- According to sign convention while traversing a closed loop (in clockwise or anti-clock wise direction), if negative pole of the cell is encountered first then its emf is positive, otherwise negative. The product of resistance and current in an arm of the circuit is taken positive if the direction of current in that arm is in the same sense as one moves in a closed loop and is taken negative if the direction of current in that arm is opposite to the sense as one moves in the closed loop.

Applications of Kirchhoff's Lavvs

- If 12 wires each of resistance R ohm, are connected to form a skeleton cube, then the total resistance between two diagonally opposite corners of the cube $=5 R / 6 \mathrm{ohm}$,
- If 12 wires; each of resistance R ohm are connected to form a skeleton cube, then the total resistance between the comers of the same edge of cube $=7 R / 12 \mathrm{ohm}$.
- If 11 wires each of resistance R ohm, are connected to form a skeleton cube, then the total resistance from one end of vacant edge to the other end is $=7 R / 5 \mathrm{ohm}$.

Dilustration 8

Calculate the current in the arm $A D$ as shown in figure. Each resistance is of 10Ω.

Soln.: The current distribution is shown in the figure. By using Kirchhoff's laws, for mesh $A B C D A$,

$$
10\left(I-I_{1}\right)+10 I_{2}-20 I_{1}=0
$$

or $-3 I_{1}+I_{2}=-I$

For mesh BEFCB,

$$
\begin{align*}
& 20\left(I-I_{1}-I_{2}\right)-10 I_{2}-10\left(I_{1}+I_{2}\right)=0 \\
& \text { or } 2\left(I-I_{1}-I_{2}\right)-I_{2}-I_{1}-I_{2}=0 \\
& \text { or }-3 I_{1}-4 I_{2}=-2 I \tag{ii}
\end{align*}
$$

Solving equation (i) and (ii), we get
$\therefore \quad I_{1}=\frac{21}{5}, I_{2}=\frac{I}{5}$
Current in arm $A D=I_{1}$

$$
I_{A D}=\frac{2 I}{5} .
$$

WHEATSTONE BRIDGE

It is an arrangement of four resistors P, Q, R and S, such that if we know the value of the resistances of any three of them, we can obtain the value of fourth unknown resistance.

In loop-1, abda

$$
\begin{equation*}
I_{1} P+I_{g} R_{g}-I_{2} R=0 \tag{i}
\end{equation*}
$$

In loop-2, $b c d b$

$$
\begin{equation*}
\left(I_{1}-I_{g}\right) Q-\left(I_{2}+I_{g}\right) S-I_{g} R_{g}=0 \tag{ii}
\end{equation*}
$$

Wheatstone bridge is said to be in balanced condition if electric current I_{g} flowing through the galvanometer becomes zero. So in balanced Wheat stone bridge, $I_{g}=0$ and equations (i) and (ii) become

$$
\begin{align*}
& I_{1} P-I_{2} R=0 \text { or } I_{1} P=I_{2} R \tag{iii}\\
& I_{1} Q-I_{2} S=0 \text { or } I_{1} Q=I_{2} S \tag{iv}
\end{align*}
$$

Dividing equation (iii) and (iv), we get

$$
\frac{P}{Q}=\frac{R}{S}
$$

This gives us equation of balanced Wheatstone bridge.

METER BRIDGE

Meter Bridge is a device which works on the principle of wheat stone bridge and is used for measuring an unknown resistance.

A comparison between the connection of wheatstone bridge and meter bridge can be done in the above figures. In the figure we have assumed a 100 cm long wire wherel cm length between $A B$ serves as resistance $P=\rho \frac{l}{A}$ and $(100-l)$ cm length between $B C$ serves as resistance $Q=\rho\left(\frac{100-l}{A}\right)$. Similarly im meter Bridge where null deflection is observed at point B, the length $l \mathrm{~cm}$ of $A B$ serve as resistance P and length $B C(100-l) \mathrm{cm}$ serve as resistance Q. It is also assumed that in the copper strip the potential is same everywhere.

Reasuring an Unknown Resistance

Unknewn resistance wire is attached between stip points D and C and some resistance is taken out from the resistance box. Terminal of galvanometer attached with jockey is touched at different points on wire $A C$ for a null point, the position of null point on wire is treated as point B.
At balance condition,

$$
\frac{P}{Q}=\frac{R}{S} \Rightarrow \frac{\rho \frac{l}{A}}{\rho \frac{100-l}{4}}=\frac{R}{S}
$$

So, unknown resistance,
$S=\frac{R(10-i)}{l}$

1mistraximend

In the given circuit, it is observed that the current I is independent of the value of the resistance R_{6}. Then the resistance values must satisfy

(a) $R_{1} R_{2} R_{5}=R_{3} R_{4} R_{6}$
(b) $\frac{1}{R_{5}}+\frac{1}{R_{6}}=\frac{1}{R_{1}+R_{2}}+\frac{1}{R_{3}+R_{4}}$
(c) $R_{1} R_{4}=R_{2} R_{3}$
(d) $R_{1} R_{3}=R_{2} R_{4}$

Sois.: (c) In Wheatstone's bridge, while it is balanced, no current flows through the galvanometer anc. Current is independent of galvenometer resistance. Along those lines, it can inferred that I can be independent of R_{6} only when R_{1}, R_{2}, R_{3} and R_{4} beiong to resistance anns and R_{6} belongs to galvanometer arm.
In balanced bridge,

$$
\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}} \text { or } \quad R_{1} R_{4}=R_{2} R_{3} .
$$

Potentiometer

* Trinciple of petentiometer: It is based on the fact that the fall of potential across any portion of the wire is directiy proportional to the length of that portion provided the wire is of uniform area of cross-section and a constant current is flowing through it.
ie., $Y \propto i$ (IfI and i are constant)
or $\bar{\beta}=K l$
where K is known as potential gradient i.e., fall of potential per unit length of the given wire.
- Comparison of emf of two cells by using potentioneter

G is galvanometer and R_{l} is rheostat. $1,2,3$ are teminails of a two way key

$$
\frac{\varepsilon_{1}}{s_{2}}=\frac{i_{1}}{l_{2}}
$$

where l_{1}, and l_{2} are the balancing lengths of petentiometer wire for the emfs ε_{1} and ε_{2} of two cells respectively.

* Determination of internal resistance of a cell by potentiometer:

where $l_{1}=$ baiancing length of potentiometer wire corresponding to emf of the ceil, $l_{2}=$ balancing length of potentiometer wire corresponding to terminal potential difference of the cell when a resistance R is connected in series with the cell whose internal resistance is to be determined.

Nresthind 10

In a potentiometer arrangement, a cell ofemf 1.25 V gives a balance point at 35.0 cm length of the wire. If the cell is repiaced by another ceil and the balance point shifts to 63.0 cm , what is the emf of the second cell?

Solm.: The potertial gradient remain the same, as no change in the setting of standard circuit.
$\frac{E_{1}}{E_{2}}=\frac{l_{1}}{l_{2}}$
$\frac{1.25}{E_{2}}=\frac{35}{53}$
$E_{2}=2.25 \mathrm{~V}$

