CONCEPT MAP

Electrostatics

Capacitance (conducting slab)
$C^{\prime \prime}=\frac{\varepsilon_{01} A}{d-t\left(1-\frac{1}{K}\right)}$ (dielectric slab)
Energy stored in a capacitor

$$
U=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} Q V
$$

Capacitors in parallel

Capacitors in series

$$
\frac{1}{C_{S}}=\sum_{i=1}^{i=n} \frac{1}{C_{f}}
$$

Electric Field : Electric field intensity at a point distant r from
a point charge q in air is

$$
\vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \hat{r}
$$

Electric Dipole : Every dipole is associated with a dipole moment \vec{p} whose magnitude is equal to the product of the magnitude of either charge (1) and the distance $2 \vec{a}$ between the charges, ie.,

$$
\ddot{p}=q \times(2 \vec{a})
$$

Electric Potential : The total amount of work done in bringing the various charges to their respective positions from infinitely large mutual separations.

Electric Flux : Electric flux over an area in an electric field represents the total number of electric field lines crossing this area.

Gauss's Theorem : Total normal electric flux over a closed surface S in vacuum is $1 / \varepsilon_{0}$ time the charge (Q) contained inside the surface

$$
\phi_{E}=\oint_{S} \vec{E} \cdot d \vec{s}=\frac{Q}{\varepsilon_{0}}
$$

Equipotential Surface : An equipotential surface is that at every point of which electric potential is the same. Equipotential surfaces are always perpendicular to the field lines

