ELECTROMAGNETIC INDUCTION

- It is the phenommon of generating an emf by changing the number of magnetic lines of force (i,e. magnetic flux) associated with the circuit. The emf so generated is lmown as induced emf. If the circuit is closed the current which flows in it due t induced emf is known as induced current.

Faraday's Laws of Electromagnetic Induction

- First law: Whenever the amount of magnetic flux limked with a circuit changes, an emf is induced in the circuit. Twis induced emf persists as long as the change in magnetic flux con inues.
- Second law : The magnitude of the induced emf is equal to the time rate of change of magnetic flux. Mathematically, induced emf is given by

$$
\varepsilon=-\frac{d \varphi}{\frac{d i}{d i}}
$$

where negative sign indicates the direction of ε.

Lemzis law

- This law gives us the direction of induced emf. According to this law, the direction of induced emf in a circuit is such that it opposes the change in magnetic flux responsible for its production.Lenz's law is in accordance with the priaciple of conservation of energy.

Fleming's Right Mand Rule

- Fleming*s right hand rule also gives us the direction of induced emf or current, in a conductor moving in a magnetic field. According to this ruke, if we stretch the forefinger, central finger and thumb of our right hand in mutually perpendicular directions such that ferefinger points along the direction of the field and thumb is along the direction of motion of the conductor, then the central finger would give us the direction of induced current or emf. The direction of induced current or emf given by Lenz's law and Fleming's right hand rule is the same.

Find the direction of current flowing in the following circuits.

Soln.: Consider the solenoid 1. As the N-pole of the magnet approaches it, the flux through the solenoid increases. The side facing the magnet becomes a N pole as indicated, as it must oppose the N-pole coming towards it.

N-poles means the current flows anti-clockwise.
Hence the current as seen from the right side of 1 flows anti-clockwise as show/n. Ie moans cusroet in R_{1} flows from A to B.

- A similar argument shows that left side of solenoid 2, becomes N-pole as it must oppose the movement of S-pole of the magnet going away from it. The left side of solenoid 2 becomes M-pole or current if viewed from that side will flow anti-clockwise.

Hence current flows as shown, or fom to P via R_{2}.

MUHANHMK

A wire loop enclosing a semi-circle of radius a is located on the boundary of a unifurn magnetic field of induction B.

凨 the moment $t=0$ ，the loop of resistance R set into rotation with angular speed σ abour ann axis coinciding with a line on the boundary．Find the emf induced in the loop as a function of time．

Solin．：Assume the loop to have entered the field region，and let angle be 0 ．
As the area of the sector shaded is $\frac{1}{2} a^{2} 0$ ，

$$
\begin{aligned}
& \phi=s\left(\frac{1}{2} a^{2} \theta\right) \cos \theta \\
& \frac{a^{2} \phi}{d t}=\frac{1}{2} e^{2} \delta\left(\frac{d \theta}{d t}\right) \\
& |\varepsilon|=\frac{d \phi}{d t}-\frac{a^{2} B \theta}{2}
\end{aligned}
$$

The Lenz＇s law indicates that the current glows in the direction indicated．

EDOY CuRRENTS

－Eddy currents are basically the currents induced in the body of a conductor due to change in magnetic thux linked with the conductor．
＊The direction of eddy currents is given by Lenz＇s law， or Fleming＇s right hand rule．

maprctek

＊An inductor is a device for storing energy in a magnetic field．An inductor is generally called as inductance．In usual practice a coil or solenoid is treateis as inductor．It is denoted by symbol 03 ．

Self Induction

－Whenever the current passing through a coil or circuit changes，the magnetic flux linked with it will also change． As a result of this，an euf is induced in the coil or the circuit which opposes the change that causes it．This phenomenon is known as self induction and the emf induced is known as self induced emf or back emi．
－When a current I flows through a coil and 9 is the magnetic $\frac{1}{\text { mux }}$ linked with the coil，then

$$
\phi \propto I \text { or } \phi=L I
$$

where L is coefficient of self induction or sel⿳⺈⿴囗十一 inductance of the coil．
－The self induced emf is

$$
\varepsilon=-\frac{d \phi}{d t}=-\Sigma \frac{d I}{d t}
$$

－The Sl unit of L is henry（L）and its dimensional formula is $\left[M L^{2} T^{-2} A^{2}\right]$ ．
＊Selfinductance of a solenoid is $L=\mu_{0} n^{2} L A$ where l is length of the coil solencid，nis number of
turns per unit length of a solenoid and A is area or cross section of the solenoid．
－Self inductance of a circular coil is

$$
L=\frac{\mu_{\mathrm{c}} N^{2} \pi R}{2}
$$

where R is the radius of a coil and N is the number of turns

Thucua finduction

－Whenever the current passing through a coil or circuit changes，the magnetic flux linke with a neithbouring coil or circuit will also change．Hence an emf will be induced in the neighbouring coil or circuit．This． phenomenon is known as mutual induction．The coll or circuit in which the current changes is known as primary while the other in which emf is set up is known as secondary．
＊Let I_{p} ，be the current flowing through primary coil at any instant．If ϕ_{S} is the fux linked with secondary coil then

$$
\phi_{S} \propto l_{P} \text { or } \oint_{S}=M I_{P}
$$

where M is coefficient of mutual inductance of two coils．
－The emf induced in the secondary coill is given by

$$
\varepsilon_{S}=-M \frac{d l_{p}}{d t} .
$$

＊Tne SI unit of M is henry（ H ）and its dimensional formula is $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-3}\right]$ ．
＊Coefficient of eoupling（ two coils is a measure of the coupling between the two coils and is given by

$$
\mathfrak{K}=\frac{M}{\sqrt{L_{3} L_{2}}}
$$

where L_{1} and L_{2} are coefficients of self inductance of the two coils and M is coemicient of mutual inductance of the two coils．
－The coefficient of mutual inductance of two long co－ axial solenoids，each of length i ，area of cross section A ，wound on air core is

$$
M=\frac{\mu_{0} N_{1} N_{2} A}{l}
$$

where N_{1}, N_{2} are total number of turas of the two solenoid．

combinatem of frobetances

－Two inductors of self－inductances L_{1} and L_{2} are kept so far apart that their mutual inductance is zero．These are connected in seris．Then the equivalent inductance is

$$
L=L_{1}+L_{2}
$$

－Two inductors of selfinductance L_{1} and L_{2} are connected in series and they have mutual inductance $M A$ ．Then the equivalent inductance of the coribination is

$$
L=L_{1}+L_{2} \pm 2 M
$$

－The plns siga occurs if windings in the two coils are in the same sense，while minus sign occurs if windings are in opposite sense．

- Two inductors of self-inductance L_{1} and L_{2} are connected in parallel. The inductors are so far apart that their mutual inductance is negligible. Then their equivalent inductance is

$$
L=\frac{L_{1} L_{2}}{L_{1}+L_{2}} \text { or } \frac{1}{L}=\frac{1}{L_{1}}+\frac{1}{L_{2}}
$$

Energy Stored in an Inductor

- When a current I flows through an inductor, the energy stored in it and is given by

$$
U=\frac{1}{2} L I^{2}
$$

- The energy stored in an inductor is in the form of magnetic energy.

Tllustration 3

What is the self-inductance of a long solenoid of N-turns and cross-sectional area A and length l.
Soln.: The magnetic field inside a long solenoid.

$$
B=\mu_{0} n I=\mu_{0}\left(\frac{N}{l}\right) I
$$

The flux associated with each turn $\phi_{\text {turn }}=B \cdot A$

$$
\begin{aligned}
& \phi_{\text {tum }}=\mu_{0}\left(\frac{N}{l}\right) L A \\
& \phi_{\text {toml }}=N \cdot \phi_{\text {turn }}=\left(\frac{\mu_{0} N^{2} A}{l}\right) I \\
& L=\frac{\phi_{\text {Total }}}{I} \Rightarrow L=\left(\frac{\mu_{0} N^{2} A}{l}\right)
\end{aligned}
$$

- The self-inductance depends purely on geometric parameters.

Illustration 4

A solenoid S_{1} is placed coaxially inside another solenoid S_{2}. The radii of the inner and outer solenoids are r_{1} and r_{2} respectively. If N_{1} and N_{2} are the number of tums of coil in solenoid S_{1} and S_{2} respectively and l is the length of solenoid S_{2} carrying current I, then calculate the mutual inductance between the two solenoids.
Soln.: Magnetic field of the outer solenoid is $B=\frac{\mu_{0} N_{2} I}{l} \frac{1}{l}$, when current I passes through it. The flux associated with the inner coil is $\phi_{1}=N_{1} B \pi r_{1}^{2}$
$\Rightarrow \phi_{1}=N_{1}\left(\frac{\mu_{0} N_{2}}{l}\right) I \pi \pi_{1}^{2}$
$\therefore \quad$ Mutual inductance between the two solenoid to given by

$$
M=\frac{\phi_{1}}{l}=\left(\frac{\mu_{0} N_{1} N_{2}}{l}\right) \pi r_{1}^{2}
$$

ALTERNATING CURRENTS

- It is that current which changes continuously in magnitude and in direction periodically. It can be represented by a sine curve or a cosine curve

$$
I=I_{0} \sin \omega t \text { or } I=I_{0} \cos \omega t
$$

- Here, I_{0} is peak value of current and is known as amplitude of ac, I is instantaneous value of alternating current.

$$
\begin{aligned}
\omega & =2 \pi / T \\
& =2 \pi v \text { where } T \text { is period of ac and } v \text { is frequency of ac. }
\end{aligned}
$$

Mean or Average Value of Alternating Current or Voltage over one Complete Cycle

- The mean or average value of alternating current or voltage over one complete cycle is zero.

$$
\begin{aligned}
& I_{m} \text { or } \bar{I} \text { or } I_{a v}=\frac{\int_{0}^{T} I_{0} \sin \omega t d t}{\int_{c}^{T} d t}=0 \\
& V_{m} \text { or } \bar{V} \text { or } V_{a v}=\frac{\int_{0}^{T} V_{0}^{\prime} \sin \omega t d t}{\int_{0}^{T} d t}=0
\end{aligned}
$$

- Average value of alternating current for first half cycle is

$$
I_{a v}=\frac{\int_{0}^{T / 2} I_{0} \sin \omega t d t}{\int_{0}^{T / 2} d t}=\frac{2 I_{0}}{\pi}=0.637 I_{0}
$$

- Similarly, for alternating voltage, the average value over first half cycle is

$$
V_{a v}=\frac{\int_{0}^{T / 2} V_{0} \sin \omega t d t}{\int_{0}^{T / 2} d t}=\frac{2 V_{0}}{\pi}=0.637 V_{0}^{T}
$$

- Average value of alternating current for second cycle is

$$
I_{a v}=\frac{\int_{T / 2}^{T} I_{0} \sin \omega t d t}{\int_{T / 2}^{T} d t}=-\frac{2 I_{0}}{\pi}=-0.637 I_{0}
$$

- Similarly, for altemating voltage, the average value over second half cycle is

$$
V_{a v}=\frac{\int_{T / 2}^{T} V_{0} \sin \omega t d t}{\int_{T / 2}^{T} d t}=-\frac{2 V_{0}}{\pi}=-0.637 V_{0}
$$

- The average value of alternating current (or voltage) during the first and second half cycles are equal but opposite in sign i.e. they are altemately positive and negative so that the average over one cycle is zero.

Mean Value or Average Value of Alternating Current over any Half Cycle

- It is that value of steady current, which would send the same amount of charge through a circuit in the time of half cycle i.e. $T / 2$ as is sent by ac through the same circuit in the same time.

$$
I_{a v}=\frac{2 I_{0}}{\pi}=0.637 I_{0}
$$

- Similarly, for alternating voltage

$$
I_{u^{\prime}}=\frac{2 I_{0}}{\pi}=0.637 I_{0}
$$

Poot Rean Sanare (rms) Vabe of Athermaing Cinfent

- It is defined as that value of steady current, which would generate the same amount of heat in a given resistance in a given time, as is done by the altemating current, when passed through the same resistance for the same time. The mas value of ac is also known as effective value or virtual value of ac. It is represented by $I_{\text {TTMS }}, l_{\text {gff }}$ or I_{*}

$$
I_{\text {mus }} \text { or } I_{v}=\frac{r_{0}}{\sqrt{2}}=0.707 I_{0}
$$

- Similarly, for afterating voltage

$$
V_{\operatorname{mos}}=\frac{V_{0}}{\sqrt{2}}=6.707 H_{0}
$$

- All ac instruments measure rms value of ac.

Form Factors

- Form factor is ratio of mas value to average value of alterating current or voltage during half cycle.
Form factor $=\frac{I_{m y y}}{I_{0}}=\frac{I_{0} / \sqrt{2}}{2 I_{0} / \pi}=\frac{\pi}{2 \sqrt{2}}=1.11$

The peak value of an altermating current is 5 A and its Frequency is $60 \mathrm{~Hz}(\mathrm{a})$ Find its ms value (b) How ing wili the current take to reach the peak value starting fom zero?
Solwtion: Here, $f_{0}=5 \mathrm{~A}$
$\Rightarrow I_{m s}=\frac{I_{0}}{\sqrt{2}}=\frac{5 \mathrm{~A}}{\sqrt{2}}=3.54 \mathrm{~A}$
$A s$ is evident from the graph, starting from 0 , the current takes a

me $\frac{T}{4}$ to reach the peak value.
Here $T=\frac{2 \pi}{0}=\left(\frac{2 \pi}{6}\right)=\left(\frac{\pi}{3}\right) \mathrm{s}$
The required time, $t=\frac{T}{4}$
or $\varepsilon=\left(\frac{\pi}{30 \times 4}\right)=\left(\frac{\pi}{120}\right) \mathrm{s}$
AC Circuit Containisg Pure Resistance only
Let $V=\bar{V}_{0} \sin \omega t$

- Then, $I=\frac{V}{R}=\frac{V}{R} \sin \omega t=r_{0} \sin \omega t$
- Here the altemating voltage is in phase with current, when ac flows through a resistor.

AC Circuit containing Pure fridutior ponly

- Let $V=F_{0} \sin \omega t$

Then, $y=I_{0} \sin \left\{\omega t-\frac{\pi}{2}\right\}$
where $I_{0}=\frac{V_{0}}{\omega L}$

- Thus; the altemating current lags behind the altemating voltage by a phase angle of $\frac{\pi}{2}$ when ac flows timough an anductor.
- Inductive reactance: It is the opposition offered by the inductor to the fow of alternating current tough it.

$$
X_{L}=\omega L=2 \pi \mathrm{O} L
$$

- The inductive reactance is zere for de $(u=0)$ and has a ii nite value for ac.

AC circuit Contaiting Pure Capacinor onizy

- Let $V=Y_{0} \sin \tan$
$I=I_{Q} \sin \left(\omega t+\frac{\pi}{2}\right)$
where $T_{0}=\left(\omega C_{0} H_{0}\right.$
- Thus, the altemating current leads the veltage by a phase angle of $\frac{\pi}{2}$, when ac flews through a capacitor.
* Capacitive reactance: It is the opposition offeree by the capacitor the flow of altemating current through it.
The capacitive reactance is in nite for $\mathrm{de}(\mathrm{v})=0)$ and has a finite value for ac.

$$
X_{C}=\frac{1}{\omega C}=\frac{1}{2 \pi \omega C}
$$

* The capacitive reactance is infinite for $d c(0=0)$ and has a finite value for ac.

A $15.0 \mu \mathrm{~F}$ capacitor is connected to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ surve. Find the capacitive reactance and the current (ms and peak) in the circuit. If the requency is double what happens to the capacitive reactance and the current?

Sol. The capacitive reactance is

$$
\begin{aligned}
X_{C} & =\frac{1}{2 \pi 0 C}=\frac{1}{2 \pi\left(50 \mathrm{~Hz}_{2}\right)\left(15.0 \times 10^{-6} \mathrm{~F}\right)} \\
& =212 \Omega
\end{aligned}
$$

The rms cument is

$$
I_{V}=\frac{Y}{X_{C}}=\frac{220}{212}=1.04 \mathrm{~A}
$$

when the frequency is doubled, the capacitive reactance reduce to half and virtual corrent increases to double.

$$
\begin{aligned}
& X_{C}=\frac{X_{C}}{2}=106 \Omega \\
& I_{V}^{\prime}=2 I_{V}=2.08 \mathrm{~A}
\end{aligned}
$$

