ERERGY EEMSITY

- The energy stored per unit volume ias the eleckic Seld between the plates is called energy density (u). It is given by

$$
y=\frac{1}{2} \varepsilon_{0} e^{z}
$$

HARETUG GF CHARGES

- When two capacitors charged to different potentials are conneated by a conducting wire, charge flows from the one at higher potental to the other at lower potential till their potentials become equal. The equal potentiat is called common potential. it is given by

$$
V=\frac{\text { Total charge }}{\text { Total capacity }}=\frac{Q_{1}+C_{2}}{C_{1}+C_{2}}=\frac{C_{1} V_{1}+C_{2} F_{2}}{C_{1}+C_{2}}
$$

* In shating charges, there is absolutely no loss ci charge. Some energy is, however, lost in the process in the form of heat etc which is given by

$$
\bar{U}_{1}-U_{2}=\frac{C_{1} C_{2}\left(V_{1}-V_{2}\right)^{2}}{2\left(C_{1}+C_{2}\right)}
$$

The plates of a parallel plate capacitor have an area of 90 cm^{2} each and are separated by 2.5 mom. The capacitor is charged by connecting it to a 400 V supply
(a) Kow much electrostatic energy is stored by the capacitor?
(b) View this energy as stored in the electrostatic field between the plates, and obiain the energy per unit v vilume u. Hence arrive at a relation between a and the magnitude of electric field E between the plates.
Soln.: $A^{4}=90 \mathrm{~cm}^{2}=90 \times 10^{4} \mathrm{~mm}^{2}, c^{3}=2.5 \mathrm{~mm}=2.5 \times 10^{-3} \mathrm{~m}$
$C=\frac{\varepsilon_{y} A}{d}=\frac{8.35 \times 10^{-12} \times 9 \times 10^{-3}}{2.5 \times 10^{-3}}$
or $C=32 \mathrm{pR}$
(в) $U=\frac{1}{2} C V^{2}=\frac{1}{2} \times 32 \times 10^{-12} \times 409^{2}$
or $\quad u^{T}=2.56 \mu^{T}$
(b) $U=\frac{1}{2} C T^{2}=\frac{1}{2} \times \frac{\varepsilon_{0} A}{d} \times(E \cdot d)^{2}=\frac{\frac{1}{2}}{2} \varepsilon_{0} A E^{2} d$
or $\quad \frac{U}{A d}=\frac{1}{2} \varepsilon_{0} E^{2}$
or Energy per unit volume $u=\frac{1}{2} z_{0} E^{2}$

EFFET OF DIEEETMIG

* When a dielectric siab of dielectric constant x is introcuced between the plates of a charged paraile plate capacior and the charging battery remame comected, then
D Potential differeace beween the plates remains constant ie. $V=V$
O Capacitance Cincreases i.e., $C=E C_{0}$
- Charge on a capacitor increases i.e., $Q=K Q_{8}$
- Electric fied between the plates remains uachanged i.e., $E=E_{0}$
- Energy stored in a capacitor increases E. . $U=K U_{0}$
* When a dielecrric slab of dielectric constant K is introduced between the plates of a charged parallel plate capacitor and the charging battery is disconnected, then
- Charge remains unchanged i.e., $Q=Q_{3}$

O Capacitance increases i.e., $C=K C_{0}$

- Potential diff̈erence between the plates decreases $i . e, V=\frac{V_{0}}{K}$
© Electric field between the plates decreases i.e. $E=\frac{E_{0}}{K}$
0 Energy stored in the capaciter decreases i.e., $U=\frac{U_{0}}{K}$
where $Q_{0}, C_{0}, F_{0}, F_{0}$ and U_{1} zepresents the charge, capacitance, potential difference, electric field and energy store in the capacitor of a charged air filled parallel plate capacitor.

VARE GE GRAAFF GENERATOR

* A Van de Grazaf generator consists of a large spherical conducting shell (a few metes in diameter). By means of a moving belt and suitable brushes, charge is continuously transferred to the sheil, and potential difference of the order of several million volts is buitit up, which can be used for accelerating charged particles.

