{2}}{\pi \mathrm{~d}}$

Students may find similar question in CP Class notes of Chapter: Magnetic Field

Ans. [1]
Sol.

$$
\begin{aligned}
& \uparrow \\
& \mathrm{F}_{\mathrm{BC}} \\
& \mathrm{~F}_{\mathrm{BA}}
\end{aligned}
$$

\bigcirc

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{BA}}=\frac{\mu_{0}(\mathrm{I})(\mathrm{I})}{2 \pi \mathrm{~d}}=\frac{\mu_{0} \mathrm{I}^{2}}{2 \pi \mathrm{~d}}=\mathrm{F}_{\mathrm{BC}} \\
& \therefore \mathrm{~F}_{\mathrm{net}}=\sqrt{2}\left(\frac{\mu_{0} \mathrm{I}^{2}}{2 \pi \mathrm{~d}}\right)=\frac{\mu_{0} \mathrm{I}^{2}}{\sqrt{2} \pi \mathrm{~d}}
\end{aligned}
$$

Q. 157 The resistance of a wire is ' R ' ohm. If it is melted and stretched to ' n ' times its original length, its new resistance will be
(1) $\frac{R}{n^{2}}$
(2) $n R$
(3) $\frac{R}{n}$
(4) $n^{2} R$

[Chapter : Current Electricity, Exercise \# 1, Page No.194, Q.36]
Ans.
[4]
Q. 158 A beam of light from a source L is incident normally in a plane mirror fixed at a certain distance x from the source. The beam is reflected back as a spot on a scale placed just above the source L. When the mirror is rotated through a small angle θ, the spot of the light is found to move through a distance y on the scale. The angle θ is given by-
(1) $\frac{x}{y}$
(2) $\frac{y}{2 x}$
(3) $\frac{y}{x}$
(4) $\frac{x}{2 y}$

Ans. [2]
Sol.

Q. 159 One end of string of length l is connected to a particle of mass ' m ' and the other end is connected to a small peg on a smooth horizontal table. If the particle moves in circle with speed ' v ' the net force on the particle (directed towards center) will be (T represents the tension in the string)
(1) Zero
(2) T
(3) $T+\frac{m v^{2}}{l}$
(4) $\mathrm{T}-\frac{\mathrm{mv}^{2}}{l}$

Students may find similar question in CPClass notes of Chapter: Circular Motion
[2]
Ans. [2]
Sol.

$$
\mathrm{F}_{\mathrm{net}}=\mathrm{T}=\frac{\mathrm{mv}^{2}}{l}
$$

Q. 160 A physical quantity of the dimensions of length that can be formed out of c, G and $\frac{e^{2}}{4 \pi \epsilon_{0}}$ is [c is velocity of light, G is universal constant of gravitation and e is charge] ;
[Chapter : Unit \& Dimension, Exercise \# 1(B), Page No.19, Q.221]
Ans. [2]
Sol. $\quad M^{0} L^{1} T^{0} Q^{0}=c^{x} G^{y}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{z}$

$$
\begin{equation*}
=\left[M^{0} L^{-1}\right]^{x}\left[\frac{M^{1} L^{1} T^{-2} \times L^{2}}{M^{2}}\right]^{y}\left[M^{1} L^{1} T^{-2} \times L^{2}\right]^{z} \tag{i}
\end{equation*}
$$

$-y+z=0$
$x+3 y+3 z=1$
$-x-2 y-2 z=0$
$x=-2$
$\mathrm{y}=\mathrm{z}=\frac{1}{2}$
Q. 161 A thin prism having refracting angle 10° is made of glass of refractive index 1.42 . This prism is combined with another thin prism of glass of refractive index 1.7. This combination produces dispersion without deviation. The refracting angle of second prism should be :
(1) 10°
(2) 4°
(3) 6°
(4) 8°

Students may find similar question in CP Class notes of Chapter : Ray Optics
Ans. [3]
Sol. For dispersion without deviation

$$
\begin{aligned}
& \frac{\mathrm{A}^{\prime}}{\mathrm{A}}=-\frac{\mu-1}{\mu^{\prime}-1} \\
& \frac{\mathrm{~A}^{\prime}}{10^{\circ}}=-\frac{1.42-1}{1.7-1} \\
& \frac{\mathrm{~A}^{\prime}}{10^{\circ}}=-\frac{0.42}{7} \\
& \mathrm{~A}^{\prime}=-6^{\circ}
\end{aligned}
$$

Q. 162 The ratio of wavelengths of the last line of Balmer series and the last line of Lyman series is :
(1) 0.5
(2) 2
(3) 1
(4) 4

Ans. [4]

$$
\Rightarrow \lambda_{1}=\frac{1}{\mathrm{R}}
$$

Balmer $\frac{1}{\lambda_{2}}=\mathrm{R}\left(\frac{1}{2^{2}}-\frac{1}{\infty}\right)$

$$
\begin{aligned}
\frac{1}{\lambda_{2}} & =\frac{\mathrm{R}}{4} \\
\Rightarrow \lambda_{2} & =\frac{4}{\mathrm{R}} \\
\frac{\lambda_{2}}{\lambda_{1}} & =4
\end{aligned}
$$

Q. 163 The two nearest harmonics of a tube closed at one end and open at other end are 220 Hz and 260 Hz . What is the fundamental frequency of the system?
(1) 40 Hz
(2) 10 Hz
(3) 20 Hz
(4) 30 Hz

$$
\begin{aligned}
& \text { Students may find similar question in CP exercise sheet : } \\
& \text { [Chapter : Wave theory, Exercise \# 2, Page No.58, Q.791] }
\end{aligned}
$$

Ans. [3]
Sol. $n\left(\frac{\mathrm{v}}{4 \mathrm{~L}}\right)=220$

$$
\begin{equation*}
(\mathrm{n}+2)\left(\frac{\mathrm{v}}{4 \mathrm{~L}}\right)=260 \tag{ii}
\end{equation*}
$$

$$
\text { equation (i)/(ii) } \frac{n\left(\frac{\mathrm{v}}{4 \mathrm{~L}}\right)}{(\mathrm{n}+2)\left(\frac{\mathrm{v}}{4 \mathrm{~L}}\right)}=\frac{22}{26}, \quad \begin{aligned}
& \mathrm{n} \\
& \\
& \\
& \\
& 13 \mathrm{n}+2 \\
& \\
& \\
& 2 \mathrm{n}=11 \mathrm{n}+22 \\
& \\
& (\mathrm{n}=11)
\end{aligned}
$$

from equation (i) $11 .\left(\frac{\mathrm{v}}{4 \mathrm{~L}}\right)=220$

$$
\frac{\mathrm{v}}{1 \mathrm{~T}}=20 \mathrm{~Hz}
$$

(3) potential gradients
(4) a condition of no current flow through the galvanometer

```
Students may find similar question in CP exercise sheet:
[Chapter : Electrical Instrument, Exercise \# 3(B), Page No.223, Q.99]
```

Ans. [4]
Sol. Potentiometer does not draw any current from circuit under measurement so measurement is accurate.
Q. 165 Two blocks A and B of masses 3 m and m respectively are connected by a massless and inextensible string. The whole system is suspended by a massless spring as shown in figure. The magnitudes of acceleration of A and B immediately after the string is cut, are respectively :

(1) $\frac{\mathrm{g}}{3}, \frac{\mathrm{~g}}{3}$
(2) $\mathrm{g}, \frac{\mathrm{g}}{3}$
(3) $\frac{\mathrm{g}}{3}, \mathrm{~g}$
(4) g, g

Ans. [3]
Sol. When string AB is cut

For B block

$$
\mathrm{mg}=\mathrm{ma}
$$

$$
a=g
$$

For A block

$$
\begin{aligned}
& \mathrm{kx}-3 \mathrm{mg}=3 \mathrm{ma} \\
& 4 \mathrm{mg}-3 \mathrm{mg}=3 \mathrm{ma} \\
& \mathrm{a}=\frac{\mathrm{g}}{3}
\end{aligned}
$$

(3) $\tan ^{-} \theta=\tan ^{\wedge} \theta_{1}+\tan ^{-} \theta_{2}$
(4) $\cot ^{2} \theta=\cot ^{2} \theta_{1}-\cot ^{2} \theta_{2}$

Students may find similar question in CP Class notes of Chapter : Magnetic Field
Ans. [2]
Sol.

Relation between real and apparent dip

$$
\tan \theta^{\prime}=\frac{\tan \theta}{\cos \alpha}
$$

For MM and plane (1)

$$
\begin{align*}
\tan \theta_{1} & =\frac{\tan \theta}{\cos \alpha} \\
\Rightarrow \quad \cos \alpha & =\frac{\tan \theta}{\tan \theta_{1}} \tag{1}
\end{align*}
$$

For MM and plane (2)

$$
\begin{align*}
& \tan \theta_{2}=\frac{\tan \theta}{\cos \left(90^{\circ}-\alpha\right)} \\
\therefore \quad & \sin \alpha=\frac{\tan \theta}{\tan \theta_{2}} \tag{2}
\end{align*}
$$

$(1)^{2}+(2)^{2}$

$$
1=\frac{\tan ^{2} \theta}{\tan ^{2} \theta_{1}}+\frac{\tan ^{2} \theta}{\tan ^{2} \theta_{2}}
$$

$$
\cdots n t^{2} a-m n^{2} a \quad, \quad n t^{2} a
$$

' [Chapter: Properties of Matter, Exercise \# 1(B), Page No.186, Q.22]
Ans. [1]
Sol.

$$
\begin{aligned}
& B=\frac{p}{\frac{A V}{V}} \\
& \frac{\Delta V}{V}=\frac{p}{B} \\
& \left(\frac{\Delta r}{r}\right)^{3}=\frac{p}{B} \\
& \frac{\Delta r}{r}=\left(\frac{p}{B}\right)^{1 / 3}
\end{aligned}
$$

For small change

$$
\frac{\Delta \mathrm{r}}{\mathrm{r}}=\frac{\mathrm{p}}{3 \mathrm{~B}}
$$

Q. 168 Figure shows a circuit that contains three identical resistors with resistance $R=9.0 \Omega$ each, two identical inductors with inductance $\mathrm{L}=2.0 \mathrm{mH}$ each, and an ideal battery with $\mathrm{emf} \varepsilon=18 \mathrm{~V}$. The current 'I' through the battery just after the switch closed is,

(1) 0 ampere
(2) 2 mA
(3) 0.2 A
(4) 2 A

Ans. Answer not available
Sol. Just after switch closed inductor \rightarrow open circuit
capacitor \rightarrow short circuit

$$
\mathrm{I}=\frac{18}{9 / 2}=4 \mathrm{~A}
$$

(1) $2\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)$
(2) $\frac{K_{1}+K_{2}}{2}$
(3) $\frac{3\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)}{2}$
(4) $K_{1}+K_{2}$

Students may find similar question in CP exercise sheet :

[Chapter: Heat transfer, Exercise \# 3(A), Page No.218, Q.6]
[2]
Ans. [2]
Sol. It is a parallel combination then equivalent conductivity
of combination is

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\mathrm{K}_{1}+\mathrm{K}_{2}}{2} \quad\binom{\mathrm{~L}_{1}=\mathrm{L}_{2}}{\mathrm{~A}_{1}=\mathrm{A}_{2}}
$$

Q. 170 Preeti reached the metro station and found that the escalator was not working. She walked up the stationary escalator in time t_{1}. On other days, if she remains stationary on the moving escalator, then the escalator takes her up in time t_{2}. The time taken by her to walk up on the moving escalator will be :
(1) $t_{1}-t_{2}$
(2) $\frac{t_{1}+t_{2}}{2}$
(3) $\frac{t_{1} t_{2}}{t_{2}-t_{1}}$
(4) $\frac{t_{1} t_{2}}{t_{2}+t_{1}}$

Students may find similar question in CP exercise sheet:

[Chapter : One Dimension Motion, Exercise \# 2, Page No.109, Q.8]
Ans. [4]
Sol. $\quad \mathrm{v}_{\mathrm{t}}=\mathrm{v}_{\mathrm{es}}+\mathrm{v}_{\text {preeti }}$
$\frac{\mathrm{d}}{\mathrm{t}}=\frac{\mathrm{d}}{\mathrm{t}_{2}}+\frac{\mathrm{d}}{\mathrm{t}_{1}}$
$\frac{1}{\mathrm{t}}=\frac{\mathrm{t}_{1}+\mathrm{t}_{2}}{\mathrm{t}_{1} \mathrm{t}_{2}}$
$\mathrm{t}=\frac{\mathrm{t}_{1} \mathrm{t}_{2}}{\mathrm{t}_{1}+\mathrm{t}_{2}}$
Q. 171 Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc with angular velocities ω_{1} and ω_{2}. They are brought into contact face to face coinciding the axis of rotation. The expression for loss of energy during this process is :
(1) $\frac{I}{8}\left(\omega_{1}-\omega_{2}\right)^{2}$
(2) $\frac{1}{2} \mathrm{I}\left(\omega_{1}+\omega_{2}\right)^{2}$
(3) $\frac{1}{4} \mathrm{I}\left(\omega_{1}-\omega_{2}\right)^{2}$
(4) I $\left(\omega_{1}-\omega_{2}\right)^{2}$

Students may find similar question in CP exercise sheet :
 [Chapter : Rotational Motion, Exercise \# 3(A), Page No.162, Q.28]

[3]
so loss of energy

$$
\begin{aligned}
\Delta \mathrm{KE}_{\text {loss }} & =\frac{1}{2} \mathrm{I} \omega_{1}^{2}+\frac{\mathrm{I}}{2} \mathrm{I} \omega_{2}^{2}-\frac{1}{2} \mathrm{I}\left(\frac{\omega_{1}+\omega_{2}}{2}\right)^{2} \\
& =\frac{1}{2} \mathrm{I}\left(\omega_{1}^{2}+\omega_{2}^{2}-\frac{\omega_{1}^{2}-\omega_{2}^{2}-2 \omega_{1} \omega_{2}}{2}\right) \\
& =\frac{1}{4} \mathrm{I}\left(\omega_{1}^{2}+\omega_{2}^{2}-2 \omega_{1} \omega_{2}\right) \\
& =\frac{1}{4} \mathrm{I}\left(\omega_{1}-\omega_{2}\right)^{2}
\end{aligned}
$$

Q. 172 Which of the following statements are correct?
(a) Centre of mass of a body always coincides with the centre of gravity of the body.
(b) Centre of mass of a body is the point at which the total gravitational torque on the body is zero.
(c) A couple on a body produce both translational and rotational motion in a body
(d) Mechanical advantage greater than one means that small effort can be used to lift a large load.
(1) (c) and (d)
(2) (b) and (d)
(3) (a) and (b)
(4) (b) and (c)

Ans. [2]
Sol. (b) centre of mass of a body is the point at which the total gravitational torque on the body is zero.
(d) Mechanical advantage $=\frac{\text { load }}{\text { effort }}$
M.A. will be more from one when load is more than effort
Q. 173 A spherical black body with a radius of 12 cm radiates 450 watt power at 500 K . If the radius were halved and the temperature doubled, the power radiated in watt would be :
(1) 1800
(2) 225
(3) 450
(4) 1000

Students may find similar question in $\mathbf{C P}$ exercise sheet :
[Chapter : Heat transfer, Exercise \# 1, Page No.213, Q.65]
Ans. [1]
Sol. $\quad P=e A \sigma T^{4}$
$P=e\left(4 \pi R^{2}\right)\left(\sigma T^{4}\right)$
$\mathrm{P} \propto \mathrm{R}^{2} \mathrm{~T}^{4}$
$\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)^{2}\left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)^{4}$

$$
\begin{aligned}
\mathrm{P}_{2} & =4 \mathrm{P}_{1} \\
& =4(450) \\
& =1800 \text { watt }
\end{aligned}
$$

Q. 174 In an electromagnetic wave in free space the root mean square value of the electric field is $E_{r m s}=6 \mathrm{~V} / \mathrm{m}$. The peak value of the magnetic field is :
(1) $4.23 \times 10^{-8} \mathrm{~T}$
(2) $1.41 \times 10^{-8} \mathrm{~T}$
(3) $2.83 \times 10^{-8} \mathrm{~T}$
(4) $0.70 \times 10^{-8} \mathrm{~T}$

 Students may find similar question in CP Class notes of Chapter . E.M.W.

Ans. [3]
Sol. Speed of light (c) $=\frac{E_{\text {peak }}}{B_{\text {peak }}}$

$$
3 \times 10^{8}=\frac{\sqrt{2} \times 6}{B_{\text {peak }}}
$$

$$
\begin{aligned}
\mathrm{B}_{\text {peak }} & =2 \sqrt{2} \times 10^{-8} \mathrm{~T} \\
& =2.83 \times 10^{-8} \mathrm{~T}
\end{aligned}
$$

Q. 175 A U tube with both ends open to the atmosphere, is partially filled with water. Oil, which is immiscible with water, is poured into one side until it stands at a distance of 10 mm above the water level on the other side. Meanwhile the water rises by 65 mm from its original level (see diagram). The density of the oil is :

(1) $928 \mathrm{~kg} \mathrm{~m}^{-3}$
(2) $650 \mathrm{~kg} \mathrm{~m}^{-3}$
(3) $425 \mathrm{~kg} \mathrm{~m}^{-3}$
(4) $800 \mathrm{~kg} \mathrm{~m}^{-3}$

Students may find similar question in CP exercise sheet:
[Chapter : Fluid Mechanics, Exercise \# 1(B), Page No.227, Q.21]
[1]
Ans. [1]
Sol. $\quad P_{B}=P_{C}$

$$
\mathrm{Pa}+\rho_{\text {oil }} \mathrm{g}(140 \mathrm{~mm})=\mathrm{Pa}+\rho_{\text {water }} \mathrm{g}(130 \mathrm{~mm})
$$

$$
\rho_{\text {oil }}=\rho_{\text {water }} \times \frac{130}{140}
$$

Q. 176 Young's double slit experiment is first performed in air and then in a medium other than air. It is found that $8^{\text {th }}$ bright fringe in the medium lies where $5^{\text {th }}$ dark fringe lies in air. The refractive index of the medium is nearly :
(1) 1.78
(2) 1.25
(3) 1.59
(4) 1.69

Students may find similar question in CP exercise sheet :
[Chapter : Interference of light, Exercise \# 2, Page No.92, Q.24]
Ans. [1]
Sol. According to question

$$
\begin{aligned}
& \frac{8 \lambda D}{\mu \mathrm{~d}}=\frac{9 \lambda \mathrm{D}}{2 \mathrm{~d}} \\
& \mu=\frac{16}{9}=1.78
\end{aligned}
$$

Q. 177 The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature T (Kelvin) and mass m, is :
(1) $\frac{2 \mathrm{~h}}{\sqrt{\mathrm{mkT}}}$
(2) $\frac{\mathrm{h}}{\sqrt{\mathrm{mkT}}}$
(3) $\frac{\mathrm{h}}{\sqrt{3 \mathrm{mkT}}}$
(4) $\frac{2 \mathrm{~h}}{\sqrt{3 \mathrm{mkT}}}$

Students may find similar question in CPClass notes of Chapter:Matter Waves
Ans. [3]
Sol. $\quad \lambda=\frac{h}{\sqrt{2 \mathrm{mKE}}}\left(\mathrm{K} . \mathrm{E}=\frac{3}{2} \mathrm{kT}\right)$
$\lambda_{\text {Neutron }}=\frac{h}{\sqrt{2 \mathrm{~m}\left(\frac{3}{2} \mathrm{kT}\right)}}$
$\lambda_{\mathrm{N}}=\frac{\mathrm{h}}{\sqrt{3 \mathrm{mkT}}}$
Q. 178 The x and y coordinates of the particle at any time are $\mathrm{x}=5 \mathrm{t}-2 \mathrm{t}^{2}$ and $\mathrm{y}=10 \mathrm{t}$ respectively, where x and y are in meters and t in seconds. The acceleration of the particle at $t=2 \mathrm{~s}$ is :
(1) $-8 \mathrm{~m} / \mathrm{s}^{2}$
(2) 0
(3) $5 \mathrm{~m} / \mathrm{s}^{2}$
(4) $-4 \mathrm{~m} / \mathrm{s}^{2}$

[^4]Ans. [4]

$$
\begin{array}{ll}
\mathbf{u}_{\mathrm{x}}-\frac{\mathrm{d}^{2}}{\mathrm{dt}}--\boldsymbol{\tau} & \mathrm{a}_{\mathrm{y}}-\frac{-\overline{d t}}{\mathrm{dt}}-v \\
\mathrm{a}=\mathrm{a}_{\mathrm{x}}=-4 \mathrm{~m} / \mathrm{s}^{2} &
\end{array}
$$

Q. 179 The diagrams below show regions of equipotentials.

(a)

(b)

(c)

(d)

A positive charge is moved from A to B in each diagram.
(1) Maximum work is required to move q in figure (b).
(2) Maximum work is required to move q in figure (c).
(3) In all the four cases the work done is the same .
(4) Minimum work is required to move q in figure (a).

Students may find similar question in CP exercise sheet:
[Chapter : Electrostatics, Exercise \# 1, Page No.43, Q. 101 \& 102]
Ans. [3]
Sol. $\quad \mathrm{W}=\mathrm{q}\left[\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right]$
Does not depend on path. Depends on initial and final points only
\therefore same work in all diagram
Q. 180 A spring of force constant k is cut into lengths of ratio $1: 2: 3$. They are connected in series and the new force constant is k^{\prime}. Then they are connected in parallel and force constant is $\mathrm{k}^{\prime \prime}$. Then $\mathrm{k}^{\prime}: \mathrm{k}^{\prime \prime}$ is :
(1) $1: 14$
(2) $1: 6$
(3) $1: 9$
(4) $1: 11$

Students may find similar question in CP exercise sheet:
' [Chapter: S.H.M., Exercise \# 3(B), Page No.252, Q.3]
Ans. [4]
Sol. For first past
$\frac{\mathrm{k}_{1}}{\mathrm{k}}=\frac{6 \ell}{\ell}$
$\mathrm{k}_{1}=6 \mathrm{k}$
$\begin{array}{rl}k & 3 \ell \\ k_{3}=2 k\end{array}$

$$
\mathrm{k}_{3}=2 \mathrm{k}
$$

When they are connected in series $\frac{1}{\mathrm{k}^{\prime}}=\frac{1}{2 \mathrm{k}}+\frac{1}{3 \mathrm{k}}+\frac{1}{6 \mathrm{k}}$

$$
\begin{equation*}
\mathrm{k}^{\prime}=\mathrm{k} \tag{i}
\end{equation*}
$$

When they are connected in parallel $\mathrm{k}^{\prime \prime}=2 \mathrm{k}+3 \mathrm{k}+6 \mathrm{k}=11 \mathrm{k}$
From (i)/(ii) $\quad \frac{\mathrm{k}^{\prime}}{\mathrm{k}^{\prime \prime}}=\frac{\mathrm{k}}{11 \mathrm{k}}=\frac{1}{11}$

[^0]: Students may find similar question in CP exercise sheet :
 ' [Chapter : Halogen Compounds, Exercise \# 2, Page No.18, Q.9]

[^1]: Students may find similar question in CP exercise sheet:
 ' [Chapter : Chemical Bonding, Exercise \# 3(A), Page No.226, Q.34]

[^2]: Students may find similar question in CP exercise sheet : Plant physiology
 [Chapter : Mineral Nutritaion \& N_{2} metabolism, Theory Page No.219]

[^3]: Students may find similar question in CP exercise sheet :
 ' [Chapter : Work, Power \& Energy, Exercise \# 3(B), Page No.105, Q.4]

[^4]: Students may find similar question in CP exercise sheet :
 [Chapter : One Dimension Motion, Exercise \# 3(A), Page No.113, Q.5]

