MAGNETIC DIPOLE MOMENT

• It is defined as the product of strength of either pole (m)and the magnetic length $(2\vec{i})$ of the magnet. It is denoted by \vec{M} .

Magnetic dipole moment = Strength of either pole × magnetic length

 $\overline{M} = in(2\overline{l})$

- Magnetic dipole moment is a vector quantity and it is directed from south to north pole of the magnet.
- The SI unit of magnetic dipole moment is A m².
- If a magnet of moment M and pole strength m is cut into two equal parts along its length, then pole strength of each part is m/2 and the magnetic moment of each part is M/2.
- If a magnet of magnetic moment M and pole strength m is cut into two equal halves along perpendicular to its length, the pole strength of each part is m and magnetic moment of each part is M/2.

Magnetic Field at a Point due to Magnetic Dipole (bar magnet)

• The magnetic field due to a bar magnet at any point on the axial line (end on position) is

$$B_{\text{axial}} = \frac{\mu_0}{4\pi} \frac{2Mr}{(r^2 - l^2)^2}$$

where r = distance between the centre of the magnet and the given point on the axial line, 2l = magnetic length of the magnet and M = magnetic moment of the magnet.

• For short magnet $l^2 \ll r^2$

$$B_{\rm axial} = \frac{\mu_0 2M}{4\pi r^3}$$

The direction of B_{axial} is along SN.

The magnetic field due to a bar magnet at any point on the equatorial line (board-side on position) of the bar

magnet is,
$$B_{\text{equatorial}} = \frac{\mu_0 M}{4\pi (r^2 + l^2)^{3/2}}$$

For short magnet, $B_{equatorial} = \frac{\mu_0 M}{4\pi r^3}$ The direction of $B_{equatorial}$ is parallel to NS.

Torque on a Magnetic Dipole placed in a Uniform Magnetic Field

• When a magnetic dipole of dipole moment \overline{M} is placed in a uniform magnetic field \overline{B} , it will experience a torque and is given by

 $\bar{\tau} = \bar{M} \times \bar{B}$ or $\tau = MB\sin\theta$

where θ is the angle between \overline{M} and \overline{B}

- Torque acting on a dipole is maximum ($\tau_{max} = MB$) when dipole is perpendicular to the field and minimum ($\tau = 0$) when dipole is parallel or antiparallel to the field.
- When a dipole is placed in a uniform magnetic field, it will experience only torque and the net force on the dipole is zero while when it is placed in a non uniform magnetic field, it will experience both torque and net force.

Work done in Rotating the Magnetic Dipole in a Uniform Magnetic Field

Work done in rotating the magnetic dipole from θ_1 to θ_2 with respect to uniform magnetic field is

$$W = \int_{\theta_1} MB \sin\theta \, d\theta = -MB \left(\cos\theta_2 - \cos\theta_1\right) = MB \left(\cos\theta_1 - \cos\theta_2\right)$$

If the dipole is rotated from field direction *i.e.* $\theta_1 = 0^\circ$ to position θ *i.e.* $\theta_2 = \theta$ $\therefore W = MB (1 - \cos\theta).$

Potential Energy of a Magnetic Dipole

Potential energy of a magnetic dipole in a uniform magnetic field is

$$U = -\bar{M} \cdot \bar{B} = -MB\cos\theta$$

The potential energy of the dipole will be minimum (=-MB) when $\theta = 0^{\circ}$, *i.e.*, the dipole is parallel to the field, and maximum (=MB) when $\theta = 180^{\circ}$, *i.e.*, the dipole is antiparallel to the field.

Current Loop as a Magnetic Dipole

- A current loop behaves as a magnetic dipole whose magnetic dipole moment is M = IA where A is the area enclosed by loop and I is the current flowing in the loop.
 - If there are N turns in a loop, then M = NIA.

Illustration 7

•

θ2

6

The apparent dips in two mutually perpendicular planes are δ_1 and δ_2 . Find true dip δ .

Soln.: Here
$$\tan \delta = \frac{B_V}{B_H}$$
 or $\cot \delta = \frac{B_H}{B_V}$

In a plane, at θ with true dip plane/mag. meridian

$$\cot \delta_1 = \frac{B_H \cos \theta}{B_H}$$

In a plane, perpendicular to above plane,

$$\cot \delta_{2} = \frac{B_{H} \sin \theta}{B_{V}}$$

$$\therefore \quad \cot^{2}\delta_{1} + \cot^{2} \delta_{2} = \frac{B_{H}^{2} \cos^{2} \theta}{B_{V}^{2}} + \frac{B_{H}^{2} \sin^{2} \theta}{B_{V}^{2}}$$

$$\therefore \quad \cot^{2} \delta_{1} + \cot^{2} \delta_{2} = \frac{B_{H}^{2}}{B_{V}^{2}} (\cos^{2}\theta + \sin^{2}\theta)$$

or
$$\cot^{2} \delta_{1} + \cot^{2} \delta_{2} = \cot^{2} \delta$$

Illustration 8

What is the magnetic moment of a circular loop of radius R carrying current I clockwise?

 $\overline{m} = I \times \overline{A} \Rightarrow \overline{m} = I(\pi R^2) \otimes$

Since, the area enclosed in the loop is πR^2 , and applying right hand thumb rule, gives the direction of \overline{m} as \otimes or into the page.

Illustration 9

Figure shows four orientations at angle ϑ of its magnetic moment \overline{m} in a magnetic field *B*. Rank the orientations according to the magnitude of the torque on the dipole.

$$(1) \underbrace{\overrightarrow{m}}_{0} \underbrace{\overrightarrow{m}}_{10} \underbrace{\overrightarrow{m}}_{10} (2)$$

$$(4) \underbrace{\overrightarrow{m}}_{\overline{m}} \underbrace{\overrightarrow{m}}_{10} (3)$$

Soln.: $\tau = \vec{m} \times \vec{B}$

 $\tau = mB \sin \theta$ where θ is the angle between \vec{m} and

$$\vec{B}$$
, when their tails are together.
 $\tau_1 = mB \sin(180 - \theta) = mB \sin \theta$
 $\tau_2 = mB \sin \theta$
 $\tau_3 = mB \sin \theta$
 $\tau_4 = mB \sin(180 - \theta) = mB \sin \theta$
 $\tau_1 = \tau_2 = \tau_3 = \tau_4$

Magnetic Dipole Moment of a Revolving Electron

• An electron revolving around the central nucleus in an atom has a magnetic moment and it is given by

• The -ve sign shows that $\overline{\mu}$ is in the opposite direction to \overline{L} .

- In magnitude $\mu_L = \frac{\epsilon}{2m_e} L$ where L is the magnitude of the angular momentum of the revolving electron.
- **Bohr** magneton : The smallest value of μ_L is known as Bohr magneton.

$$\mu_{B} = \frac{e\hbar}{2m_{p}} = 9.274 \times 10^{-24} \text{ J/T} = 5.788 \times 10^{-7} \text{ eV/T}.$$

where m_{e} is the mass of the electron and $\hbar = \frac{h}{2\pi}$.

• Gyromagnetic ratio : The ratio $\frac{\mu_L}{L}$ is known as gyromagnetic ratio

$$\frac{\mu_L}{L} = \frac{e}{2m_e}$$

• It is a constant and its value is 8.8×10^{10} C/kg.

GAUSS'S LAW FOR MAGNETISM

• Gauss's law for magnetism states that the net magnetic flux through any closed surface is zero.

£

$$\phi = \sum_{\substack{\text{ell ares}\\ \text{ellaments } \Delta \hat{S}}} \vec{B} \cdot \Delta \hat{S} =$$

 This law establishes that isolated magnetic poles do not exist.

EARTH'S MAGNETIC FIELD AND MAGNETIC ELEMENTS

 Three quantities are needed to specify the magnetic field of the earth on its surface – the horizontal component, the magnetic declination and the magnetic dip. These are known as elements of the earth's magnetic field or magnetic elements.

Geographical meridian and magnetic meridian

The vertical plane passing through the geographical north pole and south pole at given place is known as the geographical meridian of that place. And a vertical plane passing through the axis of a freely suspended or pivoted magnet is known as magnetic meridian.

- Magnetic declination : Magnetic declination at a place is defined as the angle between the geographic meridian and magnetic meridian.
- Magnetic dipor inclination : Magnetic dip at a place is defined as the angle made by the earth's magnetic field with the horizontal in the magnetic meridian. It is denoted by δ .
- Horizontal component : It is component of earth's magnetic field along the horizontal direction in the magnetic meridian. It is denoted by B_{μ} .
- If B is intensity of earth's total magnetic field, then the horizontal component of earth's magnetic field is given by

$$B_{H} = B \cos \delta$$
Also, the vertical component of
earth's magnetic field,
$$B_{P} = B \sin \delta$$

$$\therefore B = \sqrt{B_{H}^{1} + B_{P}^{1}}$$
and $\tan \delta = \frac{B_{P}}{B_{H}}$
Geographic meridian

- The earth always has a vertical component except at equator.
- The earth always has a horizontal component except at the poles.
- In a vertical plane at an angle θ to magnetic meridian

$$B'_{H} = B_{H} \cos\theta \text{ and } B'_{V} = B_{V}$$
$$\tan \delta' = \frac{B'_{V}}{B'_{H}} = \frac{B_{V}}{B_{H} \cos\theta} = \frac{\tan \delta}{\cos \theta}$$
$$\tan \delta' = \frac{\tan \delta}{\cos \theta}$$

0

....

If at a given place δ_1 and δ_2 are angles of dip in two arbitrary vertical planes which are perpendicular to each other, the true angle of dip δ is given by

$$\cot^2\delta = \cot^2\delta_1 + \cot^2\delta_2$$

Angle of dip δ at a plane is related to its magnetic latitude λ through the relation

$$\tan \delta = 2 \tan \lambda$$

CLASSIFICATION OF MAGNETIC MATERIALS

 Magnetic Intensity (H) in vacuum is defined as the ratio of applied magnetic field B, to the permeability of free space µ₀ *i.e.*,

$$T = \frac{B_0}{B_0}$$

Its S.I. unit is A m⁻¹

Intensity of magnetisation (I) is defined as the magnetic moment developed per unit volume, when a magnetic specimen is subjected to the magnetising field *i.e.*,