MAGNETIC DIPOLE MOMENT

- It is defined as the product of strength of either pole (m) and the magnetic length $(2 \vec{i})$ of the magnet. It is denoted by \bar{M}.
Magnetic dipole moment $=$ Strength of either pole
\times magnetic length

$$
\bar{M}=m(2 \vec{l})
$$

- Magnetic dipole moment is a vector quantity and it is directed from south to north pole of the magnet.
- The SI unit of magnetic dipole moment is Am^{2}.
- If a magnet of moment M and pole strength m is cutinto two equal parts along its length, then pole strength of each part is $m / 2$ and the magnetic moment of each part is M/2.
- If a magnet of magnetic moment M and pole strength m is cut into two equal halves along perpendicular to its length, the pole strength of each part is m and magnetic moment of each part is $M / 2$.

Magnetic Field at a Point due to Magnetic Dipole (bar magnet)

- The magnetic field due to a bar magnet at any point on the axial line (end on position) is

$$
B_{\text {axial }}=\frac{\mu_{0}}{4 \pi} \frac{2 M r}{\left(r^{2}-l^{2}\right)^{2}}
$$

where $r=$ distance between the centre of the magnet and the given point on the axial line, $2 l=$ magnetic length of the magnet and $M=$ magnetic moment of the magnet.

- For short magnet $l^{2} \ll r^{2}$

$$
B_{\text {axial }}=\frac{\mu_{0} 2 M}{4 \pi r^{3}}
$$

The direction of $B_{\text {axial }}$ is along $S N$.

- The magnetic field due to a bar magnet at any point on the equatorial line (board-side on position) of the bar magnet is, $B_{\text {equatorial }}=\frac{\mu_{0} M}{4 \pi\left(r^{2}+l^{2}\right)^{3 / 2}}$

For short magnet, $B_{\text {equaccial }}=\frac{\mu_{0} M}{4 \pi r^{3}}$
The direction of $B_{\text {equutarial }}$ is parallel to $N S$.

Torque on a Magnetic Dipole placed in a Uniform Magnetic Field

- When a magnetic dipole of dipole moment \bar{M} is placed
in a uniform magnetic field \bar{B}, it will experience a torque and is given by

$$
\bar{\tau}=\bar{M} \times \vec{B} \text { or } \tau=M B \sin \theta
$$

where θ is the angle between \bar{M} and \bar{B}

- Torque acting on a dipole is maximum $\left(\tau_{\max }=M B\right)$ when dipole is perpendicular to the field and minimum ($\tau=0$) when dipole is parallel or antiparallel to the field.
- When a dipole is placed in a uniform magnetic field, it will experience only torque and the net force on the dipole is zero while when it is placed in a non uniform magnetic field, it will experience both torque and net force.

Work done in Rotating the Magnetic Dipole in a Uniform Magnetic Field

- Work done in rotating the magnetic dipole from θ_{1} to θ_{2} with respect to uniform magnetic field is
$W=\int_{\theta_{1}}^{\theta_{2}} M B \sin \theta d \theta=-M B\left(\cos \theta_{2}-\cos \theta_{1}\right)=M B\left(\cos \theta_{1}-\cos \theta_{2}\right)$
- If the dipole is rotated from feld direction i.e. $\theta_{1}=0^{\circ}$ to position θ i.e. $\theta_{2}=\theta$
$\therefore \quad W=M B(\overline{1}-\cos \theta)$.

Potential Energy of a Magnetic Dipole

- Potential energy of a magnetic dipole in a uniform magnetic field is

$$
U=-\bar{M} \cdot \bar{B}=-M B \cos \theta
$$

- The potential energy of the dipole will be minimum $(=-M B)$ when $\theta=0^{\circ}$, i..e., the dipole is parallel to the field, and maximum ($=M B$) when $\theta=180^{\circ}$, i.e., the dipole is antiparallel to the field.

Current Loop as a Magnetic Dipole

- A current loop behaves as a magnetic dipole whose magnetic dipole moment is $M=I A$ where A is the area enclosed by loop and I is the current flowing in the loop.
- If there are N tums in a loop, then $M=N I A$.

Tlustration 7

The apparent dips in two mutually perpendicular planes are δ_{1} and δ_{2}. Find true dip δ.
Soln.: Here $\tan \delta=\frac{B_{V}}{B_{H}} \quad$ or $\cot \delta=\frac{B_{H}}{B_{V}}$
In a plane, at θ with true dip plane/mag. meridian

$$
\cot \delta_{1}=\frac{B_{H} \cos \theta}{B_{V}}
$$

In a plane, perpendicular to above plane,

$$
\begin{gathered}
\cot \delta_{2}=\frac{B_{H} \sin \theta}{B_{V}} \\
\therefore \cot ^{2} \delta_{1}+\cot ^{2} \delta_{2}=\frac{B_{H}^{2} \cos ^{2} \theta}{B_{F}^{2}}+\frac{B_{H}^{2} \sin ^{2} \theta}{B_{V}^{2}} \\
\therefore \cot ^{2} \delta_{1}+\cot ^{2} \delta_{2}=\frac{B_{H}^{2}}{B_{V}^{2}}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
\text { or } \cot ^{2} \delta_{1}+\cot ^{2} \delta_{2}=\cot ^{2} \delta
\end{gathered}
$$

Mllustration 8

What is the magnetic moment of a circular loop of radius R carrying current I clockwise?

Solv.:

$\bar{m}=I \times \vec{A} \Rightarrow \vec{m}=I\left(\pi R^{2}\right) \otimes$
Since, the area enclosed in the loop is πR^{2}, and applying right hand thumb rule, gives the direction of \vec{m} as \otimes or into the page.

Mutrator 9

Figure shows four orientations at angle 5 of its magnetic moment $\boldsymbol{m i}^{2}$ in a magnetic field B. Rank the orientations according to the magnitude of the torque on the dipole.

Stln.: $\tau=\vec{m} \times \bar{B}$
$\tau=m B \sin \theta$ where $\hat{\theta}$ is the angle between \vec{m} and
\vec{B}, when their tails are together.
$\tau_{2}=m B \sin (180-5)=m B \sin \theta$
$\tau_{2}=m B \sin t$
$\tau_{3}=m B \sin$
$\tau_{4}=m B \sin (180-\varnothing)=m B \sin 6$
$\tau_{1}=\tau_{2}=\tau_{3}=\tau_{4}$
Magnetic Dipole Moment of a Reyolving Electrom

* An electron revolving around the central nucleus in an atom has a magnetic moment and it is given by

$$
\overrightarrow{\mathfrak{h}}_{L}=-\frac{\varepsilon}{2 m} \tilde{L}
$$

* The-ve sign shows that $\vec{\eta}$ is in the opposife trection to $\vec{\ell}$.

- In magnitude $\dot{H}_{L}=\frac{e}{2 m_{e}} \dot{L}$ where L is the magnitude of the angular momentum of the revolving electron.
- Bohr magneton : The smallest value of μ_{L} is lnown as Bohr magneton.

$$
H_{n}=\frac{e \hat{h}}{2 m_{p}}=9.274 \times 10^{-24} \mathrm{JT}=5.788 \times 10^{-3} \mathrm{VVT}
$$

where m_{e} is the mass of the electron and $\dot{i}=\frac{h}{2 \pi}$.

* Gyromagnetic ratio: The ratio $\frac{\mu_{L}}{L}$ is known as gyromagnetic ratic

$$
\frac{\mu_{j}}{L}=\frac{e}{2 m_{y}}
$$

- It is a constant and its value is $8.8 \times 1{ }^{16} \mathrm{C} / \mathrm{hg}$.

GAUSS'S EAME FOR MAGNETISM

- Gauss's law for magnetism states that the net, magnetic flux through any closed surface is zero.

$$
\begin{aligned}
& \phi=\sum_{i \rightarrow \text { are }}^{\vec{E}} \cdot \Delta \stackrel{3}{S}=0 \\
& \text { stumenstics }
\end{aligned}
$$

- This lave establishes that isolated magnetic poles do not exist.

EARTH'S MAGNETIC FIELD AND MAGNETEC ELEMENTS

- Three quantities are needed to specify the magnetic field of the earth on its surface - the horizontal component, the magnetic declination and the magnetic dip. These are lnown as elements of the earth's magretio

field or magnetic elemens.

* Geographical meridiamand magnetic meridian

The vertical plane passing through the geographical north pole and south pole at given place is lnown as the geographical meridian of that place. And a vertica! plane passing througb the axis of a frewly susperded or pivoted magnet is lnown as magnetic meridian.

- Magnetic dechinatiom: Magnetic declination at a place is de ned as the angle between the geographic meridian and magnetic meridian.
- Magnetic afe or inclination: Magnetic dip at a place is defined as the angle made by the earth's magnetic field with the holizontal in the magnetic meridian. It is denoted by δ.
- Herizontal component : it is component of earth's magnetic field along the horizontal direction in the magnetic meridian. It is denoted by \bar{B}_{H}
- If B is intensity of earth's total magnetic field, then the horizontal component of earch's magnetic field is siyent by

$$
B_{H}=B \cos \delta
$$

Alse, the vertical component of earth's magnetic field,

$$
\tilde{B}_{v}=B \sin \overline{0}
$$

$$
\therefore \quad B=\sqrt{E_{n}^{2}+B_{V}^{I}}
$$

and $\tan \&=\frac{B_{s}}{B_{s}}$

- The earth always has a vertical component excest at equator.
- The earth always has a horizontal companent except at the poles.
- in a vertical plane at an angle θ io magnetic merician
- If at a given place δ_{1} and δ_{2} are angles of dip in two arbitrary vertical planes which are perpendicular to each other, the tue angle of dip δ is given by

$$
\cot ^{2} \delta=\cot ^{2} \delta_{1}+\cot ^{2} \delta_{2}
$$

- Angle of dip δ at a plane is related to its magnetic latitude λ through the relation

$$
\tan \mathrm{B}=2 \tan \lambda
$$

classification of magnetli materials

- Maguetic Intensity (I) in vacuum is denined as the ratio of appiied magnetic field B, to the permabaility of free space μ_{0} i.e.,

$$
H=\frac{B_{0}}{\mu_{0}}
$$

Ius S.I. unit is $A \mathrm{~m}^{-1}$

* Lntensity of magnetisation (n) is defined as the magnetic moment developed per unit volune, when a magnetic specimen is subjected to the maknetisimg field i.e.,

$$
\begin{aligned}
& B_{H}^{\prime}=B_{i j} \operatorname{cose} \text { and } B_{V}^{\prime}=B_{V} \\
& \therefore \quad \tan \delta^{\prime}=\frac{B_{f}^{x}}{B_{B}^{2}}=\frac{B_{y}}{B_{H} \cos \theta}=\frac{\tan \delta}{\cos \theta} \\
& \tan 5^{\prime}=\frac{\operatorname{san} \hat{\circ}}{\cos \theta}
\end{aligned}
$$

