REFLEGTION OF LIGHT

- Reflection is the phenomenon by virtue of which a light beam after interacting with a surface separating the two different media bounces back into the same medium.

Laws of Reflection

- First law of reflection states that the incident tay, retlected ray and normal to the surface lie in the same plane.

- Second law of reflection states that angle of reflection is equal to angle of incidence.
- These laws of reflection hold true for regular reflection at all kind of surfaces i.e., plane or curved.

Pane mirrer

Canvex mirrer

Concavemimor

- For angle of incidence $i={ }^{*}$, angle of reflection r is also same ie., $z=0^{\circ}$.

Plane mirror

Reflection at Plane Mirror

- Image formed by plane mirror is virtual, erect, of same size and is formed at same distance from the mirror as is the object i.e., $u=\vartheta$
- Innage formed by plane mirror is laterally inverted. i.e., right side of the object appears as the left side of the image and vice-versa.

- A plane mirror can form a real image only when a convergent beam of light falls on the plane mintor.

* On keeping the incident ray fixed, if the mirror is tamed through an angle θ, then the reflected ray tums by an angle 28 from its initial path.

- To view fill image, a person needs a plane mirror of length equal to half the height of person.

So, to observe the complete image of a person of height $2(H+h)$ the minimum height ofminor rquired is $(H+h)$.

- If there are two plane mirrors peipendicular to each other, then the ray of light after suffering reflection from both the mirrors become antiparallel.

- Iftwo plane mirers areparallel to each other, then infinite images of an object placed between ther are formed. If the inst image is α distance behind the miretr, then all other consecutive innages are $2 d$ distance apart.

a If there are two plane mirrors inclined at angle 9 with each other, then the number of possible images of a point object are :
(a) $n=m \ldots 1$
if $n=\frac{360^{\circ}}{\theta}$ is even number.
For example, if $=60^{\circ}$ then $m=\frac{360^{\circ}}{60^{\circ}}=6$
and $n=6 \mathrm{~m} 1 \mathrm{~m} \mathrm{~m}$
(b) $m=m$
i $\overline{1} m=\frac{360^{\circ}}{2}$ is odd number.
Fior example, if $\mathrm{G}=72^{\circ}$ then $m=\frac{360^{\circ}}{72^{\circ}}=5$
and $n=5$
(c) $n=\operatorname{Int}[m]$

$$
\text { if } m=\frac{360^{\circ}}{\theta} \text { is a fractional number. }
$$

$$
\text { For example, if }=75^{\circ} \text { then } n=\frac{360^{\circ}}{75^{\circ}}=4.8
$$

$$
\text { and } n=\operatorname{lnt}[4.8]=4
$$

* If the reflecting surface is smooth, then the regular reflection take place and images can be formed, but if the surface is rough, diffused reflection take piace where the reflected rays scatter in different directions so, the image canot be fomed by such reflection. This is why we can see our image while looking into a steel container but we do not observe the mage while reacing a news paper.

11/SN

What is the minimum length of a mane mirror required for a persen to see his or her fill image?
Solfin:

The total heighs of the person from top of the head T to bott m of the feet \bar{F} is $T F . E^{\prime}$ is exactly appromiane to E : the eye level of the person.
From the foot \bar{F}, the incident ray is reflected at B, the level end of the mirror to reach the eye level of the person at E. Due to incident ray equal to retlected ray, as shown by 0 .
$E B=\frac{1}{2} E F=\frac{k_{2}}{2}$
A similar argument proves $A E^{\prime}=\frac{1}{2} T E=\frac{h_{2}}{2}$
Here hetgh of the mirror to show a frll-sizea imas of the person is only half sized i.e.,

$$
A B=: A E^{\prime}+E^{\prime} B=\frac{h_{1}}{2}+\frac{h_{2}}{2}=\frac{\left(h_{1}+h_{2}\right)}{2}
$$

Thusixathin

Two adjacent walls of a reom perpenicular to each other are covered filly by mirror, how many images of yourself, will you see if you stand in that reom.
Solv.: $\theta=90^{\circ}$

$$
\frac{360}{\theta}=\frac{360}{30}=4 \text { is even, }
$$

